Lecture 10 Other Solution Concepts and Game Models lution Concepts and
ame Models
CS580
Ruta Mehta

CS580

Ruta Mehta
Some slides are borrowed from V. Conitzer's presentations.

So far

• Normal-form games \Box Multiple rational players, single shot, simultaneous move

- Nash equilibrium
	- \Box Existence
	- □ Computation in two-player games.

Today:

ISSUES with NE

- \Box Multiplicity
- \square Selection: How players decide/reach any particular NE

Possible Solutions

- Dominance: Dominant Strategy equilibria
- Arbitrator/Mediator: Correlated equilibria, Coarsecorrelated equilibria
- □ Multiplicity

□ Selection: How players decide/reach any particular NE

Possible Solutions

□ Dominance: Dominant Strategy equilibria

□ Arbitrator/Mediator: Correlated equilibria, Coarse-

correlated equilibria

□ Com bargaining

Other Games

Extensive-form Games, Bayesian Games

Formally: Games and Nash Equilibrium

- \blacksquare N: Set of players/agents
- $i \in N$, S_i : Set of strategies/moves of player i

$$
\mathbf{s} = (s_1, ..., s_n) \in S_1 \times S_2 \times \cdots \times S_n,
$$
\n
$$
\mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{j}} \mathbf{a}_{\mathbf{j}}^{\mathbf{k}} \mathbf{s}_{\mathbf{k}}^{\mathbf{i}} \mathbf{s}_{\mathbf{k}}^{\mathbf{j}} \mathbf{s}_{\mathbf{k}}^{\mathbf{k}} \mathbf{s}_{\mathbf{k}}^{\mathbf{j}} \mathbf{s}_{\mathbf{k}}^{\mathbf{k}} \mathbf{s}_{\mathbf{k}}^{\mathbf{j}} \mathbf{s}_{\mathbf{k}}^{\mathbf{k}} \mathbf{s}_{\mathbf{k}}^{\mathbf{j}} \mathbf{s}_{\mathbf{k}}^{\mathbf{k}} \mathbf{s}_{\mathbf{k}}^{\mathbf{j}} \mathbf{s}_{\mathbf{k}}^{\mathbf{k}} \mathbf{s}_{\mathbf
$$

- $\sigma_i \in \Delta(S_i)$ randomized strategy of i \Box Probability distribution over the moves in S_i
- \blacksquare Nash equilibrium: $\sigma = (\sigma_1, ..., \sigma_n)$ s.t. $\forall i \in N, \qquad u_i(\sigma_i, \sigma_{-i}) \geq u_i(\tau_i, \sigma_{-i}),$

 $\forall \tau_i \in \Delta(S_i)$

Dominance

 \blacksquare s weakly dominates t if

Strict dominance: For a player, move s strictly dominates t if no matter what others play, s gives her better payoff than t dominates *t* if no
off than *t*
-i = "the player(s)
other than i"

 \Box for all s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$

other than i"

 \Box for all s_{-i} , $u_i(s, s_{-i}) \geq u_i(t, s_{-i})$; and

$$
\Box \text{ for some } s_{-i}, u_i(s, s_{-i}) > u_i(t, s_{-i})
$$

Dominant Strategy Equilibrium

Playing move s is best for me, no matter what others play.

 $\mathbf{s} = (s_1, ..., s_n)$ is DSE if for each player i, there is a (strategy) move s_i that (weakly) dominates all other moves.

$$
\Box
$$
 for all i, s'_i, s_{-i}, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$;

Example?

Prisoner's Dilemma

-
- Prisoner's Dilemma
• Pair of criminals has been caught
• They have two choices: {confess, don't Prisoner's Dilemma
• Pair of criminals has been caught
• They have two choices: {confess, don't confess}

"Should I buy an SUV?"

