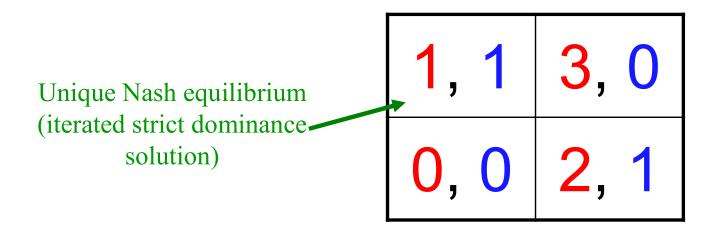
Lecture 12 Stackelberg Eq. & Nash Bargaining

CS580

Ruta Mehta

Commitment (Stackelberg strategies)

Commitment



von Stackelberg

- Suppose the game is played as follows:
 - Alice commits to playing one of the rows,
 - Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down

Computing the optimal mixed strategy to commit to

[Conitzer & Sandholm EC'06]

- Player 1 (Alice) is a leader.
- Separate LP for every column $j^* \in S_2$:

maximize
$$\sum_{i} x_{i} A_{ij}^{*}$$
 Alice's utility when Bob plays j^{*} subject to $\forall j$, $(x^{T}B)_{j^{*}} \geq (x^{T}B)_{j}$ Playing j^{*} is best for Bob $x \geq 0$, $\sum_{i} x_{i} = 1$

Among soln. of all the LPs, pick the one that gives max utility.

Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

minimax strategies

0, 0	-1, 1
-1, 1	0, 0

zero-sum games

general-sum games

Nash equilibrium

zero-sum games

general-sum games

Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

No equilibrium selection problem

0, 0	-1, 1
1, -1	-5, -5

 Leader's payoff at least as good as any Nash eq. or even correlated eq.

(von Stengel & Zamir [GEB '10])

>

Nash Bargaining

Nash Bargaining: Dividing Utilities

Two agents: 1, 2

Outside option utilities: c_1, c_2 Feasible set of utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$

Goal: define a bargaining function $f(c_1, c_2, U) \in U$ satisfying certain good properties

Nash Bargaining: Axioms

Two agents: 1, 2

Outside option with utilities: c_1 , c_2

Feasible set of Utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$

Goal: $f(c_1, c_2, U) \in U$ that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

Nash Bargaining: Theorem

Two agents: 1, 2

Outside option with utilities: c_1 , c_2

Feasible set of Utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$

Goal: $f(c_1, c_2, U) \in U$ that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

Theorem (Nash'50). f satisfies the 5 axioms if and only if, $f(c_1, c_2, U)$ is

argmax
$$(u_1 - c_1)(u_2 - c_2)$$

s.t. $(u_1, u_2) \in U$
 $u_1 \ge c_1, u_2 \ge c_2$

Nash Bargaining: Theorem

Theorem (Nash'50). f satisfies the 5 axioms if and only if, $f(c_1, c_2, U)$ is

argmax
$$(u_1 - c_1)(u_2 - c_2)$$

s.t. $(u_1, u_2) \in U$, $u_1 \ge c_1$, $u_2 \ge c_2$

Proof. (\Leftarrow)

- 1. Scale free
- 2. Symmetric . .
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational