Lecture 8 Games and Nash Equilibrium

CS 580

Instructor: Ruta Mehta

Agenda

Two-player Games Nash Equilibrium (NE) \Box NE existence □ NE characterization Zero-sum games □ Minmax Theorem \Box LP-duality

Games

Randomize!

Nash (1950):

Randomize!

There exists a (stable) state where no player gains by unilateral deviation.

Nash equilibrium (NE)

Our focus: Two-player games

■ For Alice, *i*th strategy gives

For Alice, *i*th strategy gives

NE: No unilateral deviation is beneficial $x^{T}Ay \ge z^{T}Ay, \quad \forall z \in \Delta_{m}$ $x^{T}By \ge x^{T}Bz, \quad \forall z \in \Delta_{n}$

	Exa	mple:	Matching Pennies
	Н	Т	H T Y2 Y2 07 -> -0.5
Η	1 -1	-2 2	н – 2,
Т	-2 2	1 -1	$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$
			$E_{A}[H] = (1) \frac{1}{3} \frac{1}{6} (-2) \frac{1}{3} = -1$ = $\frac{1}{3} - \frac{1}{3} = -\frac{3}{3} = -1$
			$E_{A}[T] = (-2)Y_{3} + (1)\frac{P_{3}}{2}$ = -2/3 + 2/3 = 0

Nash's Existence Theorem (1950)

[Brouwer 1910]: Let $f: D \rightarrow D$ be a continuous function from a convex and compact subset *D* of the Euclidean space to itself.

Then there exists an $x \in D$ s.t. x = f(x).

closed and bounded

A few examples, when *D* is the 2-dimensional disk.

 $Brouwer \Rightarrow Nash$ (Nash'51)

Nash's Proof:

$$f: \Delta_m \times \Delta_n \to \Delta_m \times \Delta_n, \quad (x', y') = f(x, y) = c^{x_i} y$$

$$(x', y') \to (x', y')$$

$$\forall i, \quad \delta_i = \max\{(Ay)_i - x^T Ay, 0\}, \quad (y') = (x, y)$$

$$\Rightarrow (x', y') = (x, y)$$

$$\Rightarrow (y', y') = (x', y')$$

$$\Rightarrow (x', y') = (x', y')$$

$$\Rightarrow (x', y') = (x', y')$$

$$\Rightarrow (y', y') =$$

1

 $)_{\frac{1}{2}} \frac{\partial \partial x}{\partial x} (AY)_{i} = (AY)_{i}$ $\forall i, \qquad \delta_i = \max\{(Ay)_i - x^T Ay, 0\} \ge 0$ $x_i \neq \delta_i$ ∀i, $\overline{\sum_{k=1}^{n}(x_k+\delta_k)}$ Lemma. If $x^T Ay < z^T Ay$ for some $z \in \Delta_m$ then $x' \neq x$. PF: REargonx (Ay); (Ay)K KE angrin (AY); :®_0 xk Sk 2

Nash's Proof

$$f: \Delta_m \times \Delta_n \to \Delta_m \times \Delta_n, \quad (x', y') = f(x, y)$$

$$(\checkmark y) \longrightarrow (\neg y', y')$$

$$\forall j, \quad \tau_j = \max\left\{ \left(x^T B \right)_j - x^T B y, 0 \right\},$$

$$\forall j, \qquad y'_j = \frac{y_j + \tau_j}{\sum_{k=1}^n (y_k + \tau_k)}$$

Lemma. If y' = y then y is best for Bob against x $\equiv \text{If } x^T B y < x^T B z$ for some $z \in \Delta_n$ then $y' \neq y$.

