Lecture 3: Computation of CE

CS 580

Instructor: Ruta Mehta

(Recall) Fisher's Model

- Set A of n agents.
- Set G of m divisible goods.

- Each agent i has \Box budget of B_i dollars \Box valuation function $V_i: R^m_+ \to R_+$ **Linear**: for bundle $x_i = (x_{i1}, ..., x_{im})$, $V_i(x_i) = \sum_{i \in G} V_{ij} x_{ij}$
- Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$: Concept Equilibrium
ation $X = (x_1, ..., x_n)$
: Amount of good j agent i gets

 \blacksquare Optimal bundle: Agent i demands $x_i \in \text{argmax} \quad V_i(x)$ $\overline{+}$ $n \cdot \gamma < R$. $m: P^{\cdot}X \leq B_i$ $\dot{\iota}$ 202 \blacksquare Market clears: For each good *j*, demand $=$ supply $\sum_i x_{ij} = 1$

CEEI Properties: Summary

CEEI $(B_i = 1, \forall i)$ allocation is

- Pareto optimal (PO)
- Envy-free
- **Proportional**

Nash welfare maximizing

CEEI Allocation: $X_1 = \left(\frac{1}{4}, 1\right), X_2 = \left(\frac{3}{4}, 0\right)$ Next…
 $V_1(X_1) = \frac{3}{2}$, $V_2(X_2) = \frac{9}{4}$ $V_1(X_2) = \frac{3}{2}$, $V_2(X_1) = \frac{7}{4}$

Social Welfare

$$
\sum_{i\in A}V_i(X_{i1},\ldots,X_{im})
$$

Utilitarian

Issues: May assign 0 value to some agents. Not scale invariant!

Max Nash Welfare

$$
\max: \prod_{i \in A} V_i(X_{i1}, \ldots, X_{im})
$$

$$
\begin{cases} \text{s.t.} & \sum_{i \in A} X_{ij} \leq 1, \ \forall j \in G \\ X_{ij} \geq 0, \qquad \forall i, \forall j \end{cases}
$$

Feasible allocations

Max Nash Welfare (MNW)

Feasible allocations

Max Nash Welfare (MNW)

 $max: \sum log V_i(X_{i1},...,X_{im})$

s.t. $\sum_{i \in A} X_{ij} \le 1$, $\forall j \in G$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Feasible allocations

Eisenberg-Gale Convex Program '59

$$
\max: \quad \sum_{i \in A} \log V_i(\overline{X}_i)
$$

Dual var.

s.t.
$$
\sum_{i \in A} X_{ij} \le 1
$$
, $\forall j \in G \longrightarrow p_j$
 $X_{ij} \ge 0$, $\forall i, \forall j$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X) . Proof. • Consequences: CEEI
• Exists
• Forms a convex set
• Can be *computed* in
• polynomial time

Consequences: CEEI

- Exists
-
- Consequences: CEEI

 Exists

 Forms a convex set

 Can be *computed* in

polynomial time

 Maximizes Nash Welfare polynomial time Consequences: CEEI
• Exists
• Forms a convex set
• Can be *computed* in
• Maximizes Nash Welfare
• Maximizes Nash Welfare
-

Theorem. Solutions of EG convex program are exactly the CEEI (p, X) . $Proof. \Rightarrow$ (Using KKT)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$

- \blacksquare Optimal bundle: For each buyer i $p \cdot X_i = 1$ $\Box X_{ii} > 0 \Rightarrow \frac{U}{i} = \max \frac{U}{i}$ $ij = \max_{k \in \mathbb{R}} v_{ik}$ j k \in M p_k $\frac{ik}{r}$ for all good i k and $\overline{}$, for all good *j*
- \blacksquare Market clears: For each good *j*,

$$
\sum_i X_{ij} = 1.
$$

Theorem. Solutions of EG convex program are exactly the CEE.

