
Lecture 3: Computation of CE

Instructor: Ruta Mehta

CS 580



(Recall) Fisher’s Model

 Set of agents. 

 Set of divisible goods.

 Each agent has 
 budget of dollars

 valuation function 

Linear: for bundle 

 Supply of every good is one.



(Recall) Competitive Equilibrium

Pirces and allocation 

: Amount of good j agent i gets

 Optimal bundle: Agent demands 


శ



 Market clears: For each good 
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CEEI Properties: Summary

CEEI 
allocation is
 Pareto optimal (PO)
 Envy-free
 Proportional

$3
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2
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CEEI
Prices

CEEI Allocation:

Next…
 Nash welfare 

maximizing



Social Welfare

Utilitarian

Issues: May assign 0 value to some agents.
Not scale invariant!



Max Nash Welfare

max:

s.t.    

Feasible allocations



max:

s.t.    

Feasible allocations

Max Nash Welfare (MNW)



max:

s.t.    

Feasible allocations

Max Nash Welfare (MNW)



Eisenberg-Gale Convex Program ‘59

max:

s.t.    

Dual var.



Theorem. Solutions of EG convex program are 
exactly the CEEI 
Proof.

Consequences: CEEI
• Exists
• Forms a convex set
• Can be computed in 

polynomial time
• Maximizes Nash Welfare



Theorem. Solutions of EG convex program are 
exactly the CEEI 
Proof. (Using KKT)



Recall: CEEI Characterization

Pirces and allocation 

 Optimal bundle: For each buyer 



ೕ

ೕ

ೖ

ೖ
, for all good 

 Market clears: For each good 



Proof. (Using KKT)

Theorem. Solutions of EG convex program are exactly the CEE. 

max:  

∈

s.t.    ∈



Dual var.



ೕ

 

ೕ

ೕ

buy only MBB goods

optimal bundle

market clears

:

 



Efficient (Combinatorial) Algorithms

Polynomial time

 Flow based [DPSV’08]

 General exchange model (barter system) [DM’16, DGM’17, CM’18]

 Scaling + Simplex-like path following [GM.SV’13]

Strongly polynomial time

 Scaling + flow [O’10, V’12]

 Exchange model (barter system) [GV’19]



Max Flow (One slide overview)

Directed Graph

s
t

Given . Capacity  for each edge 



Find maximum flow from to : 𝒆 ୣ∈ா s.t.

• Capacity constraint 

 

• Flow conservation: at every vertex 
total in-flow = total out-flow

Theorem: Max-flow = Min-cut
- -

s-t cut:

cut-value: (௨,௩)

௨,௩ ∈ா:
௨∈ௌ,௩∉ௌ

Min s-t cut:
ௌ⊂:

௦∈ௌ,௧∉ௌ

Can be solved in 
strongly polynomial-time



CE Characterization
Pirces and allocation 

 Optimal bundle: Agent demands 
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ೖ
, for all good 

 Market clears: For each good 



Pirces and allocation 

 Optimal bundle: Agent demands
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ೖ
, for all good 

 Market clears: For each good 

Competitive Equilibrium Flow

(money spent by agent i on good j)

ೕ

ೕ

ೖ

ೖ

Maximum bang-per-buck ( )





G

Competitive Equilibrium Flow

s
t



MBB edges

capacities

Max-flow



  

∈ே



 on MBB edges



∈ெ



CE: s.t.

Issue: Eq. prices and hence 
also MBB edges not known!

Fix [DPSV’08]: Start with low 
prices, keep increasing. Max-flow = min-cut 

= ∈ீ ∈

A

Maintain:
1. Flow only on MBB edges
2. Min-cut = (goods are fully sold)

Opt.
Bundle

Market
clears



Algorithm (Pictorial)

s
t

MBB 
edges

cap.

Init: 





, and

at least one MBB edge to 

G A

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

MBB 
edges

cap.

Init: 





, and

at least one MBB edge to 

G A

Increase 

∈ீ





Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G A

MBB 
edges

cap.

∈ீ





Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

Event : New cross-cutting min-cut

G A
MBB 
edges

cap.

ி

Agents in ி exhaust all their money.

Observation: Supply = Demand for 𝑭!
So, if prices of  are increased, then 
these will be under-demanded (supply > 
demand for ி . And will cease to 
be a min-cut. 

ி Goods that have MBB edges only 
from ி. 

ி

A tight-set.

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

Should freeze prices in 𝑭



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

Event : A tight subset ி

G A

(frozen)

MBB 
edges

cap.

ி

Call it frozen: ி ி .

ி

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G A(dynamic)

(frozen)



ி



Call it frozen: ி ி .
Freeze prices in ி

Increase prices in .

Event : A tight subset ி

ி

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G A(dynamic)

(frozen)



ி



Move from dynamic to 
frozen. 

