CS 580: Topics on AGT Lec 2: Fair Division of Divisibles

Instructor: Ruta Mehta

Divisible goods

Goal: Find *fair* and *efficient* allocation

Model

- A: set of n agents
- **Contract Contract Co** M : set of m divisible goods (manna)

- Each agent i has
	- \Box \Box Concave valuation function $V_i: R^m_+ \to R_+$ over bundles of items
	- Captures *decreasing marginal returns*.

Goal: Find *fair* **and** *efficient* **allocation**

Agreeable (Fair) Non-wasteful (Efficient)

Allocation: Bundle $X_i \in R_+^m$ to agent *i*

Envy-free: No agent *envies* **other's allocation over her own.**

> For each agent i , $V_i(X_i) \geq V_i(X_j)$, $\forall j \in [n]$

Proportional: Each agent gets value at least $\frac{V_i(M)}{M}$

For each agent *i*, $V_i(X_i) \ge \frac{V_i(M)}{n}$

Pareto-optimal: No other allocation is better for all.

> There is no Y, s. t. $V_i(Y_i) \geq V_i(X_i)$, $\forall i \in [n]$

Welfare Maximizing i V i

Example: Half moon cookie

I like both chocolate

(Efficient)

Envy-free: No agent *envies* **other's allocation over her own.**

Proportional: Each agent *i* gets value at least $\frac{V_i(M)}{n}$

> **[3, 2, 2] [0, 0, 0]**

Allocation

in red

[20, 20, 30] [0, 0, 0]

Envy-free: No agent *envies* **other's allocation over her own.**

Proportional: Each agent i gets value at least $\frac{V_i(M)}{M}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

Allocation

[20, 20, 30] [1/2, 1/2, 1/2] in red

Envy-free: No agent *envies* **other's allocation over her own.**

Proportional: Each agent *i* gets value at least $\frac{V_i(M)}{n}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

> **Welfare Maximizing** i V i

[3, 2, 2] [1, 1/2, 0]

Allocation

in red

[20, 20, 30] [0, 1/2, 1]

Envy-free: No agent *envies* **other's allocation over her own.**

Proportional: Each agent *i* gets value at least $\frac{V_i(M)}{n}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

> **Welfare Maximizing** i V i

[3, 2, 2] [0, 0, 0]

Allocation

[20, 20, 30] [1, 1, 1] in red

Envy-free: No agent *envies* **other's allocation over her own.**

Proportional: Eac agent *i* **gets value at least** $\frac{V_i(M)}{n}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

> **(Nash) Welfare Maximizing** $(\Pi_i V_i)$

[3, 2, 2] [1, 1/2, 0]

Allocation

in red

[20, 20, 30] [0, 1/2, 1]

Proportional

(Efficient)

Envy-free Pareto-optimal

(Nash) Welfare Maximizing

Competitive Equilibrium (with equal income)

Beginning of Competitive Equilibrium

Adam Smith (1776)

Invisible hand

"Economic concept that describes the unintended greater social benefits and public good brought about by individuals acting in their own self-interests.^{[1][2]} The concept was first introduced by Adam Smith in *The Theory of Moral Sentiments*, written in 1759. According to Smith, it is literally <u>divine providence</u>, that is the hand of God, that works to make this happen."

Competitive (market) Equilibrium (CE)

Demand optimal bundle $\{X \text{ affordable}\}$ V i

11

Competitive (market) Equilibrium (CE)

CE Example

[2, 0] [5, 1] $\frac{\partial \mathbf{A}}{\partial \mathbf{A}}$ **\$20**

Demand > Supply

\$20 1

[0, 1]

CE Example

Agents have the same amount of money

CEEI: Properties

An agent can afford anyone else's bundle, but demands her own Envy-free

> st welfare theorem **Pareto-optimal**

Demand optimal bundle

Competitive Equilibrium: Demand = Supply

CEEI: Properties

Demand optimal bundle

Competitive Equilibrium: Demand = Supply

Envy-free & "Demand=Supply" Proportional

Proof.

Envyfree $\Rightarrow V_i(X_i) \geq V_i(X_j)$, $\forall j \in [n]$ $\Rightarrow nV_i(X_i) \geq \sum_{j\in[n]} V_i(X_j)$

"Demand = Supply" ⇒ \sum $V_i(X_j) \geq V_i(M)$ $(:V_i$ concave) j∈[n $\Rightarrow V_i(X_i) \geq$ ${V}_{{\widetilde{t}}}(M$ \pmb{n}

CE History

Adam Smith (1776)

Leon Walras (1880s)

Irving Fisher (1891)

Arrow-Debreu (1954) (Nobel prize)

(Existence of CE in the exchange model w/ firms)

. . .

