
Lecture 3: Computation of CE

Instructor: Ruta Mehta

CS 580

(Recall) Fisher’s Model

 Set of agents.

 Set of divisible goods.

 Each agent has
 budget of dollars

 valuation function

Linear: for bundle

 Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces and allocation

: Amount of good j agent i gets

 Optimal bundle: Agent demands

శ

 Market clears: For each good

R. Mehta (ADFOCS’20)

CEEI Properties: Summary

CEEI
allocation is
 Pareto optimal (PO)
 Envy-free
 Proportional

$3

$3

2

1

1
3

CEEI
Prices

CEEI Allocation:

Next…
 Nash welfare

maximizing

Social Welfare

Utilitarian

Issues: May assign 0 value to some agents.
Not scale invariant!

Max Nash Welfare

max:

s.t.

Feasible allocations

max:

s.t.

Feasible allocations

Max Nash Welfare (MNW)

max:

s.t.

Feasible allocations

Max Nash Welfare (MNW)

Eisenberg-Gale Convex Program ‘59

max:

s.t.

Dual var.

Theorem. Solutions of EG convex program are
exactly the CEEI
Proof.

Consequences: CEEI
• Exists
• Forms a convex set
• Can be computed in

polynomial time
• Maximizes Nash Welfare

Theorem. Solutions of EG convex program are
exactly the CEEI
Proof. (Using KKT)

Recall: CEEI Characterization

Pirces and allocation

 Optimal bundle: For each buyer

ೕ

ೕ

ೖ

ೖ
, for all good

 Market clears: For each good

Proof. (Using KKT)

Theorem. Solutions of EG convex program are exactly the CEE.

max:

∈

s.t. ∈

Dual var.

ೕ

ೕ

ೕ

buy only MBB goods

optimal bundle

market clears

:

Efficient (Combinatorial) Algorithms

Polynomial time

 Flow based [DPSV’08]

 General exchange model (barter system) [DM’16, DGM’17, CM’18]

 Scaling + Simplex-like path following [GM.SV’13]

Strongly polynomial time

 Scaling + flow [O’10, V’12]

 Exchange model (barter system) [GV’19]

Max Flow (One slide overview)

Directed Graph

s
t

Given . Capacity for each edge

Find maximum flow from to : 𝒆 ୣ∈ா s.t.

• Capacity constraint

• Flow conservation: at every vertex
total in-flow = total out-flow

Theorem: Max-flow = Min-cut
- -

s-t cut:

cut-value: (௨,௩)

௨,௩ ∈ா:
௨∈ௌ,௩∉ௌ

Min s-t cut:
ௌ⊂:

௦∈ௌ,௧∉ௌ

Can be solved in
strongly polynomial-time

CE Characterization
Pirces and allocation

 Optimal bundle: Agent demands

ೕ

ೕ

ೖ

ೖ
, for all good

 Market clears: For each good

Pirces and allocation

 Optimal bundle: Agent demands

ೕ

ೕ

ೖ

ೖ
, for all good

 Market clears: For each good

Competitive Equilibrium Flow

(money spent by agent i on good j)

ೕ

ೕ

ೖ

ೖ

Maximum bang-per-buck ()

G

Competitive Equilibrium Flow

s
t

MBB edges

capacities

Max-flow

∈ே

 on MBB edges

∈ெ

CE: s.t.

Issue: Eq. prices and hence
also MBB edges not known!

Fix [DPSV’08]: Start with low
prices, keep increasing. Max-flow = min-cut

= ∈ீ ∈

A

Maintain:
1. Flow only on MBB edges
2. Min-cut = (goods are fully sold)

Opt.
Bundle

Market
clears

Algorithm (Pictorial)

s
t

MBB
edges

cap.

Init:

, and

at least one MBB edge to

G A

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

MBB
edges

cap.

Init:

, and

at least one MBB edge to

G A

Increase

∈ீ

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G A

MBB
edges

cap.

∈ீ

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

Event : New cross-cutting min-cut

G A
MBB
edges

cap.

ி

Agents in ி exhaust all their money.

Observation: Supply = Demand for 𝑭!
So, if prices of are increased, then
these will be under-demanded (supply >
demand for ி . And will cease to
be a min-cut.

ி Goods that have MBB edges only
from ி.

ி

A tight-set.

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Should freeze prices in 𝑭

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

Event : A tight subset ி

G A

(frozen)

MBB
edges

cap.

ி

Call it frozen: ி ி .