Proof.
$$
\Rightarrow
$$
 (Using KKT)
\n $\forall j, p_j > 0 \Rightarrow \sum_i X_{ij} = 1$
\n $\forall j, p_j > 0 \Rightarrow \sum_i X_{ij} = 1$
\n $\forall i, \sum_{i \in A} X_{ij} \le 1, \forall j \in G \longrightarrow p_j \ge 0$
\n $\forall i, \forall j$
\nDual condition to X_{ij} :
\n $\frac{v_{ij}}{v_i(x_i)} \le p_j \Rightarrow \frac{v_{ij}}{p_j} \le V_i(X_i) \Rightarrow p_j > 0 \Rightarrow$ market clears
\n \Rightarrow buy only MBB goods
\n $\begin{aligned}\n\overbrace{\left(X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = V_i(X_i)\right)} \\
\downarrow \\
\overbrace{\left(X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = V_i(X_i)\right)} \\
\downarrow \\
\Rightarrow \sum_j p_j X_{ij} = 1\n\end{aligned}$

Efficient (Combinatorial) Algorithms

Polynomial time

Flow based [DPSV'08]

General exchange model (barter system) [DM'16, DGM'17, CM'18]

Scaling + Simplex-like path following $[GM.SV'13]$

Strongly polynomial time

Scaling + flow $[0.10, V¹²]$

Exchange model (barter system) [GV'19]

Max Flow (One slide overview)

Given $s, t \in V$. Capacity c_e for each edge $e \in E$.

Capacity constraint

$$
f_e \leq c_e, \ \forall e \in E
$$

Flow conservation: at every vertex $u \neq s$, t total in-flow = total out-flow

Theorem: Max-flow = Min-cut
 $s-t$

s-t cut: $S \subset V$, $s \in S$, $t \notin S$ cut-value: $C(S) = \sum_{u,v} c_{(u,v)}$ $(u,v) \in E$: $u \in S.v \notin S$

> Min s-t cut: $\min_{\Omega} C($ $SCV:$ s∈S.t∉S

Can be solved in strongly polynomial-time

CE Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

Optimal bundle: Agent *i* demands $x_i \in \argmax V_i(x)$ $x: p \cdot x \leq B_i$ $\Box n \cdot x = R$

$$
\Box x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \max_{k \in G} \frac{v_{ik}}{p_k}, \text{ for all good } j
$$

• Market clears: For each good *j*, demand $=$ supply

$$
\sum_i x_{ij} = 1
$$

Competitive Equilibrium \rightarrow Flow

Pirces $p = (p_1, ..., p_m)$ and allocation $F = (f_1, ..., f_n)$

brium \rightarrow **Flow**
allocation $F = (f_1, ..., f_n)$
(money spent by agent i on good j)
lemands $x_i \in argmax_{x : p: x \le R_i} v_i(x)$

Optimal bundle: Agent *i* demands $x_i \in argmax_{x : p \cdot x \leq B_i} v_i(x)$

$$
\Box \sum_{j \in G} f_{ij} = B_i
$$

$$
\Box f_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \boxed{\max_{k \in G} \frac{v_{ik}}{p_k}}
$$
 for all good j
Maximum bang-per-buck (*MBB*)

 \blacksquare Market clears: For each good *j*, demand $=$ supply

$$
\sum_{i\in N}f_{ij}=p_j
$$

Competitive Equilibrium \rightarrow Flow

 $=\sum_{i\in G} p_i = \sum_{i\in A} B_i$

Issue: Eq. prices and hence $\frac{1}{2}$

CE:
$$
(p, F)
$$
 s.t.
\nOpt.
\nBundle
\n
$$
\begin{cases}\n\sum_{j \in M} f_{ij} = B_i \\
f_{ij} > 0 \text{ on MBB edges} \\
\text{Market}\n\begin{cases}\n\sum_{i \in N} f_{ij} = p_j\n\end{cases}\n\end{cases}
$$

Fix [DPSV'08]: Start with low $Max-flow = min-cut$ prices, keep increasing. ²

¹

¹

¹

¹
 1. Flow only on MBB edges

¹
 1. Flow only on MBB edges

2. Min-cut = {*s*} (goods are fully sold) ^t

^{Market} $\sum_{\text{clears}} f_{ij} = p_j$
 Fix [DPSV'08]: Start with low

prices, keep increasing.

Maintain:

1. Flow only on MBB edges

2. Min-cut = {s} (goods are fully sold)
 Algermand \geq **Supply**

Maintain:

-
-

denvand
$$
\geq
$$
 supply

Invariants

-
- **Invariants**
1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init:
$$
\forall j \in G, p_j < \min_i \frac{B_i}{m}
$$
, and at least one MBB edge to j

Invariants

-
- **Invariants**
1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init:
$$
\forall j \in G, p_j < \min_i \frac{B_i}{m}
$$
, and at least one MBB edge to *j*

Increase p:

Invariants

- Flow only on MBB edges 1.
- Min-cut = $\{s\}$ (goods are sold) 2.

