Lecture 4: Fair Division of Indivisibles (Part 1)

CS 580

Instructor: Ruta Mehta

Fair Division

Goal: allocate *fairly and efficiently*. **And do it quickly (fast algorithm)!**

- *n* agents: 1 ,..., n,
- *M*: set of *m* indivisible items (like cell phone, painting, etc.)

Agent *i* has a valuation function v_i : 2^m → ℝ over subsets of items
 □ Monotone: the more the happier

Additive Valuations: $v_i(S) = \sum_{j \in S} v_{ij}$

- *n* agents: 1 ,..., n,
- *M*: set of *m* indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items □ Monotone: the more the happier
- Goal: Find a *fair* allocation

Fairness: Envy-free (EF): no one *envies* other's bundle

Proportional (Prop): each agent *i* gets at least $\frac{v_i(M)}{n} \rightarrow V_i(M)$

Allocations, and their value

- *n* agents: 1,..., n,
- *M*: set of *m* indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items □ Monotone: the more the happier
- Goal: Find a *fair* allocation

Fairness:

Envy-free (EF): no one envies other's bundle

Proportional (Prop): each agent *i* gets at least $\frac{v_i(M)}{n}$

Neither exists!

Plan

- EF1: EF up to one item
 Round-Robin algorithm
 Envy-cycle elimination algorithm
- Stronger notions + Open questions
 "Good" EF1 allocations: EF1 + Pareto optimal
 EFX: EF up to *any* item
- Prop1: Prop up to one itemAlgorithm through CE. PO in addition.

Envy-Freeness for Indivisibles

EF up to One Item (EF1) [B11]

• An allocation $(A_1, ..., A_n)$ is EF1 if for every agent *i*

$$\forall k \in N, \qquad v_i(A_i) \ge v_i(A_k \setminus g), \qquad \exists g \in A_k$$

That is, agent *i* may envy agent *k*, but the envy can be eliminated if we remove a single item from k's bundle

Envy-Freeness up to One Item (EF1) [B11]

Fast Algorithms for EF1

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \Box Allocate *i* her most valuable item among the unallocated ones

Theorem. The final allocation is EF1.

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \Box Allocate *i* her most valuable item among the unallocated ones

Observation 1: First agent does not envy anyone!

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \Box Allocate *i* her most valuable item among the unallocated ones

Observation 2: For the *i*th agent, if we remove first (i - 1) items allocated to first (i - 1) agents respectively, then the allocation is envy-free for agent *i*.

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order

 \Box Allocate *i* her most valuable item among the unallocated ones

Observation 1: First agent does not envy anyone!

Observation 2: For the *i*th agent, if we remove first (i - 1) items allocated to first (i - 1) agents respectively, then the allocation is envy-free for agent *i*.

Theorem. Round Robin Algorithm gives an EF1 allocation when v_i s are additive.

General Monotone Valuations: Envy-Cycle Procedure [LMMS04]

■ General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$ (*M*: Set of all items)

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$
- **Partial allocation:** $(A_1, ..., A_n)$ where $\cup_i A_i \subseteq M$
- **Envy-graph** of a partial allocation $(A_1, ..., A_n)$
 - \Box Vertices = Agents
 - □ Directed edge (i, i') if *i* envies *i'* (i.e., $v_i(A_i) < v_i(A_{i'})$)

	g_1	g_2	g_{3}	g_{4}	g_{5}
a_1	10	15	9	8	3
<i>a</i> ₂	10	8	15	9	4
<i>a</i> ₃	10	9	8	15	5

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$
- Envy-graph of a partial allocation $(A_1, ..., A_n)$ where $\cup_i A_i \subseteq M$
 - \Box Vertices = Agents
 - □ Directed edge (i, i') if *i* envies *i'* $(i.e., v_i(A_i) < v_i(A_{i'}))$

Main Observation:

Agent *i* is a *source* in the envy-graph \Rightarrow No one envies agent *i*

- Idea! Allocate one item at a time, maintaining EF1 property.
 - □ Given a partial EF1 allocation, construct its envy-graph and assign one unallocated item, say *j*, to a source agent, say *i*, and the resulting allocation is still EF1!
 - \square No agent envies *i* if we remove item *j* from her bundle

If there is no source in envy-graph, then?

- \Box there must be cycles
- \Box How to eliminate them?

	g_1	<i>g</i> ₂	g_{3}	<i>g</i> 4	g_5
a_1	10	15	9	8	3
a_2	10	8	15	9	4
<i>a</i> ₃	10	9	8	15	5

If there is no source in envy-graph, then?

