"

Lecture 3: Computation of CE

CS 580

Instructor: Ruta Mehta
I LLINOTIS

"
(Recall) Fisher’s Model

m Sct A of n agents.

m Sect G of m divisible goods.

m Each agent i has
budget of B; dollars
valuation function V;: R* - R,

Linear: for bundle x; = (x;1, ..., Xjp),

Vilxi) = Xjeg Vijxij

m Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces p = (p4, ...,) and allocation X = (x4, ..., X;,)
x;j: Amount of good j agent 1 gets

m Optimal bundle: Agent i demands

x; € argmax V;(x)
XER}: p-x<B;

A (e
m Market clears: For each good j, demand = supply
ixij=1

CEEI Properties: Summary

CEEI (B; = 1,Vi)
allocation 1s

m Pareto optimal (PO)
m Envy-free

m Proportional

CEEI Allocation:

5= (1)1 = (0

Next...

9

Vi(Xy) ==, V(Xy) ==
m Nash welfare (%) 2(¥2) =3
maximizing V,(X,) 7

4

" A
Social Welftare

z Vi(Xi1) oor Xim)
LEA
Utilitarian

Issues: May assign 0 value to some agents.
Not scale invariant!

Max Nash Welfare

max: l_[Vi(Xil, iy Xim)

LEA
4)
S.t. ZiEAXij < 1, Vj EG
Xij =0, Vi, Vj
\ ,

Feasible allocations

"
Max Nash Weltare (MNW)

max. log l_[Vi(Xill ---:Xim)

LEA
4)
S.t. ZiEAXij < 1, Vj EG
Xij =0, Vi, Vj
\ ,

Feasible allocations

"
Max Nash Weltare (MNW)

maX:z logVi(Xi1, ..o) Xim)

LEA
4)
S.t. ZiEAXij < 1, Vj EG
Xij =0, Vi, Vj
\ ,

Feasible allocations

Eisenberg-Gale Convex Program ‘59

max: z log Vi (%)
. Dual var.

S.t. ZiEAXij <1, Vj EG — Dj

Xij =0, Vi,Vj

Theorem. Solutions of EG convex program are
exactly the CEEI (p, X).
Proof.

Consequences: CEEI

e EXists
e Forms a convex set

* Can be computed 1n
polynomial time

e Maximizes Nash Welfare

Theorem. Solutions of EG convex program are
exactly the CEEI (p, X).
Proof. = (Using KKT)

Recall: CEEI Characterization

Pirces p = (p4, ..., P;y) and allocation X = (X4, ...

m Optimal bundle: For each buyer i
p-X;=1
Vik

Vij _ Vik)
Xij>0= — max =, for all good j

m Market clears: For each good J,

ZXU — 1
L

Theorem. Solutions of EG convex program are exactly the CEE.

[XiViXi
. max:) log(V;(X;))
PVOOf. = (Using KKT) = Dual var.
. s.t. ZiEAXij <1l VvjeG — Pj=0
vj, pj >0 T’ 2 Xij =1 X;j =0, Vi, Vj

Dual condition to X;;:

Vii i
Vi(;l) =pj= p_] < V;(X;) = p; > 0= market clears
buy only MBB goods

—

Vij
%u>0:' —V(X)}
Dj

2. VijXij = (Zj piXii)Vi(X:)
= Zj pjXij =1

— = optimal bundle

Efficient (Combinatorial) Algorithms

Po SR
m |Flow based [DPSV’OS]]

General exchange model (barter system) [pM’16, DGM’17, CM’18]

m Scaling + Simplex-like path following [Gm.sv13]

Strongly polynomial time
m Scaling + flow [0°10, v’12]
Exchange model (barter system) [GV’19]

Max Flow (One slide overview)

Directed Graph Theorem: Max-flow = Min-cut
(V,E) s-t Ss-t

s-tcut:ScV,seS, té&s

O cut-value: C(S) = z Clu,v)

(u,v)€EE:
UES, VES

Min s-t cut: min C(S)
ScV:
SES,tES

Given s,t € V. Capacity c, for each edge e € E.
Find maximum flow from s to t: (f,)eer S.t.

