Basic Polytope Properties

- Given $A_{m \times d}$, $b_{m \times 1}$: $(Ax)_i \leq b_i$, $\forall i$ \Box In d dimension
- At a vertex (0-dim), d equalities $(4x)^{56}$
- On an edge (1-dim) , d-1 equalities
- \blacksquare 1-skeleton \rightarrow vertices + edges \rightarrow graph

 u, v share d-1 equalities.
These also hold on connecting edge

Finding NE in game
$$
(A, B)
$$

\n $d = m + n$
\n $d = m + n$

Given $M_{d \times d} > 0$, find $x \in R^d$, $x \neq 0$ s.t. $\forall i \leq d, x_i \geq 0, \qquad (Mx)_i \leq 1$ $x_i > 0 \Rightarrow (Mx)_i = 1$

 $\equiv x_i = 0$ OR $(Mx)_i = 1$

Find $x \neq 0$ s.t. $\forall i \le d, x_i \ge 0, \qquad (Mx)_i \le 1 \implies d$ -dim polytope P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color *i* is present $x_1 = 0$ or $(Mx)_1 = 1$ $x_4 = 0$ or $(Mx)_4 = 1$ $\ddot{}$ $x_2 = 0$ or $(Mx)_2 = 1$ $x_d = 0$ or $(Mx)_d = 1$ $x_3 = 0$ or $(Mx)_3 = 1$

D Define $L(x) = \{i \mid label/color\ i \text{ is present at } x\}$

 \blacksquare Fully-labeled/panchromatic set of points

 $S = \{x \mid L(x) = \{1, ..., d\}\}\$ (all colors are present)

□ Vertices.

 \Box **0** \in *S* \in $x \in S \setminus \{0\}$ if *f x* is a solution \rightarrow **new goal!**

 $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color *i* present

- **D** Define $L(x) = \{i | \text{label}/\text{color } i \text{ is present at } x\}$
- Fully-labeled set $S = \{x | L(x) = \{1, ..., d\}\}.$ □ Vertices. \Box 0 \in S. $x \in S \setminus \{0\}$ if f x is a solution \rightarrow **new goal!**
- \blacksquare 1-almost fully-labeled set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$ \Box Only color 1 is missing. $S \subset S_1$. Vertices + edge.

Lemke-Howson follows a path in S_1

Structure of S_1 (Paths and Cycles)

Panchromatic set, $S = \{x | L(x) = \{1,2,...,d\}\}.$ *1-almost* panchromatic set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$ $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box For each $i \in \{2, ..., d\}, x_i = 0$ or $(Mx)_i = 1$ □ Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$

Panchromatic set, $S = \{x | L(x) = \{1,2,...,d\}\}.$ 1-almost panchromatic set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$ $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

\n- \n
$$
\text{Vertex } v \in S_1 \setminus S.
$$
 Then $L(v) = \{2, \ldots, d\}$ \n
\n- \n \Box For each $i \in \{2, \ldots, d\}, x_i = 0 \text{ or } (Mx)_i = 1$ \n
\n- \n \Box Unique $k \in \{2, \ldots, d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$ \n
\n- \n \Box *k*: *Duplicate label*\n
\n

Both edges are in S_1 Any other? No!

Claim 1. $deg(v) = 2$ if $v \in S_1 \setminus S$ in S_1

Starting vertex $x_i = 0$ or $(Mx)_i = 1$ Label/color i Panchromatic set, $S = \{x | L(x) = \{1, 2, ..., d\}\}.$ 1-almost panchromatic set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$ ■ Vertex $v \in S$ ($\subset S_1$). Then $L(v) = \{1, ..., d\}$ \square No duplicate label. **Can only leave label 1 to remain in** S_1 651 $d = 3$. Colors: {* * *} S_1 : Points with colors $\{ \cdot \cdot \cdot \}$ $\{ * * \}$ $Claim 2. deg(v) = 1 if v \in S$, within S_1

Lemke-Howson: Follow path starting at θ

Vertex $v \in S \subset S_1$. Then $L(v) = \{1, ..., d\}$ \square No duplicate label

Thumb rule: Relax the one that is tight on the previous edge.