ி

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G A(dynamic)

(frozen)

ி

Call it frozen: ி ி .
Freeze prices in ி

Increase prices in .

Event : A tight subset ி

ி

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G A(dynamic)

(frozen)

ி

Move from dynamic to
frozen.

N(𝑆)

Event : A tight subset

Observation: Again, supply=demand for
goods in If prices of is increased
further, then can not be fully sold.
And will cease to be a min-cut.

Hence it needs to be moved to the
frozen set.

ி

Neighbors of S

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G

(frozen)

ி

Freeze prices in ி and
increase in .

Move to frozen part
Event : A tight subset

A

ி

(dynamic)

N(𝑆)

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G

(frozen)

ி ி

OR

Event : New MBB edge
Must be between & ி.
Recompute dynamic and frozen.

Move from dynamic to frozen
Event : A tight subset

A

(dynamic)

Freeze prices in ி and
increase in .

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G

(frozen)

ி

Recompute dynamic and frozen:
Move the component containing
good from frozen to dynamic.

OR

Event : New MBB edge
Has to be from to ி.

Move from dynamic to frozen
Event : A tight subset

A

ி

(dynamic)

Freeze prices in ி and
increase in .

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Algorithm (Pictorial)

s
t

Init:

And at least one MBB edge to

Increase

G

(frozen)

ி

Recompute dynamic and frozen.

OR

Event : New MBB edge
Must be from to ி.

Move from dynamic to frozen

Observations: Prices only increase.
Each increase can be lower bounded.
Both the events can be computed
efficiently.

Converges to CE in finite time.
Stop: all goods are frozen.

Event : A tight subset

A

ி

Freeze prices in ி and
increase in .

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Example

$5

$1

2

3

1

2

Init.Input

s

t

Event 2

s

t

Event 1

s

t

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

5

1

5

1

5

1

s

t5

1

Formal Description

 Init: “low-values” s.t. is a min-cut.

 While(
 Increase until

Event 1: Set becomes tight.

agents w/ MBB edges to (neighbors of).

Move from to ி ி

Event 2: New MBB edge appears between and ி

Add (edge to graph.

Move component of from ி ி to .

 Output

Efficiently Computing Event 2

Event 2: New MBB edge appears between and ி

Exercise

Efficiently Computing Event 1

Event 1: Set ∗
 becomes tight.

 ∗
∑ ∈ಿ(ೄ∗)

∑ ೕೕ∈∗

 Find ∗

ௌ⊆ீವ

s
t

G A

MBB
edges

cap.

Increase

s
t

G B
MBB
edges

cap.

∗

ௌ⊆ீವ

∑ ∈ಿ(ೄ)

∑ ೕೕ∈

Efficiently Computing Event 1

Event 1: Set ∗
 becomes tight.

 ∗
∑ ∈ಿ(ೄ∗)

∑ ೕೕ∈∗

 Find ∗

ௌ⊆ீವ

s
t

G A
MBB
edges

ௌ⊆ீವ

∑ ∈ಿ(ೄ)

∑ ೕೕ∈

Efficiently Computing Event 1

Event 1: Set ∗
 becomes tight.

∑ ∈ಿ(ೄ)

∑ ೕೕ∈ೄ

Find ∗

ௌ⊆ீವ

Claim. Can be done in O(n) min-cut
computations

s
t

G A
MBB
edges

ᇱ ᇱ

Repeat{
. Set (௦,)

min-cut in ᇱ ᇱ

ᇱ ᇱ

}Until(not a min-cut)
Return

Efficient Flow-based Algorithms

 Polynomial running-time
 Compute balanced-flow: minimizing norm of agents’

surplus [DPSV’08]

 Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter):

 Polynomial time [DM’16, DGM’17, CM’18]

 Strongly polynomial for exchange
 Flow + scaling + approximate LP [GV’19]

Application to Display Ads: Pacing Eq.

 Google Display Ads
Each advertiser has

 Budget . Value for keyword

Pacing Eq.: s.t.
 First price auction with bids

 For each agent , if then total payment = , else

 Equivalent to Fisher market with quasi-linear
utilities!

What about chores?

 CEEI exists but may form a non-convex set [BMSY’17]

 Efficient Computation?
Open: Fisher as well as for CEEI

 For constantly many agents (or chores) [BS’19, GM’20]

 Fast path-following algorithm [CGMM.’20]

 Hardness result for an exchange model [CGMM.’20]

References.
[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847–1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395–417, 2019.

[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–
314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

R. Mehta (ADFOCS’20)

Thank You