* Capacity constraint

fe < Co, Ve EE Can be solved in

e Flow conservat.lon: at every vertex u # s, t S1ON gly polynomial—time
total in-flow = total out-flow

CE Characterization

Pirces p = (p4, ..., P;y) and allocation X = (xq, ..., x;,)

m Optimal bundle: Agent i demands x; € argmax V;(x)

X:p-X<Bj
p-x;=B;
4 Vik

xij >0= Y = max—£, for all good j
Pj KkEG Pk

m Market clears: For each good j, demand = supply

Exi]‘ = 1.

l

Competitive Equilibrium — Flow
F= (. fn)

fi j = Xijpj (money spent by agent 1 on good j)

2.jec fij = Bi
Vii v,
fij > 0= =max—=
pj |keG Pk

L— Maximum bang-per-buck (MBB)

Zfij = pj

LEN

Competitive Equilibrium — Flow

CE: (p,F) s.t.
capacities Z f,; = B;

JEM
fij > 0 on MBB edges

Zfij = Dpj

LEN

Max-flow
MBB edges Fix [DPSV°08]: Start with low
Max-flow = min-cut prices, keep increasing.
= DjecPj = DieaBi Maintain:
Issue: Eq. prices and hence ; ﬁ?&?ﬁ ?:}E?jd:i%zsfully sold)
also MBB edges not known! N

doerand = Suply

Invariants

Alg()rithm (PiCtorial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

A

Init: Vj € G, p; < mjnﬂ, and
l m

MBB at least one MBB edge to j

edges
oo cap.

Algorithm (Pictorial)

A

MBB
edges
oo cap.

argmax —
jEG Dj

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € G, p; < mjnﬂ, and
l m
at least one MBB edge to j

Increase p:

Invariants

Alg()rithm (PiCtorial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G A

/{\ MBB

edges

U oo cap.

T

= argmax
jeGc aAp;

dorarmd > sugply

Init: Vj € M, p; < mjn%
l
And at least one MBB edge to j

Increase p: T a

Invariants

Algorithm (Pictorial) I FlowonlyonMBBolges

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «

Event 1: New cross-cutting min-cut

Agents in A exhaust all their money.

Gr: Goods that have MBB edges only

Observation: Supply = Demand for Gp! from Ap.

So, if prices of Gy are increased, then

these will be under-demanded (supply > A tight-set.
demand for Gr). And {s} will cease to

be a min-cut.

Should freeze prices in Gp.

Algorithm (Pictorial)

(frozen)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset G

Call it frozen: (G, Ar).

Algorithm (Pictorial)

G (dynamic) A

(frozen)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < rn_in%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset G
Call it frozen: (G, Ar).
Freeze prices in Gp.
Increase prices in Gp.

Invariants

AlgOrithm (PiCtorial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)
(dynamic) A
Init: Vj € M, p; < m_in%
i
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € G
(frozen) N (S): Neighbors of S

Move (S,N(S)) from dynamic to
frozen.

Observation: Again, supply=demand for
goods in S. If prices of S is increased
further, then S can not be fully sold.
And {s} will cease to be a min-cut.

Hence it needs to be moved to the
frozen set.

Algorithm (Pictorial)

(dynamic) A

(frozen)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € Gp

Move (S,N(S)) to frozen part

Freeze prices in G, and
increase in Gp.

Invariants

AlgOrithm (PiCtorial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G (dynamic) A

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «

Event 1: A tight subset S € Gp
(frozen) Move (S,N(S)) from dynamic to frozen

Freeze prices in Gp, and

W - 50«(1‘6 increase in GD.OR

Event 2: New MBB edge
Must be between i € Ap & j € Gf.
Recompute dynamic and frozen.

. . . Invariants
Algorithm (Pictorial) L Ploworly mMBBodges

G (dynamic) A

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «

' Event 1: A tight subset S € Gp
(frozen) Move (S,N(S)) from dynamic to frozen

Freeze prices in Gp, and
increase in Gp.

