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 : set of n agents, 1 ,…, n, 

 : set of indivisible items (like cell phone, painting, etc.)

 Agent has a valuation function over subsets of items
 Monotone: the more the happier



Last Lecture

 EF: Envy-free, Prop: Proportional
 Do not exist

 EF1: Envy-free up to one item.
 Round Robin for additive valuations

 Envy-cycle elimination for general monotone 

 Prop1: Proportional up to one item
 EF1 implies Prop1 under additive valuations

 CE + Rounding algorithm for general valuations.

 EFX: Envy-free up to any item

 Open:
 EF1+PO for submodular valuations
 EFX with 3 agents. EFX with 4 agents under additive valuations

 …



Proportionality

 A set of agents, a set of indivisible goods

 Proportionality: Allocation is proportional if 
each agent gets at least share of all items:

Cut-and-choose?



Maximin Share (MMS) [B11]

 Suppose we allow agent to propose a partition of items into 
bundles with the condition that will choose at the end.

 Clearly, partitions items in a way that maximizes the value of 
her least preferred bundle.

 Maximum value of least preferred bundle

Cut-and-choose.



Maximin Share (MMS) [B11]

 Suppose we allow agent to propose a partition of items into 
bundles with the condition that will choose at the end

 Clearly, partitions items in a way that maximizes the value of 
her least preferred bundle

 Maximum value of least preferred bundle

 Set of all partitions of items into bundles


భ ೙

 MMS Allocation: is called MMS if 

 Additive valuations:
೔

Cut-and-choose.



MMS value/partition/allocation



MMS value/partition/allocation

Finding MMS value is NP-hard!



 PTAS for finding MMS value [W97]

Existence (MMS allocation)? 

 : yes  

A PTAS to find -MMS allocation for any 

 : NO [PW14]

What is Known?



 PTAS for finding MMS value [W97]

Existence (MMS allocation)? 

 : yes  

A PTAS to find -MMS allocation for any 

 : NO [PW14]

 -MMS allocation for : 
 -MMS exists [PW14, AMNS17,  BK17, KPW18, GMT18]

 -MMS exists [GHSSY18]

 )-MMS exists [AG23]

 -MMS does not exist [Feige et al. 2020]

What is Known?



Properties 

 Normalized valuations
 Scale free: 

 WHY?
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 Scale free: 



 Ordered Instance: We can assume that agents’ order of 
preferences for items is same



Properties 

 Normalized valuations
 Scale free: 



 Ordered Instance: We can assume that agents’ order of 
preferences for items is same

🍎 🍌 🍐 🍍
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ї 5 4 4 3 2



Challenge

 Allocation of high-value items! 

 If for all 






Bag Filling Algorithm: 

🙂

🙂

🙂

🙂

🙂
Repeat until every agent is assigned a bag

 Start with an empty bag 

 Keep adding items to until some agent values it 

 Assign to and remove both

Claim: After round k, if remains then ௜
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🙂

🙂

🙂

🙂

🙂

Thm: Every agent gets at least 

Bag Filling Algorithm: 

Repeat until every agent is assigned a bag

 Start with an empty bag 

 Keep adding items to until some agent values it 

 Assign to and remove them both



Warm Up: -MMS Allocation

 If all then? 
 Done, using bag filling.

 What if some 



Valid Reductions
 Normalized valuations

 Scale free: 𝑣௜௝  ←  𝑐. 𝑣௜௝ , ∀𝑗 ∈ 𝑀

 ∑ 𝑣௜௝௝  = 𝑛    ⇒    𝜇௜ ≤  1 

 Ordered Instance: Agents’ order of preferences for items is same:    𝑣௜ଵ ≥  𝑣௜ଶ ≥ ⋯ 𝑣௜௠, ∀𝑖 ∈ 𝑁

 Valid Reduction ( -MMS): If there exists and 
 gets -MMS value from ∗ ∗

 Once we give to , and remove both, the MMS value of the 
remaining agents does not decrease. 

reduce the instance size!

Claim. Suppose agent an -MMS allocation of to 
agents , then ∗ ∗ is an -MMS 
allocation in the original instance.  