Computation of CE (w/ goods)

Algorithms

- p. Convex programming formulations
	- \Box Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations
	- \Box Shmyrev (2009), DGV (2013), CDGJMVY (2017) …
- (Strongly) Poly-time algorithms (linear valuations)
	- □ DPSV (2002), Orlin (2010), DM (2015), GV (2019) …
- p. Simplex-like algorithms: Eaves (1976), GM.SV (2011), GM.V (2014), …

Complexity

- \mathbb{R}^2 PPAD: Papadimitrou'92, CDDT'09, VY'11, CPY'17, Rubinstein'18, …
- p. FIXP: EY'09, GM.VY'17, F-RHHH'21 …

Learning: RZ'12, BDM.UV'14, …, FPR'22, …

Matching/mechanisms: BLNPL'14, …, KKT'15, …, FGL'16, …, AJT'17, …, BGH'19, BNT-C'19, …

***Alaei, Bei, Branzei, Chen, Cole, Daskalakis, Deng, Devanur, Duan, Dai, Etessami, Feldman, Fiat, Filos-Ratsikas, Garg, Gkatzelis, Hansen, Hogh, Hollender, Jain, Jalaly, Hoefer, Kleinberg, Lucier, Mai, Mehlhorn, Mehta, Mansour, Morgenstern, Nisan, Paes, Lee, Leme, Papadimitriou, Paparas, Parkes, Roth, Saberi, Sohoni, Talgam-Cohen, Tardos, Vazirani, Ve g h, Yazdanbod, Yannakakis, Zhang,… … …**

Simple Tatonnement Procedure (Algo)

Increase prices of the over demanded goods.

Theorem. Tatonnement process Converges to a CE if are *weak gross substitutes (WGS)*.

WGS: Increase in price of a good does not decrease demand of any other good.

Example: Linear

$$
V_i(X_i) = \sum_{j \in [m]} V_{ij} X_{ij}
$$

Optimal bundle: can spend at most one dollar.

Intuitition

spend wisely: on goods that gives maximum value-per-dollar $\frac{V_{ij}}{p_j}$

Linear Valuations: CEEI

$$
V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}
$$

Optimal bundle: can spend at most one dollar.

$$
\sum_{j \in M} V_{ij} X_{ij} = \sum_{j} \underbrace{\left(\sum_{p_j} V_{ij} X_{ij}\right)}_{(k \in G)} \leq \left(\max_{p_k} \frac{V_{ik}}{p_k}\right) \sum_{j} p_j X_{ij} \leq \underbrace{\left(\max_{k \in G} \frac{V_{ik}}{p_k}\right)}_{\text{Maximum}}
$$
\nvalue per dollar spent (5 spent)
\n(**bang-per-buck**)
\n(**bang-per-buck**)
\n
$$
\underbrace{\left(\max_{p_k} \frac{V_{ik}}{p_k}\right)}_{\text{bang-per-buck}}
$$

Linear Valuations: CEEI

$$
V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}
$$

Optimal bundle: can spend at most one dollar.

$$
\sum_{j \in M} V_{ij} x_{ij} = \sum_{j} \frac{V_{ij}}{p_j} (p_j X_{ij}) \leq \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) \sum_{j} p_j x_{ij} \leq \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) 1
$$
\nvalue per dollar spent\n
\n(**bang-per-buck**)\n\n
\n(**Bag-per-buck**)\n\n
\n(**Bag-per-buck**)\n\n
\n(**Bag-per-buck**)\n\n
\n(**Bag-per-buck**)\n\n
\n(**Mag-per-buck**)\n\n
\n(**Mag-per-buck**)

Linear Valuations: CEEI

$$
V_i(X_i) = \sum_{j \in M} V_{ij} X_{ij}
$$

Optimal bundle: can spend at most one dollar.

$$
\sum_{j \in M} V_{ij} x_{ij} = \sum_{j} \underbrace{\left(\sum_{j} V_{ij} \right)}_{j} p_{j} X_{ij} \leq \left(\max_{k \in G} \frac{V_{ik}}{p_{k}}\right) \sum_{j} p_{j} x_{ij} \leq \left(\max_{k \in G} \frac{V_{ik}}{p_{k}}\right) 1
$$
\n
$$
\text{value per dollar spent} \qquad \qquad \text{iff} \qquad \qquad \text{MBB} \qquad \qquad \text{iff} \qquad \qquad \text{Maximum} \qquad \text{bang-per-buck}
$$
\n
$$
\text{Buy only MBB goods. Spends all of 1 dollar.}
$$
\n
$$
X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_{j}} = \text{MBB} \qquad \qquad \sum_{j} p_{j} X_{ij} = 1
$$

Linear Valuations: CEEI $X_{\underline{i}\underline{j}}$ p_1 $V_i(X_i) = \sum V_{ij}X_{ij}$ V_{ii} p_i $j \in M$ p_m

Optimal bundle: can spend at most one dollars.

$$
\sum_{i \in M} V_{ij} x_{ij} \leq \left(\max_{k \in G} \frac{V_{ik}}{p_k} \right) 1
$$

iff 1. Buy only MBB goods. $X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_i} = MBB$

2. Spends all of 1 dollar. $\sum_{i} p_i X_{ij} = 1$

Linear V_is: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$ are at equilibrium iff

- **Optimal bundle (OB):** For each agent i $\Box \sum_{i} p_{i} X_{i} = 1$ $\Box X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_i} = \max_{k \in M} \frac{V_{ik}}{p_k}$, for all good j
- \blacksquare Market clears: For each good *j*,

$$
\sum_i X_{ij} = 1.
$$

- **2** Buyers (\mathbb{Z}, \mathbb{Z}) , 2 Items (\mathbb{Z}, \mathbb{Z}) with unit supply
- Each buyer has budget of \$3 and a linear utility function

- **2** Buyers (\mathbb{Z}, \mathbb{Z}) , 2 Items (\mathbb{Z}, \mathbb{Z}) with unit supply
- \mathcal{L}_{max} Each buyer has budget of \$1 and a linear utility function

Demand \neq Supply

Not an Equilibrium!