- \Box there must be cycles
- \Box How to eliminate them?

■ If there is no source in envy-graph, then

- \Box there must be cycles
- \Box How to eliminate them?
- Cycle elimination: rotate bundles along the cycle.

• If there is no source in envy-graph, then

 \Box there must be cycles

Cycle elimination: rotate bundles along the cycle.

- EF1?
 - □ Can valuation of any agent decrease?

■ If there is no source in envy-graph, then

 \Box there must be cycles

Cycle elimination: rotate bundles along the cycle.

■ EF1?

□ Can valuation of any agent decrease?

NO! Agents on an eliminated cycle gets better off, others remain same.

 \Box Can there be new envy edges?

NO! The bundles remain the same – We are only changing their owners!

Hence, no new envies are formed.

Claim 1. After every cycle elimination, the allocation remains EF1.

• If there is no source in envy-graph, then

 \Box there must be cycles

Cycle elimination: rotate bundles along the cycle.

Claim 1. After every cycle elimination, the allocation remains EF1.

Keep eliminating cycles by exchanging bundles along a cycle until there is a source.

- Termination?
 - $\hfill\square$ Number of edges decrease after each cycle elimination.

Claim 2. The process terminates in at most O(#edges) many cycle eliminations.

Envy-Cycle Procedure [LMMS04]

- $A \leftarrow (\emptyset, \dots, \emptyset)$
- $R \leftarrow M$ // unallocated items

While $R \neq \emptyset$

- $\hfill\square$ If envy-graph has no source, then there must be cycles
- Keep removing cycles by exchanging bundles along a cycle, until there is a source
- \Box Pick a source, say *i*, and allocate one item *g* from *R* to *i*

$$(A_i \leftarrow A_i \cup g; R \leftarrow R \setminus g)$$

Output A

Running Time?

Proportional (average)

n agents

- *M*: set of *m* indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items

Fairness: Envy-free (EF)

Proportional (Prop):

Get value at least average of the grand-bundle $v_i(A_i) \ge \frac{1}{n} v_i(M)$

	g_1	g_2	g_{3}	g_4
<i>a</i> ₁	100	100	10	90
a ₂	100	100	90	10

Sub-additive Valuations

Sub-additive: $v_i(A \cup B) \le v_i(A) + v_i(B), \quad \forall A, B \in M$

Claim: $EF \Rightarrow Prop$ *Proof*:

Prop: May not always exist!

- *n* agents
- *M*: set of *m* indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items

Fairness: Envy-free (EF)

Proportional (Prop):

Get value at least average of the grand-bundle

$$v_i(A_i) \ge \frac{1}{n} v_i(M)$$

Proportionality up to One Item (Prop1)

Prop1: A is proportional up to one item if each agent gets at least 1/n share of all items after adding one more item from outside: $v_i(A_i \cup \{g\}) \ge \frac{1}{n} v_i(M), \quad \exists g \in M \setminus A_i, \forall i \in N$

Prop1

Claim: EF1 implies Prop1 for additive valuations Proof: $EF1: \forall i, \forall \kappa, \forall v_i(A_i) \ge \forall v_i(A_k \setminus g) \quad \exists g \in A_k$ $= \forall v_i(A_k) - \forall v_i(g) \quad (\because v_i \text{ add} i \text{ live})$ $\geqslant \forall v_i(A_k) - \max \quad \forall v_i(g)$ $g \in M \setminus A_i$

Hence
$$\forall i, n \forall i (Ai) \ge \frac{n}{2} \forall i (A_k) - n \max_{\substack{g \in \mathcal{M} \setminus Ai}} \forall i (g)$$

$$\Rightarrow \forall i (Ai) + \max_{\substack{g \in \mathcal{M} \setminus Ai}} \forall i (g) \ge \frac{\forall i (\mathcal{M})}{n} \quad (\because \forall i a a d d i him)$$

$$\Rightarrow \forall i (Ai \cup \{g\}) \ge \frac{\forall i (\mathcal{M})}{n} , \exists g \in \mathcal{M} \setminus Ai$$

How Good is an EF1 or Prop1 Allocation?

How Good is an EF1 or Prop1 Allocation?

Certainly not desirable!