-MMS Allocation

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗



-MMS Allocation

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗



-MMS Allocation

 Re-normalization

Step 0: Normalized Valuations: 

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗. Remove good 1 and agent ∗

 After every valid reduction, normalize valuations

Step 2: Bag Filling 



Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

-MMS Allocation [GMT19]

 If all then? 

…

1               2               3 n-1 n



Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

-MMS Allocation [GMT19]

…

1               2               3 n-1 n

Case I: 

௞



-MMS Allocation [GMT19]

…
1               2               3 n-1 n

…

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Then, swap items ଵ

and n, and items ଶ

and (n+1). This may 
only increase ௜ ௞

& ௜ ௟ because 

௜ ଵ ௜ & 

௜ ଶ ௜ .

Case II: 

௞

௟

ௗ, with items 

ଵ ଶ



-MMS Allocation [GMT19]

…
1               2               3 n-1 n

…

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Then, swap items ଵ

and n, and items ଶ

and (n+1). 
Move remaining items 
of ௗ to other bundles
and remove ௗ

Case II: 

௞

௟

ௗ, with items 

ଵ ଶ



-MMS Allocation [GMT19]

…
1               2               3 n-1 n

…

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Then, swap items ଵ

and n, and items ଶ

and (n+1). 
Move remaining items 
of ௗ to other bundles
and remove ௗ

Case II: 

௞

௟

ௗ, with items 

ଵ ଶ

Again, value of none of the remaining bundles has decreased. 
MMS value of agent has only increased in the reduced instance.



Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Step 2: Generalized Bag Filling with 

 Initialize bags ଵ ௡ with ௞ .

 Assign items starting from th to the first 
available bag, and give it to the first agent who shouts 
(values it at least ). 

…
1            2               3 n-1 n

g1 g2 g3 g(n-1) gn

After Step 1,
For each agent i,

௜௝
ଶ

ଷ

௜௝
ଵ

ଷ

Claim. If agent is the first to shout, then for any agent 
the bag is of value at most 1.  





2/3-MMS Allocation [GMT19]

Step 0: Normalized Valuations: 

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

 After every valid reduction, normalize valuations

Step 2: Generalized Bag Filling with 

 Initialize bags ଵ ௡ with ௞



Chores



 N: set of agents, 1 ,…, n, 

 : set of indivisible chores

 Agent has a disutility function over subsets of items
 Monotone: the more the un-happier

 Additive: , for any subset 



 N: set of agents, 1 ,…, n, 

 : set of indivisible chores

 Agent has a disutility function over subsets of items
 Additive: ௜ ௜௝௝∈ௌ , for any subset 

Allocation 

EF1: No agent envies another after removing one of her chores.



Round Robin
1. Order agents arbitrarily. 

2. Let them pick their best chore (least painful chore), one-at-a-time, 
in that order. 

Observations:

 If agent picks the last chore, then agent does not envy 
anyone. Why?

EF1: Algorithms



Envy-cycle-elimination

2. While there are unassigned chores
1. Construct envy-graph of A and remove any cycles.

2. Give an unassigned chore to …..   ??

Observations:

 Cycle elimination does not increase any agent’s disutility.

 Giving a chore to sink maintains EF1. Why?

EF1: Algorithms



 N: set of agents, 1 ,…, n, 

 : set of indivisible chores

 Agent has a disutility function over subsets of items
 Additive: ௜ ௜௝௝∈ௌ , for any subset 

 Set of all partitions of items into bundles

MMS value:          
ೖ

-MMS allocation for :   

1-MMS allocation may not exist!

MMS



Claim. If is EF1 then it is 2-MMS

Observations: ೔ and  

Proof.

EF1 to -MMS



Summary

Covered 

 Additive Valuations: 
 ½-MMS allocation (poly-time 

algorithm)

 -MMS allocation 
(polynomial-time algorithm) 

State-of-the-art

 -MMS allocation [GT20]

 More general valuations
 MMS [GHSSY18]

 Groupwise-MMS [BBKN18]

 Chores: -MMS [HL19]

Major Open Questions (additive)

 -MMS + PO: polynomial-time algorithm for a constant 

 Existence of -MMS allocation? For 5 agents?
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