Dominance by Mixed strategies

■ Example of dominance by a mixed strategy:

Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed)

Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)

NE: $x^T A y \ge x'^T A y$, $\forall x'$ $x^T B y \ge x^T B y'$, $\forall y'$ Why? What if they can discuss beforehand? strategies. No one plays dominated

Payoffs are (1.5, 1.5) Fair!

Needs a common coin toss!

Correlated Equilibrium – (CE)
(Aumann'74) (Aumann'74)

- **Mediator** declares a joint distribution P over $S=x_i S_i$
- **Tosses a coin, chooses** $s = (s_1, ..., s_n) \sim P$ **.**
- Suggests s_i to player *i* in private
- \blacksquare P is at equilibrium if each player wants to follow the suggestion when others do.

 $U_i(S_i, P_{(S_i,)}) \geq U_i(S'_i, P_{(S_i,)})$, $\forall s'_i \in S_1$

CE for 2-Player Case

Mediator declares a joint distribution $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{mn} & \dots & p_{mn} \end{bmatrix}$

- **Tosses a coin, chooses** $(i, j) \sim P$ **.**
- Suggests *i* to Alice, *j* to Bob, in private.
- \blacksquare P is a CE if each player wants to follow the suggestion, when the other does.

Given Alice is suggested *i*, she knows Bob is suggested $j \sim P(i,.)$

$$
\langle A(i, .), P(i, .) \rangle \ge \langle A(i', .), P(i, .) \rangle : \forall i' \in S_1
$$

$$
\langle B(., j), P(., j) \rangle \ge \langle B(., j'), P(., j) \rangle : \forall j' \in S_2
$$

Players: {Alice, Bob} Two options: {Football, Shopping}

Payoffs are $(1.5, 1.5)$ Fair! CE!

C strictly dominates NC

When Alice is suggested R Bob must be following $P_{(R_n)} \sim (0.1/6,1/6)$ Following the suggestion gives her $1/6$ While P gives 0, and S gives $1/6/2/6$

Computation: Linear Feasibility Problem

Game (A, B). Find, joint distribution $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$

$$
\sum_{S} \sum_{i} A_{ij} p_{ij} \ge \sum_j A_{i'j} p_{ij} \quad \forall i, i' \in S_1
$$
\n
$$
\sum_i B_{ij} p_{ij} \ge \sum_i B_{ij'} p_{ij} \quad \forall j, j' \in S_2
$$
\n
$$
\sum_{ij} p_{ij} = 1; \quad p_{ij} \ge 0, \quad \forall (i, j)
$$

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(s_i, .)}) \geq U_i(s'_i, P_{(s_i, .)}), \forall s_i, s'_i \in S_i$ $-i \in S_{-i} \cup \{v_i, v_{-i}\}$ Linear in P variables!

Computation: Linear Feasibility Problem

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(i,)}) \ge U_i(s'_i, P_{(s_i,)})$, $\forall s_i, s'_i \in S_i$ $\sum_{s \in S} P(s) = 1$ Linear in P variables! $\sum_{S_i \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$

Can optimize any convex function as well!

Coarse-Correlated Equilibrium

- After mediator declares P, each player opts in or out.
- \blacksquare Mediator tosses a coin, and chooses $s \sim P$.
- If player *i* opted in, then the mediator suggests her s_i **Coarse-Correlated Equilibrium**
After mediator declares P, each player opts in or out
Mediator tosses a coin, and chooses $s \sim P$.
If player *i* opted in, then the mediator suggests her *s*
in private, and she has to obey.
- \blacksquare If she opted out, then (knowing nothing about s) plays a fixed strategy $t \in S_i$
- At equilibrium, each player wants to opt in, if others are.

 $U_i(P) \ge U_i(t, P_{-i})$, $\forall t \in S_i$

Where P_{-i} is joint distribution of all players except *i*.

Importance of (Coarse) CE

■ Natural dynamics quickly arrive at approximation of such equilibria. No-regret, Multiplicative Weight Update (MWU)

■ Poly-time computable in the size of the game. □ Can optimize a convex function too.

Show the following

