0 = {1,.., m} combidates/outcomes

L= All possible orderings over the condidates in O.

IL = m!

For every agent ight, 7; EL

a > 16 > 1 b

0= {a,b,c}

L= {(a,b,i), (b,c,a), (g,b),}

God:

♦ Social Claice Func.

C: Ln -> ()

(>1,>2,...,>n)

Social westerne Func

W: Ly -> L

0= { A.B. C.S

Voters 2 1 A>B>C 499:

B > C > A

c > B > A 458:

& Voting Schemes: 1) Plurality (majority): Most top votes wiss -> A.

& Plunding of dimination: Eliminate least top lotes -> C

B) Bonda Cont: jk cardidate gets (m-j) points. A: 499x2 = 938 Most points win.

B.) 499+ 2×8+ 498=1003

C: 3 # 2 x 498 = 1001

(4) (ondorset virmer; Winner 85 avery "pairwise

AVS. B

ruaMi" BVs. c-

A VS. (C)

* Desired Properties: Given SEL^m , >w=W(>)

1) Pareto Etticiera (PE): VitN, 9>ib => 9>wb

3 Independent 88 Irrelevant Alterative (IIA).

Given 0,660, Suppose 7,56L,56. Vi, a>,6 => a>,6

b>ia ⇒ b>ia

Then, $a > b \Rightarrow a > b > b > a$ $b > w a \Rightarrow b > b > w a$

(3) Non-dictatorial: W does not have a "dictator".

JiEN, Va,bED: 9> 9>wb

Thm: [Anow'sO:]. Amy W Kat is PE&IIA is Dictatorial.

PS: 4 (laims.

Suppose W satisfies PE4 IIA.

Fix b60.

cluim 1:	In >, it every agent puts	b at the top
	or at the bottom; her in w	b should be
	at he top or bottom.	_∕I

PS: By contradiction. Suppose, [a>wb>wc], Jacco.

Construct > tom > by moving c above a

ton all agets i.

 $\frac{\text{careT}}{\text{>}_{i}} \qquad \frac{\text{careT}}{\text{>}_{i}} \qquad \frac{\text{>}_{i}}{\text{>}_{i}} \qquad \frac{\text{$

ors: Relative ordering to alb, blc are some $bd^n > , \leq .$

(1) a > w b = 3 a > w b > w c (2) b > w c = 3 b > w c) (contradicts PE because c >; a Vii.

claim 2: 3 it on Hat is extremely pivotal. That is, it can nove b from bottom to top. PS: Consider SELT, where each iEN puts b at the bottom. => in>w b is at the bottom. Now nove b from bottoon to For one agent at a time. For each 80 Mese b is at le top or at the bottoss in the outcome by (him I. Reall, b started at the bottom. Al some point bouill switch them bottom to top in the outcome. Let it be the comes possing agent. 1 -- - (i*1) i* (i*1) - - . 80) JW.

Goal: For any given $56L^n$, no matter other paperance ordering, its decides the outcome.

That is, d Sine \iff d Sive \implies 4,eco.

Claim 3: it is a dictator ton any pair rest involving b.

Pf: Pick $a,c \in O$, $a,c \neq b$. Let $a \stackrel{\xi}{>}_{i} \stackrel{C}{\leftarrow} C$.

(TST: $a \stackrel{\xi}{>}_{w} C$).

(onstruct 3 known 5 as tollows (matthe relative ordains of a 40 in 5 tonall) agats)

There a to the top 3^{2} in 3^{2}

(2) $\forall i \neq i \neq n$ none at C to realth with S_i : $i \neq a \leq_i C$, $C \leq_i a$ Swap at C in S_i : $C \leq_i a$, $a \leq_i C$ \Rightarrow to constant S_i :

For all agents.

For all agents.

67551: Bet & & S orderical of a & b

is the same. a > b > 1 = A a > b > 4 > b

OBS2: VIEN, Bet 3 relative ordering.

By b (C are uncharged.

claim h: i* decides ordering A (a,b) for any $a \notin O$.

That is, $a \nleq b \Rightarrow a \nleq w b$ $b \nleq a \Rightarrow b \nleq w a$

Ps: Consider any C±4, b. Apply claim & for consider any C±4, b. Apply claim & for consider any Some in a will be pirotal for consider and the pirotal for consider and the pirotal for consider and the decider and the decide

ordering & a + b W(3) for any $5 \in L$.

ordering & a + b W(3) for any $5 \in L$.

But; for 5 + 4 = 1 we know that $1 \neq 1$ decides position & b $1 \neq 1$ thereby relative ordering of position & b $1 \neq 1$ thereby autome. Hence it must be that $1 \neq 1 \neq 1 \neq 1$