- ${1, ..., d}$
1. Leave label 1
2. If Label 1 found ${1, ..., d}$

1. Leave label 1

2. If Label 1 found

• Then done. 1. Leave label 1
2. If Label 1 found
• Then done.
3. Else leave
duplicate label. 1. Leave label 1

2. If Label 1 found

• Then done.

3. Else leave

duplicate label.

4. Go to 2.
	- Then done.
- - duplicate label.
-

Recall

 $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i $\forall i, x_i \geq 0$, $(Mx)_i \leq 1 \rightarrow \text{d-dim } P$

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box For each $i \in \{2, ..., d\}, x_i = 0$ or $(Mx)_i = 1$ \Box Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$ $\Box k$ is duplicate

Both edges are in S_1 Any other? No!

Claim 1. $deg(v) = 2$ if $v \in S_1 \setminus S$

Recall

c_i = 0 or $(Mx)_i = 1$ > Label/col

Panchromatic set, S = {x |L(x) = {1,2, ..., d]
 l-almost panchromatic set, S₁ = {x |L(x) = {2, ...

/ertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 \Box k: duplicate label
 Claim 1. deg(Label/color *i* Panchromatic set, $S = \{x | L(x) = \{1,2,...,d\} \}.$ *1-almost* panchromatic set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ *Claim 1.* $deg(v) = 2$ if $v \in S_1 \setminus S$ $x_k = 0$ $(Mx)_k=1$ $\frac{M_{x}}{x_{k}}=0$ Vertex $v \in S \subset S_1$. Then $L(v) = \{1, ..., d\}$

 \Box No duplicate label.

Claim 2. $deg(v) = 1$ if $v \in S$

S_1 : Structure

 $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box Unique duplicate label

S_1 : Structure

 $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box Unique duplicate label

S_1 : Set of paths and cycles

- $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i
- Vertex $v \in S$ ($\subset S_1$). Then $L(v) = \{1, ..., d\}$ \Box No duplicate label

S_1 : Set of paths and cycles

S_1 : Set of paths and cycles

What if solution always exists, like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91 : Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Complexity Classes

2-Nash is PPAD-complete! [DGP'06, CDT'06]

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Brute-force Algorithm?

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

Let (x, y) be a NE. Suppose we know supp (x) and supp (y) . Now can we find a NE?

 $x \in \Delta_m$

Can we do better than "brute-force"?

Not so far. And may be never! It is one of the hardest problems in PPAD.

What about special cases/approximation?

Rank(A) or rank(B) is constant

\blacksquare O(1)-approximate NE: quasi-polynomial time algorithm ton

Constant rank games: rank $(A+B)$ is a constant FPTAS

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

$$
(y, \pi_A, x, \pi_B) \in P \times Q
$$

 2 -Nash \rightarrow linear programming **Theorem.** If (A, B) is zero-sum, i.e., $A + B = 0$, then

$$
\max: -(\pi_A + \pi_B)
$$

s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank of a game: rank(A+B) $Zero$ -sum \equiv Rank-0 games

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

 $(y, \pi_A, x, \pi_B) \in P \times Q$

max: runn 2 -Nash \rightarrow linear programming s.t. (y, π) **Theorem.** If (A, B) is zero-sum, i.e., $A + B = 0$, then Rank of a game: rank(A+B) Poly-time approximation for constant rank games [KT'03]. Poly-time exact for rank-1 games [AGMS'11]. Exact for rank > 2 is PPAD-hard [M'13].

Open Problems

Status of PPAD.

 \square Is constant factor approximation of 2-Nash PPAD-hard?

 \blacksquare Not risk neutral? \rightarrow Prospect Theory \Box Expected utility \equiv risk neutral