Correlated Equilibrium – (CE)
(Aumann'74) (Aumann'74)

- **Mediator** declares a joint distribution P over $S=x_i S_i$
- **Tosses a coin, chooses** $s = (s_1, ..., s_n) \sim P$ **.**
- Suggests s_i to player *i* in private
- \blacksquare P is at equilibrium if each player wants to follow the suggestion when others do.

 $U_i(S_i, P_{(S_i,)}) \geq U_i(S'_i, P_{(S_i,)})$, $\forall s'_i \in S_1$

CE for 2-Player Case

- **Mediator** declares a joint distribution $P =$ **T** Tosses a coin, chooses (i, j) ⁻¹
- Suggests *i* to Alice, *j* to Bob, in private.
- \blacksquare P is a CE if each player wants to follow the suggestion, when the other does.

Given Alice is suggested *i*, she knows Bob is suggested $j \sim P(i,.)$

$$
\langle A(i, .), P(i, .) \rangle \ge \langle A(i', .), P(i, .) \rangle : \forall i' \in S_1
$$

$$
\langle B(., j), P(., j) \rangle \ge \langle B(., j'), P(., j) \rangle : \forall j' \in S_2
$$

Players: {Alice, Bob} Two options: {Football, Shopping}

Payoffs are $(1.5, 1.5)$ Fair! CE!

C strictly dominates NC

When Alice is suggested R Bob must be following $P_{(R_n)} \sim (0.1/6,1/6)$ Following the suggestion gives her $1/6$ While P gives 0, and S gives $1/6/2/6$

Computation: Linear Feasibility Problem p_{ij} p_{ij} $\Delta f p_{ij}$ \sim \sim $\eta_i p_{ij} \quad \forall l, l'$ $\chi_i p_{ij}$ $\chi_i p_{ij}$ σ_j \mathcal{P}_{ij} \forall],] Game (A, B). Find, joint distribution

Computation: Linear Feasibility Problem

Game (A, B) . Find, joint distribution $P =$

$$
\begin{bmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \cdots & p_{mn} \end{bmatrix}
$$

$$
\sum_{j} A_{ij} p_{ij} \ge \sum_{j} A_{i'j} p_{ij} \quad \forall i, i' \in S_1
$$

$$
\sum_{i} B_{ij} p_{ij} \ge \sum_{i} B_{ij'} p_{ij} \quad \forall j, j' \in S_2
$$

$$
\sum_{ij} p_{ij} = 1; \quad p_{ij} \ge 0, \quad \forall (i, j)
$$

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(s_{i..})}) \geq U_i(s'_i, P_{(s_{i..})})$, $\forall s_i, s'_i \in S_i$ $\sum_{s \in S} P(s) = 1$ Linear in P variables! $\sum_{S_i \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$

Computation: Linear Feasibility Problem

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(i,)}) \ge U_i(s'_i, P_{(s_i,)})$, $\forall s_i, s'_i \in S_i$ $\sum_{s \in S} P(s) = 1$ Linear in P variables! $\sum_{S_i \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$

Can optimize any convex function as well!

Coarse-Correlated Equilibrium

- After mediator declares P, each player opts in or out.
- \blacksquare Mediator tosses a coin, and chooses $s \sim P$.
- If player *i* opted in, then the mediator suggests her s_i **Coarse-Correlated Equilibrium**
After mediator declares P, each player opts in or out
Mediator tosses a coin, and chooses $s \sim P$.
If player *i* opted in, then the mediator suggests her *s*
in private, and she has to obey.
- \blacksquare If she opted out, then (knowing nothing about s) plays a fixed strategy $t \in S_i$
- At equilibrium, each player wants to opt in, if others are opting in.

 $U_i(P) \geq U_i(t, P_{-i})$, $\forall t \in S_i$

Where P_{-i} is joint distribution of all players except *i*.

Importance of (Coarse) CE

■ Natural dynamics quickly arrive at approximation of such equilibria. No-regret, Multiplicative Weight Update (MWU)

■ Poly-time computable in the size of the game. □ Can optimize a convex function too.

Show the following

Extensive-form Game

Players move one after another

- □ Chess, Poker, etc.
- \Box Tree representation.

Strategy of a player: What to play at each of its node.

A poker-like game zeo-sum Game. A poker-like game
• Both players put 1 chip in the pot
• Alice gets a card (King is a winning card,

-
- A poker-like game
• Both players put 1 chip in the pot
• Alice gets a card (King is a winning card, Jack a losing card)
• Alice decides to raise (add one to the pot) or check **A poker-like game**
• Both players put 1 chip in the pot
• Alice gets a card (King is a winning card, Jack a losing card)
• Alice decides to raise (add one to the pot) or check
• Bob decides to call
• \leftarrow
-
- A poker-like game
• Both players put 1 chip in the p
• Alice gets a card (King is a wire
• Alice decides to raise (add one
• Bob decides to call
(match) or fold (Alice wins) (match) or fold (Alice wins) A POKET-IIKE game
• Both players put 1 chip in the p
• Alice gets a card (King is a wire
• Alice decides to raise (add one
• Bob decides to call
(match) or fold (Alice wins)
• If Bob called, Alice's
card determines
- card determines pot winner

Poker-like game in normal form

Can be exponentially big!

Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

Corr. Eq. in Extensive form Game

- How to define?
	- □ CE in its normal-form representation.
- \blacksquare Is it computable?
	- \Box Recall: exponential blow up in size.
- \blacksquare Can there be other notions?

See "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity" by von Stengel and Forges, 2008.

Commitment **Commitment**
(Stackelberg strategies)

- von Stackelberg
- -
	- Bob observes the commitment and then chooses a column
-

Commitment: an extensive-form game

For the case of committing to a pure strategy:

Commitment to mixed strategies

Also called a Stackelberg (mixed) strategy

Commitment: an extensive-form game

-
-

Computing the optimal mixed strate

commit to

[Conitzer & Sandholm EC'06]
 $\frac{ax}{x} \left(\frac{a^{max}}{y^{max}}\right)$ Computing the optimal mixed strategy to commit to X^TAY

- **Player 1 (Alice) is a leader.**
- Separate LP for every column $i^* \in S_2$:

maximize $\sum_i x_i A_{i,i^*}$ Alice's utility when Bob plays i^* subject to $\forall j$, $(x^T B)_k \ge (x^T B)_k$ Playing j^{*} is best for Bob x is a probability distribution $x \geq 0$, $\sum_i x_i = 1$

> Among soln. of all the LPs, pick the one that gives max utility.

