
Fair Division of Indivisible Items
(Part II)

Instructor: Ruta Mehta

CS 580

Most slides are curtesy Prof. J. Garg

 : set of n agents, 1 ,…, n,

 : set of indivisible items (like cell phone, painting, etc.)

 Agent has a valuation function over subsets of items
 Monotone: the more the happier

Last Lecture

 EF: Envy-free, Prop: Proportional
 Do not exist

 EF1: Envy-free up to one item.
 Round Robin for additive valuations

 Envy-cycle elimination for general monotone

 Prop1: Proportional up to one item
 EF1 implies Prop1 under additive valuations

 CE + Rounding algorithm for general valuations.

 EFX: Envy-free up to any item

 Open:
 EF1+PO for submodular valuations
 EFX with 3 agents. EFX with 4 agents under additive valuations

 …

Proportionality

 A set of agents, a set of indivisible goods

 Proportionality: Allocation is proportional if
each agent gets at least share of all items:

Cut-and-choose?

Maximin Share (MMS) [B11]

 Suppose we allow agent to propose a partition of items into
bundles with the condition that will choose at the end.

 Clearly, partitions items in a way that maximizes the value of
her least preferred bundle.

 Maximum value of least preferred bundle

Cut-and-choose.

Maximin Share (MMS) [B11]

 Suppose we allow agent to propose a partition of items into
bundles with the condition that will choose at the end

 Clearly, partitions items in a way that maximizes the value of
her least preferred bundle

 Maximum value of least preferred bundle

 Set of all partitions of items into bundles


భ ೙

 MMS Allocation: is called MMS if

 Additive valuations:
೔

Cut-and-choose.

MMS value/partition/allocation

MMS value/partition/allocation

Finding MMS value is NP-hard!

 PTAS for finding MMS value [W97]

Existence (MMS allocation)?

 : yes

A PTAS to find -MMS allocation for any

 : NO [PW14]

What is Known?

 PTAS for finding MMS value [W97]

Existence (MMS allocation)?

 : yes

A PTAS to find -MMS allocation for any

 : NO [PW14]

 -MMS allocation for :
 -MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]

 -MMS exists [GHSSY18]

)-MMS exists [AG23]

 -MMS does not exist [Feige et al. 2020]

What is Known?

Properties

 Normalized valuations
 Scale free:

 WHY?

Properties

 Normalized valuations
 Scale free:



 Ordered Instance: We can assume that agents’ order of
preferences for items is same

Properties

 Normalized valuations
 Scale free:



 Ordered Instance: We can assume that agents’ order of
preferences for items is same

🍎 🍌 🍐 🍍
ѡ 3 1 2 5 4

ї 4 4 5 3 2

1 2 3 4 5

ѡ 5 4 3 2 1

ї 5 4 4 3 2

Challenge

 Allocation of high-value items!

 If for all




Bag Filling Algorithm:

🙂

🙂

🙂

🙂

🙂
Repeat until every agent is assigned a bag

 Start with an empty bag

 Keep adding items to until some agent values it

 Assign to and remove both

Claim: After round k, if remains then ௜

Bag Filling Algorithm:

🙂

🙂

🙂

🙂

🙂
Repeat until every agent is assigned a bag

 Start with an empty bag

 Keep adding items to until some agent values it

 Assign to and remove them both

Claim: After round k, if remains then ௜

🙂

🙂

🙂

🙂

🙂

Thm: Every agent gets at least

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

 Start with an empty bag

 Keep adding items to until some agent values it

 Assign to and remove them both

Warm Up: -MMS Allocation

 If all then?
 Done, using bag filling.

 What if some

Valid Reductions
 Normalized valuations

 Scale free: 𝑣௜௝ ← 𝑐. 𝑣௜௝ , ∀𝑗 ∈ 𝑀

 ∑ 𝑣௜௝௝ = 𝑛 ⇒ 𝜇௜ ≤ 1

 Ordered Instance: Agents’ order of preferences for items is same: 𝑣௜ଵ ≥ 𝑣௜ଶ ≥ ⋯ 𝑣௜௠, ∀𝑖 ∈ 𝑁

 Valid Reduction (-MMS): If there exists and
 gets -MMS value from ∗ ∗

 Once we give to , and remove both, the MMS value of the
remaining agents does not decrease.

reduce the instance size!

Claim. Suppose agent an -MMS allocation of to
agents , then ∗ ∗ is an -MMS
allocation in the original instance.

-MMS Allocation

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

-MMS Allocation

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

-MMS Allocation

 Re-normalization

Step 0: Normalized Valuations:

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗. Remove good 1 and agent ∗

 After every valid reduction, normalize valuations

Step 2: Bag Filling

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

-MMS Allocation [GMT19]

 If all then?

…

1 2 3 n-1 n

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

-MMS Allocation [GMT19]

…

1 2 3 n-1 n

Case I:

௞

-MMS Allocation [GMT19]

…
1 2 3 n-1 n

…

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Then, swap items ଵ

and n, and items ଶ

and (n+1). This may
only increase ௜ ௞

& ௜ ௟ because

௜ ଵ ௜ &

௜ ଶ ௜ .