"Good" EF1/Prop1 Allocation: Pareto Optimality

- Issue: Many EF1/Prop1 allocations!
- We want an algorithm that outputs a good EF1/Prop1 allocation

Pareto optimal (PO): No other allocation is better for all

- An allocation Y = (y₁, y₂, ..., y_n) Pareto dominates another allocation X = (x₁, x₂, ..., x_n) if
 □ v_i(y_i) ≥ v_i(x_i), for all buyers i and
 □ v_k(y_k) > v_k(x_k) for some buyer k
- X is said to be Pareto optimal (PO) if there is no Y that Pareto dominates it

How Good is an EF1 or Prop1 Allocation?

"Good" EF1 Allocation: EF1+PO

Issue: Many EF1 allocations!

We want an algorithm that outputs a good EF1 allocation
 Pareto optimal (PO)

- Goal: EF1 + PO allocation
- Existence?
 - □ NO [CKMPS14] for general (subadditive) valuations
 - □ YES for additive valuations [CKMPS14]

"Good" EF1 Allocation: EF1+PO

Issue: Many EF1 allocations!

We want an algorithm that outputs a good EF1 allocation
 Pareto optimal (PO)

- Goal: EF1 + PO allocation
- Existence?
 - □ NO [CKMPS14] for general (subadditive) valuations
 - □ YES for additive valuations [CKMPS14] Computation?

EF1+PO (Additive)

• Computation: pseudo-polynomial time algorithm [BKV18]

Complexity of finding an EF1+PO allocation

Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

EF1+PO (Additive)

- Computation: pseudo-polynomial time algorithm [BKV18]
 OPEN Complexity of finding an EF1+PO allocation
- Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]
- Approach: Achieve EF1 while maintaining PO
 PO certificate: competitive equilibrium!

Prop1 + PO

• EF1 implies Prop1 for additive valuations

 \Rightarrow Round Robin outputs a Prop1 allocation. But need not be PO!

Prop1+PO: Additive Valuations

 \square EF1 + PO allocation exists \Rightarrow Prop1 + PO exists.

- but no polynomial-time algorithm is known!
- □ Prop1 + PO Computation?
 - Algorithm based on competitive equilibrium (HW).

EFX: Envy-free up to any item

Envy-Freeness up to One Item (EF1)

An allocation $(A_1, ..., A_n)$ is EF1 if for every agent *i*

$$\forall k \in N, \qquad v_i(A_i) \ge v_i(A_k \setminus g), \qquad \exists g \in A_k.$$

That is, agent *i* may envy agent *k*, but the envy can be eliminated if we remove a single item from k's bundle

Envy-Freeness up to Any Item (EFX) [CKMPS14]

• An allocation $(A_1, ..., A_n)$ is EFX if for every agent *i*

$$\forall k \in N, \qquad v_i(A_i) \ge v_i(A_k \setminus g), \qquad \forall g \in A_k.$$

That is, agent i may envy agent k, but the envy can be eliminated if we remove any single item from k's bundle

EFX: Existence

- General Valuations [PR18]
 - $\Box n = 2$
 - □ Identical Agents

- Additive Valuations
 - $\Box n = 3 [CGM20]$

Additive (n > 3), General (n > 2)"Fair division's biggest problem" [P20]

Summary

Covered

- EF1 (existence/polynomialtime algorithm)
- EF1 + PO (partially)
- EFX (partially)
- Prop1

Not Covered

- EFX for 3 (additive) agents
- Partial EFX allocations
 - □ Little Charity [CKMS20, CGMMM21]
 - □ High Nash welfare [CGH19]

Chores

□ EF1 (existence/ polynomialtime algorithm) EXERCISE

Major Open Questions (additive valuations)

- EF1+PO: Polynomial-time algorithm
- EF1+PO: Existence for chores
- EFX : Existence / Non-existence

References (Indivisible Case).

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: *EC 2018* [B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: *J. Political Economy* 119.6 (2011)

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016

[CGH20] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high Nash welfare: The virtue of donating items. In: *EC 2019*

[CGM20] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn: EFX Exists for Three Agents. In: EC 2020

[CGMMM21] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, Pranabendu Misra: Improving EFX Guarantees through Rainbow Cycle Number. In: EC 2021.

[CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity guarantees almost envyfreeness. In: SODA 2020

[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009

[LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. "On approximately fair allocations of indivisible goods". In: EC 2004

[PR18] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In: SODA 2018

[P20] Ariel Procaccia: An answer to fair division's most enigmatic question: technical perspective. In: Commun. ACM 63(4): 118 (2020)