Smoothed Games & Potential Games

Thursday, October 12, 2023 11:00 AM

Recall: PSA (alfine abovic abovic property) = argorin (ast (9))

P: NE, Pt. OPT. (absvic) (absvi

A(A, M) - Smoth Gaore: A(A, M) - Smoth

 $P_0A = \frac{\text{ord Eq. Gst.}}{\text{opt Gst.}}$ $P_0A = \frac{\text{opt Gst.}}{\text{opt Gst.}}$

Thon: It the game is (44) - Sorooth then

Recall:
$$\varepsilon$$
- $cc\varepsilon$ $def(x)$ f_i
 $\forall p \in X f_i$, $def(x)$ f_i
 $\forall i \in N$, f_i f_i

6: CCE, P*: OPT.

$$(ost (6) = \mathbb{E} \left[(ost (P)) \right] = \mathbb{E} \left[\underbrace{54(P)}_{PN6} \right]$$

$$= \underbrace{\sum_{i \in N} \underbrace{E[G(P)]}_{PNG}}_{IPN}$$

$$\frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} = \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} = \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} + \mathcal{U} \text{ cost}(P)$$

$$= \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} = \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} + \mathcal{U} \text{ cost}(P)$$

$$= \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} = \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} + \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} + \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} = \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} + \frac{\langle \text{cre} \rangle}{\langle \text{cre} \rangle} = \frac{\langle \text{cre$$

Payoff | Utilities (example: Location Gase).

VS, 5*6 X Si $U(S) = \sum_{i} u_{i}(S) \ge \sum_{i} u_{i}(S_{i}, S_{-i})$ NE

1111*\(\frac{1}{2}\) \(-1\) \(\frac{1}{2}\) \(\frac{1}{2}\)

$$\begin{cases} 2 \text{ ui}(s_i^*, s_i) & \geq \lambda \text{ U}(s^*) - \text{U} \text{ U}(s) \\ \frac{1}{2} & \geq \text{PoA} = \frac{\text{U}(s)}{\text{U}(s^*)} \geq \frac{\lambda}{1+\Omega} \\ OR. \\ 1 \leq \text{PoA} = \frac{\text{U}(s^*)}{\text{U}(s)} \leq \frac{1+\Omega}{\lambda} \end{cases}$$

O: Why Rue NE exist in Routing Games?

A Potential Garres (Resemblal 70s)

- N= {1,-., n} player
- ien. P.; set 88 roves 15trutegies 8 playari.
- Pit Bi P= (P,... Shon). Ci(F) = cost ob playere

[NE: VIEN GIPI, Pi) = G(Pi, Pi), VPi'E Pi

(onsequences & \$:

O existence or pure NE &

1 Implies simple "loral-search" algo = BR Dyramics converges to a pure NE.

Finding Rue NE E PLS complexity class "Palgoonial local-sende local orin 8 & can be corputed

(b) ξ -appex local-min B β can be exputed in poly $\left(\frac{1}{\xi}, |N|, \frac{\pi a \times |S_i|}{i}\right)$

Ihm: Aloric Routing Games are Potential Games.

PS: Recull: G=(V,E), eEE, ce: \$b,,..,n3 > R

P: set DD patts 3:~> b;

P: tPi, F= (P1,...,Pn) > Se: # agents taking e ab par F

Q[P] = E ce(Se)

et P:

$$\phi(\bar{P}) = \sum_{\text{ex} \in K} \sum_{K=1}^{\text{se}} ce(K)$$

YiEN, YPIGPi

TPT. $\beta(l_i', l_{-i}) - \beta(l_{i}, l_{-i}) = Ci(l_i, l_{-i}) - Ci(l_i, l_{-i})$ with S_{-i} composition at \overline{P}

(Pi.P.i) Se (Se-1) Se

(Se-1) se un Priti

(li's 1-i)

(6) gestion on e at (P; S-i) = Se = fe it et(PinPi), ef E\(PiUPi) = set) it et Pi'\Pi = Se-1 it ec Pi Pi LHS = \emptyset (P_i , P_{-i}) - \emptyset P_i , P_i)

= \mathcal{L} (\mathcal{L}) = \(\left(\frac{\(\) \) = \(\left(\frac{\(\) \) \} \) \(RHS = G(Pi, Pi) - G(Pi, Pi)

- G(Pi, Pi) + Secse)

- (Secset) + Secse)

- (Secset) + Secse)

A (056 Shazing Games.

(Routing Games of positive extermity)

- n/w G=(V,E) ere, $Y_0 \ge 0$ cost of building

- I(N), build $Y_0 = Y_0$.

Pi: set of $Y_0 = Y_0$.

Pi: set of $Y_0 = Y_0$.

Pi: $Y_0 = Y_0$.

Ci(P)= & re etPi

Os: Post better or work Kan A. R. G. 9

x01: K

 $K = \frac{(1+2)}{K}$ $K = \frac{1}{K}$ $R = \frac{1}{K}$

PoA = K~K

A ROS = Rice - Ar - Stability

= Rost NE (ost

Sp1 Cost.