Fair Division of Indivisible Items (Part II)

CS 580

Instructor: Ruta Mehta

- *N*: set of n agents, 1,..., n,
- M: set of m indivisible items (like cell phone, painting, etc.)

- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
 - ☐ Monotone: the more the happier

Last Lecture

- EF: Envy-free, Prop: Proportional
 - □ Do not exist
- EF1: Envy-free up to one item.
 - □ Round Robin for additive valuations
 - □ Envy-cycle elimination for general monotone
- Prop1: Proportional up to one item
 - ☐ EF1 implies Prop1 under additive valuations
 - \square CE + Rounding algorithm for general valuations.
- EFX: Envy-free up to any item
- Open:
 - ☐ EF1+PO for submodular valuations
 - □ EFX with 3 agents. EFX with 4 agents under additive valuations

Proportionality

- \blacksquare A set N of n agents, a set M of m indivisible goods
- Proportionality: Allocation $A = (A_1, ..., A_n)$ is proportional if each agent gets at least 1/n share of all items:

$$v_i(A_i) \ge \frac{v_i(M)}{n}, \quad \forall i \in N$$

Cut-and-choose?

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end.
- Clearly, *i* partitions items in a way that maximizes the value of her least preferred bundle.
- $\mu_i :=$ Maximum value of i's least preferred bundle

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_i := \text{Maximum value of } i's \text{ least preferred bundle}$
- $\Pi := \text{Set of all partitions of items into } n \text{ bundles}$
- $\mu_i \coloneqq \max_{\substack{(A_1, \dots, A_n) \in \Pi \\ k \in [n]}} v_i(A_k)$
- MMS Allocation: A is called MMS if $v_i(A_i) \ge \mu_i$, $\forall i$
- Additive valuations: $v_i(A_i) = \sum_{j \in A_i} v_{ij}$

MMS value/partition/allocation

Agent\Items	Č		
	3	1	2
2 3	4	4	5

Value	3	3
MMS Value	3	

Value	8	5
MMS Value	5	

MMS value/partition/allocation

Agent\Items	*		and the second s
	3	1	2
2 2	4	4	5

7-		
Value	3	3
MMS Value	3	

Finding MMS value is NP-hard!

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2 : yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$
- $n \ge 3 : NO [PW14]$

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2 : yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$
- $n \ge 3 : NO [PW14]$
- \blacksquare α -MMS allocation for $\alpha \in [0,1]$: $v_i(A_i) \ge \alpha . \mu_i$
 - □ 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
 - □ 3/4-MMS exists [GHSSY18]
 - \square (3/4 + O(1))-MMS exists [AG23]
 - □ 39/40-MMS does not exist [Feige et al. 2020]

Properties

Normalized valuations

 \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$

$$\square \sum_{j} v_{ij} = n \implies \mu_{i} \leq 1 \qquad \text{WHY?}$$

$$MM \leq \text{partition it with } i.$$

$$\mathcal{U}_{i} = \min_{k=1}^{N} q_{k} \leq \frac{3}{2}q_{k} = V_{i}(M) = \underbrace{2}_{i \in M} V_{ij} = N$$

$$\mathcal{U}_{i} = \min_{k=1}^{N} q_{k} \leq \frac{K=1}{N} = \frac{1}{N}$$

Properties

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \le 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

Properties

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

Challenge

- Allocation of high-value items!
- If for all $i \in N$
 - $\square v_i(M) = n \Rightarrow \mu_i \leq 1$
 - $\square v_{ij} \leq \epsilon, \forall i, j$

Goal: (1-e)-MMS allocation.

$$v_{ij} \le \epsilon, \forall i, j$$

Claim: After round k, if i remains then v_i (remaining goods) $\geq n - k$.

$$V_{i}(q_{1},q_{2},q_{3},q_{4}) < (1-\epsilon)+\epsilon$$
 $S=\{q_{1},q_{2}, 6_{3},q_{4}\} \rightarrow i^{*}$
 $V_{i}(M \setminus S) \geq (n-1)$

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- Assign B to i and remove both

$$v_{ij} \le \epsilon, \forall i, j$$

Claim: After round k, if i remains then v_i (remaining goods) $\geq n - k$.

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- \blacksquare Assign B to i and remove them both

$$v_{ij} \le \epsilon, \forall i, j$$

Thm: Every agent gets at least $(1 - \epsilon)$.

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag *B*
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- \blacksquare Assign B to i and remove them both

Warm Up: 1/2-MMS Allocation

- If all $v_{ij} \leq 1/2$ then?
 - Done, using bag filling.

• What if some $v_{ij}^* > \frac{1}{2}$?

2953 > i* Reduced instance: [n]\?i3, M MMS partition in the original instance

Valid Reductions

- Normalized valuations
 - $\square \quad \text{Scale free: } v_{ij} \ \leftarrow \ c. \ v_{ii} \ , \forall j \in M$
 - $\square \quad \sum_{i} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$
- Ordered Instance: Agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$
- Valid Reduction (α -MMS): If there exists $S \subseteq M$ and $i^* \in N$
 - \square i^* gets α -MMS value from S $(v_{i^*}(S) \ge \alpha. \mu_{i^*}^n(M))$
 - □ Once we give *S* to i^* , and remove both, the MMS value of the remaining agents does not decrease. $\mu_i^{n-1}(M \setminus S) \ge \mu_i^n(M)$, $\forall i \ne i^*$

 \Rightarrow reduce the instance size!

Claim. Suppose agent $i \neq i^*$ gets A_i in an α -MMS allocation of $M \setminus S$ to agents $N \setminus \{i^*\}$, then $(A_1, ..., A_{i^*-1}, S, A_{i^*+1}, ..., A_n)$ is an α -MMS allocation in the original instance.

1/2-MMS Allocation

Step 1: Valid Reductions

 \square If $v_{i^*1} \ge 1/2$ then assign item 1 to i^*

1/2-MMS Allocation

Step 1: Valid Reductions

 \square If $v_{i^*1} \ge 1/2$ then assign item 1 to i^*

1/2-MMS Allocation

Re-normalization

```
Step 0: Normalized Valuations: \sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1
```

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 1/2$ then assign item 1 to i^* . Remove good 1 and agent i^*
- ☐ After every valid reduction, normalize valuations

Step 2: Bag Filling

If all
$$v_{ij} \le 1/3$$
 then?

Step 1: Valid Reductions

 \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*

1

2

3

n-1

n

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*

9, . . . 9 m

eduction?

For agent i * i*, let the MMS detining partition be

Case I:

 $n, n+1 \in A_k$

1

2

3

n-1

n

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- \square If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

Why valid reduction?

For agent itis, let the MMS defining partition be

Case II: $n \in A_k$ (n + 1) $\in A_l$

n-1

n

 $\exists A_d$, with items $j_1 < j_2 \le (n+1)$. Then, swap items j_1 and n, and items j_2 and (n+1). This may only increase $v_i(A_k)$ & $\dot{v}_i(A_l)$ because $v_i(j_1) \ge v_i(n)$ & $v_i(j_2) \ge v_i(n+1)$.

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

For agent 1+it, let the MMS defining partition

Case II: $n \in A_k$

 $\exists A_d$, with items $j_1 < j_2 \le (n+1)$.

Then, swap items j_1 and n, and items j_2 and (n+1).

Move remaining items of A_d to other bundles and remove A_d .

Step 1: Valid Reductions $\Box \text{ If } v_{i^*1} \geq 2/3 \text{ then assign item 1 to } i^*$ $\Box \text{ If } v_{i^*n} + v_{i^*(n+1)} \geq 2/3 \text{ then assign } \{n, n+1\} \text{ to } i^*$ For agent $i \neq i^*$, let He MMS defining pathian be $\exists A_d$, with items $i_1 \leq i_2 \leq (n+1)$.

Case II: $n \in A_k$ $(n+1) \in A_l$ 1
2
3

 $j_1 < j_2 \le (n+1)$. Then, swap items j_1 and n, and items j_2 and (n+1). Move remaining items

Move remaining items of A_d to other bundles and remove A_d .

Again, value of none of the remaining bundles has decreased.

 \Rightarrow MMS value of agent *i* has only increased in the reduced instance.