- **2** Buyers (\mathbb{Z}, \mathbb{Z}) , 2 Items (\mathbb{Z}, \mathbb{Z}) with unit supply
- Each buyer has budget of \$1 and a linear utility function

- **2** Buyers (\mathbb{Z}, \mathbb{Z}) , 2 Items (\mathbb{Z}, \mathbb{Z}) with unit supply
- \mathcal{L}^{max} Each buyer has budget of \$1 and a linear utility function

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- **Proportional**

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- **Proportional**

Next…

■ Nash welfare **maximizing**

CEEI Allocation: $\mathbf 1$ $\mathbf 1$ $\overline{4}$, 1), Λ 2 ଷ ସ 1^{A_1} ଷ $\overline{2}$, $v_2 \Lambda_2$ ଽ ସ 1^{11} ଷ $\overline{2}$, $v_2 \Lambda_1$ 7 4

Social Welfare

 $i \Lambda i$ $i\in A$

Utilitarian

Issues: May assign 0 value to some agents. Not scale invariant!

Max Nash Welfare

$$
\begin{aligned}\n\text{max:} \quad & \prod_{i \in A} V_i(X_i) \\
\text{s.t.} \quad & \sum_{i \in A} X_{ij} \le 1, \ \forall j \in G \\
& X_{ij} \ge 0, \qquad \forall i, \forall j\n\end{aligned}
$$

Feasible allocations

Max Nash Welfare (MNW)

Feasible allocations

Max Nash Welfare (MNW)

$$
\max: \sum_{i \in A} \log V_i(X_i)
$$

$$
\begin{bmatrix}\n\text{s.t.} & \sum_{i \in A} X_{ij} \leq 1, \ \forall j \in G \\
X_{ij} \geq 0, \quad \forall i, \forall j\n\end{bmatrix}
$$

Feasible allocations

Eisenberg-Gale Convex Program '59

$$
\max: \sum_{i \in A} \log V_i(X_i)
$$
 Dual var.

s.t. $\sum_{i\in A}X_{ij}\leq 1$, $\forall j\in G\longrightarrow P_j$ $X_{ij} \geq 0, \qquad \forall i, \forall j$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X) .

Proof.

Consequences: CEEI

- **Exists**
- **Forms a convex set**
- **Can be** *computed* **in polynomial time**
- **Maximizes Nash Welfare**

Theorem. Solutions of EG convex program are exactly the CEEI (p, X) . $Proof. \Rightarrow$ (Using KKT)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$

- \blacksquare Optimal bundle: For each buyer i $\Box p \cdot X_i = 1$ $X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_i} = \max_{k \in M} \frac{V_{ik}}{p_k}$, for all good j
- \blacksquare Market clears: For each good *j*,

$$
\sum_i X_{ij} = 1.
$$

Theorem. Solutions of EG convex program are exactly the CEE.

Proof.
$$
\Rightarrow
$$
 (Using KKT)
\n $\forall j, p_j > 0 \Rightarrow \sum_i X_{ij} = 1$
\n $\forall j, p_j > 0 \Rightarrow \sum_i X_{ij} = 1$
\nDual condition to X_{ij} :
\n $\frac{v_{ij}}{v_i(x_i)} \leq p_j \Rightarrow \frac{v_{ij}}{p_j} \leq V_i(X_i) \Rightarrow p_j > 0 \Rightarrow$ market clears
\n \Rightarrow buy only MBB goods
\n $\begin{aligned}\n&\left(\frac{V_{ij}}{v_i(x_i)} \leq p_j \Rightarrow \frac{V_{ij}}{p_j} \leq V_i(X_i) \Rightarrow p_j > 0 \Rightarrow \text{market clears}\n\end{aligned}$
\n $\Rightarrow \sum_j V_{ij}X_{ij} = (\sum_j p_j X_{ij})V_i(X_i)$
\n $\Rightarrow \sum_j p_j X_{ij} = 1$

Efficient (Combinatorial) Algorithms

Polynomial time

Flow based [DPSV'08]

General exchange model (barter system) [DM'16, DGM'17, CM'18]

Scaling + Simplex-like path following $[GM.SV'13]$

Strongly polynomial time

Scaling $+$ flow [O'10, V'12]

Exchange model (barter system) [GV'19]

We will discuss some of these if there is interest.