Init: $\forall j \in M$, $p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Observation: Supply = Demand for $G_F!$ So, if prices of G_F are increased, then these will be under-demanded (supply > demand for G_F). And {s} will cease to be a min-cut.

Should freeze prices in G_F .

Invariants

-
- **Invariants**
1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to j

Increase $p: \hat{\theta}$

Event 1: New cross-cutting min-cut

Agents in A_F exhaust all their money. G_F : Goods that have MBB edges only from A_F .

A tight-set.

Invariants

1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to j

Increase $p: \hat{\theta}$

Event 1: A tight subset G_F Event 1: A tight subset G_F
Call it frozen: (G_F, A_F) .

Invariants

1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} \mathbb{P} $\left\{\right\}$ And at least one MBB edge to j

Increase $p: \hat{\theta}$

Call it frozen: (G_F, A_F) . Freeze prices in G_F . **Event 1:** A tight subset G_F
Call it *frozen*: (G_F, A_F) .
Freeze prices in G_F .
Increase prices in G_D .

Observation: Again, supply=demand for goods in S . If prices of S is increased further, then **S** can not be fully sold.
And $\{s\}$ will cease to be a min-cut.

Hence it needs to be moved to the frozen set.

Invariants

-
- **1.** Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$

Move $(S, N(S))$ from dynamic to frozen. $N(S)$: Neighbors of S

Invariants

1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to $$

Increase $p: \hat{\theta}$

Freeze prices in G_F , and Move $(S, N(S))$ to frozen part
Freeze prices in G_F, and
increase in G_D. **Event 1:** A tight subset $S \subseteq G_D$

Invariants

1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to j

Increase $p: \hat{\theta}$

Move $(S, N(S))$ from dynamic to frozen **Event 1:** A tight subset $S \subseteq G_D$ Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Must be between $i \in A_D \& j \in G_F$. Recompute dynamic and frozen.

Invariants

1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to j

Increase $p: \hat{\theta}$

Increase $p: \hat{\Gamma} \alpha$

Event 1: A tight subset $S \subseteq G_D$

we $(S, N(S))$ from dynamic to frozen

Freeze prices in G_F , and

ncrease in G_D .

OR

Event 2: New MBB edge

Has to be from $i \in A_D$ to $j \in G_F$.

Recompute dynamic an Move $(S, N(S))$ from dynamic to frozen Event 1: A tight subset $S \subseteq G_D$ Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Recompute dynamic and frozen: Move the component containing good *j* from frozen to dynamic.

Observations: Prices only increase. Each increase can be lower bounded. Both the events can be computed efficiently.

Converges to CE in finite time.
Stop: all goods are frozen.

Invariants

-
- **1.** Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold) **1.** Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M$, $p_j < \min_{i} \frac{p_i}{n}$ $i \quad n$ B_i \boldsymbol{n} And at least one MBB edge to j

Increase $p: \hat{\theta}$

Move $(S, N(S))$ from dynamic to frozen **Event 1:** A tight subset $S \subseteq G_D$ Freeze prices in G_F , and increase in G_D .

OR

Recompute dynamic and frozen. Event 2: New MBB edge Must be from $i \in A_D$ to $j \in G_F$.

Invariants

Invariants
1. Flow only on MBB edges
2. Min-cut = $\{s\}$ (goods are sold)
nit. **Invariants**
1. Flow only on MBB edges
2. Min-cut = { s } (goods are sold)
nit.