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

Step 2: Generalized Bag Filling with $\epsilon = \frac{1}{3}$

- □ Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$.
- Assign items starting from (n + 1)th to the first available bag, and give it to the first agent who shouts (values it at least $2/3 = (1 \epsilon)$).

After Step 1, For each agent *i*, $v_{ij} < \frac{2}{3}, \forall j \leq n$ $v_{ij} < \frac{1}{3}, \forall j > n$

Claim. If agent i^* is the first to shout, then for any agent $i \neq i^*$ the bag is of value at most 1.

(Re)normalization

Step 0: Normalized Valuations: $\sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1$

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*
- ☐ After every valid reduction, normalize valuations

Step 2: Generalized Bag Filling with $\epsilon = \frac{1}{3}$

□ Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$

Chores

- \blacksquare N: set of n agents, 1,..., n,
- \blacksquare M: set of m indivisible chores

- Agent *i* has a disutility function $d_i: 2^m \to \mathbb{R}_+$ over subsets of items \square Monotone: the more the **un**-happier
- Additive: $d_i(S) = \sum_{j \in S} d_{ij}$, for any subset $S \subseteq M$

- \blacksquare N: set of n agents, 1,..., n,
- M: set of m indivisible chores
- Agent *i* has a disutility function $d_i: 2^m \to \mathbb{R}_-$ over subsets of items
 - \square Additive: $d_i(S) = \sum_{j \in S} d_{ij}$, for any subset $S \subseteq M$

Allocation
$$A = (A_1, ..., A_n)$$

EF1: No agent envies another after removing one of her chores.

$$\forall i, k \in \mathbb{N}, \quad d_i(A_i \setminus c) \leq d_i(A_k), \quad \exists c \in A_i$$

EF1: Algorithms

Round Robin

- 1. Order agents arbitrarily.
- 2. Let them pick their best chore (least painful chore), one-at-a-time, in that order.

Observations:

If agent k picks the last chore, then agent (k + 1) does not envy anyone. Why?

EF1: Algorithms

Envy-cycle-elimination

- $A = (\emptyset, \dots, \emptyset)$
- 2. While there are unassigned chores
 - 1. Construct envy-graph of A and remove any cycles.
 - 2. Give an unassigned chore to??

Observations:

- Cycle elimination does not increase any agent's disutility.
- Giving a chore to sink maintains EF1. Why?

MMS

- \blacksquare N: set of n agents, 1,..., n,
- M: set of m indivisible chores
- Agent *i* has a disutility function $d_i : 2^m \to \mathbb{R}_-$ over subsets of items

 □ Additive: $d_i(S) = \sum_{i \in S} d_{ij}$, for any subset $S \subseteq M$
- $\Pi := \text{Set of all partitions of items into } n \text{ bundles}$

MMS value:
$$MMS_i = \mu_i = \min_{A \in \Pi} \max_{A_k \in A} d_i(A_k)$$

 α -MMS allocation for $\alpha \geq 1$: $\forall i, d_i(A_i) \leq \alpha \mu_i$

1-MMS allocation may not exist!

EF1 to α -MMS

Claim. If $(A_1, ..., A_n)$ is EF1 then it is 2-MMS

Observations:
$$\mu_i \ge \frac{d_i(M)}{n}$$
 and $\mu_i \ge \max_{j \in M} d_{ij}$

Proof.

Summary

Covered

- Additive Valuations:
 - □ ½-MMS allocation (poly-time algorithm)
 - □ 2/3-MMS allocation (polynomial-time algorithm)

State-of-the-art

- More general valuations
 - □ MMS [GHSSY18]
- Groupwise-MMS [BBKN18]
- Chores: 11/9-MMS [HL19]

Major Open Questions (additive)

- c-MMS + PO: polynomial-time algorithm for a constant c > 0
- Existence of 4/5-MMS allocation? For 5 agents?

References (Indivisible Case).

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)

[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: AAAI 2018

[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017

[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAAI 2019

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018

[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: *J. Political Economy* 119.6 (2011)

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016

[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019

[GT20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020

[GHSSY18] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In *EC 2018*

[HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In: arxiv:1907.04505

[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: *J. ACM* 65.2 (2018), 8:1–8:27

[PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014

[W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In: *Operations Research Letters 20.4 (1997)*