N(𝑆)

Event : A tight subset 

Observation: Again, supply=demand for 
goods in If prices of is increased 
further, then can not be fully sold. 
And will cease to be a min-cut.

Hence it needs to be moved to the 
frozen set. 

ி

Neighbors of S

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G

(frozen)

ி

Freeze prices in ி and 
increase in .

Move to frozen part 
Event : A tight subset 

A

 

ி

(dynamic)

N(𝑆)

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G

(frozen)

ி ி

OR

Event : New MBB edge
Must be between  & ி. 
Recompute dynamic and frozen.

Move from dynamic to frozen 
Event : A tight subset 

A

 

(dynamic)

Freeze prices in ி and 
increase in .

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G

(frozen)

ி

Recompute dynamic and frozen:
Move the component containing 
good from frozen to dynamic.

OR

Event : New MBB edge
Has to be from  to ி. 

Move from dynamic to frozen 
Event : A tight subset 

A

 

ி

(dynamic)

Freeze prices in ி and 
increase in .

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Algorithm (Pictorial)

s
t

Init: 






And at least one MBB edge to 

Increase 

G

(frozen)

ி

Recompute dynamic and frozen.

OR

Event : New MBB edge
Must be from  to ி. 

Move from dynamic to frozen 

Observations: Prices only increase. 
Each increase can be lower bounded. 
Both the events can be computed 
efficiently.

Converges to CE in finite time.
Stop: all goods are frozen. 

Event : A tight subset 

A

ி

Freeze prices in ி and 
increase in .

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)



Example

$5

$1

2

3

1

2

Init.Input

s

t

Event 2

s

t

Event 1

s

t

Invariants
1. Flow only on MBB edges
2. Min-cut = (goods are sold)

5

1

5

1

5

1

s

t5

1



Formal Description

 Init: “low-values” s.t. is a min-cut.                          

 While(
    Increase until

Event 1: Set  becomes tight.

agents w/ MBB edges to (neighbors of ).

Move from   to ி ி

Event 2: New MBB edge appears between  and ி

Add ( edge to graph. 

Move component of from ி ி to   .

 Output 



Efficiently Computing Event 2

Event 2: New MBB edge appears between  and ி

Exercise 



Efficiently Computing Event 1

Event 1: Set ∗
 becomes tight.

 ∗
∑ ∈ಿ(ೄ∗)

∑ ೕೕ∈∗

 Find ∗

ௌ⊆ீವ

s
t

G A

MBB 
edges

cap.
 

Increase 

s
t

G B
MBB 
edges

cap.

∗

ௌ⊆ீವ

∑ ∈ಿ(ೄ)

∑ ೕೕ∈



Efficiently Computing Event 1

Event 1: Set ∗
 becomes tight. 

 ∗
∑ ∈ಿ(ೄ∗)

∑ ೕೕ∈∗

 Find ∗

ௌ⊆ீವ

s
t

G A
MBB 
edges

 

ௌ⊆ீವ

∑ ∈ಿ(ೄ)

∑ ೕೕ∈



Efficiently Computing Event 1

Event 1: Set ∗
 becomes tight.


∑ ∈ಿ(ೄ)

∑ ೕೕ∈ೄ

Find ∗

ௌ⊆ீವ

Claim. Can be done in O(n) min-cut 
computations

s
t

G A
MBB 
edges

 

ᇱ ᇱ
 

Repeat{
. Set (௦,) 

min-cut in ᇱ ᇱ

ᇱ ᇱ

}Until( not a min-cut)
Return 



Efficient Flow-based Algorithms

 Polynomial running-time
 Compute balanced-flow: minimizing norm of agents’ 

surplus [DPSV’08]

 Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter): 

 Polynomial time [DM’16, DGM’17, CM’18]

 Strongly polynomial for exchange
 Flow + scaling + approximate LP [GV’19]



Application to Display Ads: Pacing Eq.

 Google Display Ads
Each advertiser has

 Budget . Value for keyword 

Pacing Eq.: s.t.
 First price auction with bids 

 For each agent , if then total payment = , else  

 Equivalent to Fisher market with quasi-linear 
utilities!



What about chores?

 CEEI exists but may form a non-convex set [BMSY’17]

 Efficient Computation? 
Open: Fisher as well as for CEEI

 For constantly many agents (or chores) [BS’19, GM’20]

 Fast path-following algorithm [CGMM.’20]

 Hardness result for an exchange model [CGMM.’20]



References.
[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of 
the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna. 
Econometrica, 85(6):1847–1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social 
Choice and Welfare, 52(3):395–417, 2019. 

[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint 
arXiv:1907.01766 (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th 
International Conference on Autonomous Agents and MultiAgent Systems. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the 
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th 
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM 
(JACM) 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–
314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided 
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).



R. Mehta (ADFOCS’20)

Thank You