Event 2 α = 2

Formal Description

\n- \n**Init:**\n
$$
p \leftarrow
$$
 "low-values" s.t. $\{s\}$ is a min-cut.\n $(G_D, A_D) \leftarrow (G, A), (G_F, A_F) \leftarrow (\emptyset, \emptyset)$ \n
\n- \n**While:**\n $(G_D \neq \emptyset)$ \n \Box \n $\alpha \leftarrow 1$, $p_j \leftarrow \alpha p_j$ $\forall j \in G_D$. Increase α until \Box \n \Box

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$

Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$
\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}
$$

=
$$
\min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} > \alpha(S)
$$

■ Find
$$
S^*
$$
 = argmin $\alpha(S)$
 $S \subseteq G_D$

Event 1: Set $S^* \subseteq G_D$ becomes tight. $\alpha(S) = \frac{\sum_{i \in N(S)} B_i}{\sum_{i \in S} p_i}$ Find S^* = argmin $\alpha(S)$ $S \subseteq G_D$

Claim. Can be done in $O(n)$ min-cut computations

$$
(G', A') \leftarrow (G_D, A_D)
$$

Repeat{
 $\alpha \leftarrow \alpha(G').$ Set $c_{(s,j)} \leftarrow \alpha p_j$, $\forall j \in G'$
 $(s \cup \{S\} \cup N(S)) \leftarrow \text{min-cut in } (G', A')$
 $(G', A') \leftarrow (S, N(S))$
} $\}$ Until({ $\{s\}$ not a min-cut)
Return α

Efficient Flow-based Algorithms

- Polynomial running-time
	- \Box Compute *balanced-flow*: minimizing l_2 norm of agents' surplus [DPSV'08]
- Strongly polynomial: $Flow + scaling$ [Orlin'10]
- Exchange model (barter):
- \blacksquare Polynomial time $[DM'16, DGM'17, CM'18]$
- Strongly polynomial for exchange \Box Flow + scaling + approximate LP [GV'19]

Application to Display Ads: Pacing Eq.

Google Display Ads

 \Box Each advertiser has

Budget B_i **. Value** v_{ij} **for keyword j**

- Pacing Eq.: $(\lambda_1, ..., \lambda_n) \in [0,1]^n$ s.t.
	- First price auction with bids $\lambda_i v_{ij}$
	- For each agent i, if λ_i < 1 then total payment = B_i , else $\leq B_i$
- Equivalent to Fisher market with quasi-linear utilities!

What about chores?

■ CEEI exists but may form a non-convex set [BMSY'17]

■ Efficient Computation? □ Open: Fisher as well as for CEEI \Box For constantly many agents (or chores) [BS'19, GM'20] \Box Fast path-following algorithm [CGMM.'20]

 \blacksquare Hardness result for an exchange model $_{\rm [CGMM.^20]}$

References.

References.
[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of*
the 2017 ACM Conference on Economics and Computation. 2017.
EXISY17] Anna Bogomoln the 2017 ACM Conference on Economics and Computation. 2017. **References.**
[AKTI7] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of*
the 2017 ACM Conference on Economics and Computation. 2017.
[BMSY17] Anna Bogomoln **References.**

(AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of*

the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Anna Bogom **[**AETI7] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of*
the 2017 ACM Conference on Economics and Computation. 2017.
[BMSY17] Ama Bogomolnaia, Herv^{*}e

Econometrica, 85(6):1847–1871, 2017.

Choice and Welfare, 52(3):395–417, 2019.

arXiv:1907.01766 (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th **References.**

INTI7 Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings*

IBMSY17 ADM Conference on Economics and Computation. 2017.

IBMSY17] Ama Bogomolnaia, Choice and Welfare, 52(3):395–417, 2019.

(BSI9) Bränzei, Slimina, and Fedor Sandomirskiy. "Algorithms for Competitive Division (arXiv:1907.01766 (2019).

FarXiv:1907.01766 (2019).

FarXiv:1907.01766 (2019).

[GM20] Garg,

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv preprint arXiv:2008.02753.

Reference on Automous Agents and Kulliagent Systems. 2020.

(AKT17) Alaei, Saeed, Pooya Jalaly Khalliabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of*

(HMSY17) Ama Hogomolania, Herv^c **KCTCTCINCES.**

(AKTI7) Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of*

the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Arma Bogo Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008. [BMSY17] Anna Begomelnaia, Herv c Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna. Iconomic EBMSY191 Anna Begomelnaia, Herv c Moulin, Tedor Sandomirskiy, and Elena Yanovskaia. Dividi [BMSY19] Anam Bogombalasi, Have Coluin, Fedor Sandomirskiy, and Elcan Yanovskaia. Dividing bads under additive utilities. Social (ISN2) Branzel, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chore

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM (JACM) 55.5 (2008): 1-18.

314, 1979.

Thank You

R. Mehta (ADFOCS'20)