OR

Event 2: New MBB edge
Has to be from i € Ap toj € Gp.
Recompute dynamic and frozen:
Move the component containing
good j from frozen to dynamic.

Invariants

AlgOrithm (PiCtorial) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G A
Init: Vj € M, p; < m_in%
l
< And at least one MBB edge to j
[] t
. Increase p: T «
%4

Event 1: A tight subset S € Gp
Move (S,N(S)) from dynamic to frozen

(frozen)

Freeze prices in Gp, and

increase in Gp.
Observations: Prices only increase.

Each increase can be lower bounded. OR
Both the events can be computed Event 2: New MBB edge
efficiently. u Must be from i € Ap to j € Gp.

Recompute dynamic and frozen.

Converges to CE 1n finite time.

Stop: all goods are frozen.

Invariants
1. Flow only on MBB edges
Example 2. Min-cut = {s} (goods are sold)

Input \7’* L)% Init.

Formal Description

m Init: p < “low-values” s.t. {s} is a min-cut.
(Gp,Ap) < (G, A), (Gr, Ap) < (0,0)
a < 1, p; « apj Vj € Gp. Increase a until

Event 1: Set S € G becomes tight.
N(S) « agents w/ MBB edges to S (neighbors of S).
Move (S,N(S)) from (Gp, Ap) to (Gg, Ag).

Event 2: New MBB edge appears between i € Ap and j € G
Add (j — i) edge to graph.
Move component of j from (G, Ar) to (Gp, Ap).

m QOutput (p, F)

Efficiently Computing Event 2

Event 2: New MBB edge appears between i € Ap and j € G

Exercise ©

Efficiently Computing Event 1

Event 1: Set S* € Gp becomes tight.

. o — 2ien(s*) Bi
z:jeS* Pj

— min 2ien(s) Bi
SCGp| XjesPj al(S)

m Find §* = argmin a(S)
SC€Gp

Efficiently Computing Event 1

MBB
edges

Event 1: Set S* € Gp becomes tight.

. ien(st Bi

B =

z:jeS* Pj

= min
SCGp

m Find S* =

2ien(s) Bi

argmin a(S)
SCSGp

Efficiently Computing Event 1

Event 1: Set S* € Gp becomes tight.

MBB
edges m o(S) = 2ien(s) Bi
(%) LjesDj
Find ™ = argmin a(S)

SC€Gp

Claim. Can be done in O(n) min-cut
computations

(G',4") < (Gp, Ap)

Repeat{
a < a(G"). Set ¢ jy « ap;,Vj € G’
(sU{S}UN(S)) « min-cutin (G',A")
(G',A") « (S,N(S))

+ Until({s} not a min-cut)

Return a

" J
Efficient Flow-based Algorithms

m Polynomial running-time

Compute balanced-flow: minimizing [, norm of agents’
surplus [DPSV’08]

m Strongly polynomial: Flow + scaling [orlin’10]

Exchange model (barter):
m Polynomial time [pm’16, DGM’17, CM’18]

m Strongly polynomial for exchange
Flow + scaling + approximate LP [GV’19]

Application to Display Ads: Pacing Eq.

m Google Display Ads
Each advertiser has
m Budget B;. Value v;; for keyword j
Pacing Eq.: (14, ..., 4,,) € [0,1]" s.t.
m First price auction with bids A4;v;;
m For each agent i, 1f A; < 1 then total payment = B;, else
< B;
m Equivalent to Fisher market with quasi-linear
utilities!

What about chores?

m CEEI exists but may form a non-convex set [BMSY’17]

m Efficient Computation?
Open: Fisher as well as for CEEI

For constantly many agents (or chores) [BS’19, GM’20]
Fast path-following algorithm [CGMM.*20]

m Hardness result for an exchange model [comm. 20

Retferences.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Anna Bogomolnaia, Herv e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847-1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv” e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395-417, 2019.

[BS19] Bréanzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.

[DKO08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293—
314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

T'E

[ANK YOU