2-Nash Characterization

■ For Alice, *i*th strategy gives

For Alice, *i*th strategy gives

- Max possible payoff: $\max_{i} e_i Ay$
 - *x* achieves max payoff iff

$$\forall i, \qquad x^T A y \ge (A y)_i \\ \equiv \\ \forall k, \qquad x_k > 0 \Rightarrow (A y)_k = \max_i (A y)_i$$

Complementarity

 $\forall i, (Ay)_i \le \pi_A$ $y \in \Delta_n$

 $\begin{array}{c|c} \forall j, (x^T B)_j \leq \pi_B \\ Q & x \in \Delta_m \end{array}$

$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$

Sum of payoffs ______ At least the sum of max payoffs ______ max payoffs ______ $x^T(A+B)y - (\pi_A + \pi_B) \leq 0$

$$P \begin{vmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{vmatrix}$$

$$Q \quad \begin{array}{l} \forall j, \left(x^T B\right)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

$$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$$

$$P \quad \begin{array}{c} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array}$$

$$Q \quad \begin{array}{c} \forall j, \left(x^T B\right)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

Claim. For $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$ (i) $x^T (A + B)y - (\pi_A + \pi_B) \le 0$. (ii) $x^T (A + B)y - (\pi_A + \pi_B) = 0$ if and only if (x, y) is a NE.

$$P \quad \begin{array}{c} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array}$$

$$Q \quad \begin{array}{c} \forall j, \left(x^T B\right)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

Claim. For $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$ (i) $x^T (A + B)y - (\pi_A + \pi_B) \le 0$. (ii) $x^T (A + B)y - (\pi_A + \pi_B) = 0$ if and only if (x, y) is a NE.

$$P \quad \begin{array}{l} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array}$$

$$Q \quad \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m$$

$$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$$

At least the sum of 2-Nach payoffs max payoffs max: $x^T(A + B)y - (\pi_A + \pi_B) = 0$ Complementarity s.t. $(y, \pi_A) \in P, (x, \pi_B) \in Q$ 1. (x, y) is a NE 2. π_A and π_B are the max payoffs

Zero-sum Games Von Neuman's maxmin theorem (1928) = LP-duality

$$P \begin{array}{|c|} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array} \qquad \qquad Q \begin{array}{|c|} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

 $(y, \pi_A) \in P,$ $(x, \pi_B) \in Q$ **Theorem.** If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming $A_{ij} \neq B_{ij} \neq 0$ max: $x^T(A + B)y - (\pi_A + \pi_B)$ s.t. $(y, \pi_A) \in P,$ $(x, \pi_B) \in Q$

$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

$$\max: -(\pi_A + \pi_B)$$

s.t. $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

Theorem. [von Neumann'28] (max-min = min-max) Game (A, -A). Wrt *A*, Alice is a maximizer and Bob minimizer. Then,

 $\max_{x} \min_{y} x^{T} A y = \min_{y} \max_{x} x^{T} A y \text{ \& the max-min is NE.}$

Computation in general?

NE existence via fixed-point theorem.

Computation? (in Econ)

Special cases: Dantzig'51, Lemke-Howson'64, Elzen-Talman'88, Govindan-Wilson'03, ...

Scarf'67: Approximate fixed-point.
 Numerical instability
 Not efficient!

What if solution always exists, like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91 : Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Complexity Classes

2-Nash is PPAD-complete! [DGP'06, CDT'06]

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Brute-force Algorithm?

$$P \quad \begin{array}{c} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array}$$

$$Q \quad \forall j, \left(\mathbf{x}^T B \right)_j \le \pi_B$$
$$\mathbf{x} \in \Delta_m$$

Let (x, y) be a NE. Suppose we know supp(x) and supp(y). Now can we find a NE?

Can we do better than "brute-force"?

Not so far. And may be never! It is one of the hardest problems in PPAD.

What about special cases/approximation?

Rank(A) or rank(B) is constant

O(1)-approximate NE: quasi-polynomial time algorithm

Constant rank games: rank(A+B) is a constant
 FPTAS

$$(y, \pi_A, x, \pi_B) \in P \times Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

max:
$$-(\pi_A + \pi_B)$$

s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank of a game: rank(A+B) Zero-sum \equiv Rank-0 games

 $(y, \pi_A, x, \pi_B) \in P \times Q$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash → linear programming
Rank of a game: rank(A+B)
Poly-time approximation for constant rank games
[KT'03].
Poly-time exact for rank-1 games [AGMS'11].
Exact for rank > 2 is PPAD-hard [M'13].