Case II:

௞

௟

ௗ, with items

ଵ ଶ

-MMS Allocation [GMT19]

…
1 2 3 n-1 n

…

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Then, swap items ଵ

and n, and items ଶ

and (n+1).
Move remaining items
of ௗ to other bundles
and remove ௗ

Case II:

௞

௟

ௗ, with items

ଵ ଶ

-MMS Allocation [GMT19]

…
1 2 3 n-1 n

…

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Then, swap items ଵ

and n, and items ଶ

and (n+1).
Move remaining items
of ௗ to other bundles
and remove ௗ

Case II:

௞

௟

ௗ, with items

ଵ ଶ

Again, value of none of the remaining bundles has decreased.
MMS value of agent has only increased in the reduced instance.

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

Step 2: Generalized Bag Filling with

 Initialize bags ଵ ௡ with ௞ .

 Assign items starting from th to the first
available bag, and give it to the first agent who shouts
(values it at least).

…
1 2 3 n-1 n

g1 g2 g3 g(n-1) gn

After Step 1,
For each agent i,

௜௝
ଶ

ଷ

௜௝
ଵ

ଷ

Claim. If agent is the first to shout, then for any agent
the bag is of value at most 1.



2/3-MMS Allocation [GMT19]

Step 0: Normalized Valuations:

Step 1: Valid Reductions
 If ௜∗ଵ then assign item 1 to ∗

 If ௜∗௡ ௜∗ ௡ାଵ then assign to ∗

 After every valid reduction, normalize valuations

Step 2: Generalized Bag Filling with

 Initialize bags ଵ ௡ with ௞

Chores

 N: set of agents, 1 ,…, n,

 : set of indivisible chores

 Agent has a disutility function over subsets of items
 Monotone: the more the un-happier

 Additive: , for any subset

 N: set of agents, 1 ,…, n,

 : set of indivisible chores

 Agent has a disutility function over subsets of items
 Additive: ௜ ௜௝௝∈ௌ , for any subset

Allocation

EF1: No agent envies another after removing one of her chores.

Round Robin
1. Order agents arbitrarily.

2. Let them pick their best chore (least painful chore), one-at-a-time,
in that order.

Observations:

 If agent picks the last chore, then agent does not envy
anyone. Why?

EF1: Algorithms

Envy-cycle-elimination

2. While there are unassigned chores
1. Construct envy-graph of A and remove any cycles.

2. Give an unassigned chore to ….. ??

Observations:

 Cycle elimination does not increase any agent’s disutility.

 Giving a chore to sink maintains EF1. Why?

EF1: Algorithms

 N: set of agents, 1 ,…, n,

 : set of indivisible chores

 Agent has a disutility function over subsets of items
 Additive: ௜ ௜௝௝∈ௌ , for any subset

 Set of all partitions of items into bundles

MMS value:
ೖ

-MMS allocation for :

1-MMS allocation may not exist!

MMS

Claim. If is EF1 then it is 2-MMS

Observations: ೔ and

Proof.

EF1 to -MMS

Summary

Covered

 Additive Valuations:
 ½-MMS allocation (poly-time

algorithm)

 -MMS allocation
(polynomial-time algorithm)

State-of-the-art

 -MMS allocation [GT20]

 More general valuations
 MMS [GHSSY18]

 Groupwise-MMS [BBKN18]

 Chores: -MMS [HL19]

Major Open Questions (additive)

 -MMS + PO: polynomial-time algorithm for a constant

 Existence of -MMS allocation? For 5 agents?

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. “Approximation algorithms for computing
maximin share allocations”. In: ACM Trans. Algorithms 13.4 (2017)
[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. “Groupwise maximin fair allocation of
indivisible goods”. In: AAAI 2018
[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. “Approximation algorithms for maximin fair division”. In EC 2017
[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. “On the Proximity of Markets with Integral Equilibria” In AAAI 2019
[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018
[B11] Eric Budish. “The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes”. In: J. Political
Economy 119.6 (2011)
[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. “The Unreasonable
Fairness of Maximum Nash Welfare”. In: EC 2016
[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. “Approximating Maximin Share Allocations”. In: SOSA@SODA 2019
[GT20] Jugal Garg and Setareh Taki. “An Improved Approximation Algorithm for Maximin Shares”. In: EC 2020
[GHSSY18] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. “Fair allocation of
indivisible goods: Improvement and generalization”. In EC 2018
[HL19] Xin Huang and Pinyan Lu. “An algorithmic framework for approximating maximin share allocation of chores”. In:
arxiv:1907.04505
[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. “On the Complexity of Efficiency and Envy-Freeness in
Fair Division of Indivisible Goods with Additive Preferences”. In: Algorithmic Decision Theory (ADT). 2009
[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. “Fair Enough: Guaranteeing Approximate Maximin Shares”. In: J. ACM
65.2 (2018), 8:1–8:27
[PW14] Ariel D Procaccia and Junxing Wang. “Fair enough: Guaranteeing approximate maximin shares”. In EC 2014
[W97] Gerhard J Woeginger. “A polynomial-time approximation scheme for maximizing the minimum machine completion time”. In:
Operations Research Letters 20.4 (1997)

References (Indivisible Case).

