Basic Polytope Properties

- Given $A_{m \times d}$, $b_{m \times 1}$: $(Ax)_i \leq b_i$, $\forall i$
 - □ In d dimension
- At a vertex (0-dim), d equalities
- On an edge (1-dim), d-1 equalities
- 1-skeleton → vertices + edges → graph

u, v share d-1 equalities.

These also hold on connecting edge

Finding NE in game $(A, B)_{m \times n}$ where d = m + n

Given $M_{d\times d} > 0$, find $x \in \mathbb{R}^d$, $x \neq \mathbf{0}$ s.t.

$$\forall i \leq d, \ x_i \geq 0, \qquad (Mx)_i \leq 1$$

$$x_i > 0 \Rightarrow (Mx)_i = 1$$

$$\equiv x_i = 0 \text{ OR } (Mx)_i = 1$$

Find $x \neq 0$ s.t.

$$\forall i \leq d, \quad x_i \geq 0, \qquad (Mx)_i \leq 1 \implies \text{d-dim polytope } P$$

 $x_i = 0 \text{ or } (Mx)_i = 1 \implies \text{Label/color } i \text{ is present}$

$$x_1 = 0$$
 or $(Mx)_1 = 1$ $x_4 = 0$ or $(Mx)_4 = 1$
 $x_2 = 0$ or $(Mx)_2 = 1$
 $x_3 = 0$ or $(Mx)_3 = 1$
 $x_4 = 0$ or $(Mx)_4 = 1$

- Define $L(x) = \{i \mid \text{label/color } i \text{ is present at } x\}$
- Fully-labeled/panchromatic set of points

$$S = \{x \mid L(x) = \{1, ..., d\}\}$$
 (all colors are present)

- □ Vertices.
- \square **0** \in *S*. $x \in S \setminus \{0\}$ iff x is a solution \rightarrow **new goal!**

$$x_i = 0$$
 or $(Mx)_i = 1$ \longrightarrow Label/color *i* present

- Define $L(x) = \{i \mid label/color i \text{ is present at } x\}$
- *Fully-labeled* set $S = \{x \mid L(x) = \{1, ..., d\}\}.$
 - □ Vertices.
 - \square $0 \in S$. $x \in S \setminus \{0\}$ iff x is a solution \rightarrow new goal!
- *1-almost* fully-labeled set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$
 - □ Only color 1 is missing.
 - $\square S \subseteq S_1$. Vertices + edge.

Lemke-Howson follows a path in S_1

Structure of S_1 (Paths and Cycles)

$$x_i = 0$$
 or $(Mx)_i = 1$ \longrightarrow Label/color i
Panchromatic set , $S = \{x \mid L(x) = \{1, 2, ..., d\}\}.$
 1 -almost panchromatic set , $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$

- Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 - □ For each $i \in \{2, ..., d\}$, $x_i = 0$ or $(Mx)_i = 1$
 - \square Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$

$$d = 3$$
. Colors: $\{* * * *\}$
 S_1 : Points with colors $\{* * *\}$

$$x_i = 0$$
 or $(Mx)_i = 1$ \longrightarrow Label/color i
Panchromatic set , $S = \{x \mid L(x) = \{1, 2, ..., d\}\}.$
 1 -almost panchromatic set , $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$

- Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 - □ For each $i \in \{2, ..., d\}$, $x_i = 0$ or $(Mx)_i = 1$
 - \square Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$
 - *k*: Duplicate label

Both edges are in S_1

Any other? No!

$$x_{k} = 0$$

$$(Mx)_{k} = 1$$

$$x_{k} = 0$$

$$(Mx)_{k}$$

$$x_{k} = 0$$

Claim 1.
$$\deg(v) = 2$$
 if $v \in S_1 \setminus S$ in S_1

Starting vertex

$$x_i = 0$$
 or $(Mx)_i = 1$ — Label/color i

Panchromatic set, $S = \{x \mid L(x) = \{1, 2, ..., d\}\}$. 1-almost panchromatic set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}$.

- Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$
 - □ No duplicate label.
 - Can only leave label 1 to remain in S_1

$$d = 3$$
. Colors: $\{* * * *\}$
 S_1 : Points with colors $\{* * *\}$

$$x_1 = 0$$

Claim 2.
$$\deg(v) = 1$$
 if $v \in S$, within S_1

Lemke-Howson: Follow path starting at 0

- Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$
 - □ No duplicate label

Thumb rule: Relax the one that is tight on the previous edge.

- 1. Leave label 1
- 2. If Label 1 found
 - Then done.
- 3. Else leave duplicate label.
- 4. Go to 2.

Recall 1

$$\forall i, x_i \ge 0, \qquad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$$

 $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

- Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 - □ For each $i \in \{2, ..., d\}$, $x_i = 0$ or $(Mx)_i = 1$
 - \square Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$
 - \square *k* is duplicate

Both edges are in S_1

Any other? No!

$$x_{k} = 0$$

$$(Mx)_{k} = 1$$

$$(Mx)_{k} = 1$$

$$x_{k} = 0$$

Claim 1.
$$\deg(v) = 2$$
 if $v \in S_1 \setminus S$

Recall

$$x_i = 0$$
 or $(Mx)_i = 1$ — Label/color i

Panchromatic set, $S = \{x \mid L(x) = \{1, 2, ..., d\}\}$. 1-almost panchromatic set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}$.

- Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 - \square k: duplicate label

Claim 1.
$$\deg(v) = 2$$
 if $v \in S_1 \setminus S$

- Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$
 - □ No duplicate label.

Claim 2.
$$deg(v) = 1$$
 if $v \in S$

S_1 : Structure

$$\forall i, x_i \ge 0, \qquad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$$

 $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

- Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 - ☐ Unique duplicate label

Both edges are in S_1

S_1 : Structure

$$\forall i, x_i \ge 0, \qquad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$$

 $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

- Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$
 - ☐ Unique duplicate label

Cycle

S_1 : Set of paths and cycles

$$\forall i, x_i \ge 0, \qquad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$$

 $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

■ Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$ □ No duplicate label

End in S

 S_1 : Set of paths and cycles

 S_1 : Set of paths and cycles

Goal: Find any other end-point Defn of PPAD!

Computation? (in CS)

Not easy!

∃ solution?

What if solution always exists, like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91:

Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Complexity Classes

2-Nash is PPAD-complete! [DGP'06, CDT'06]

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Brute-force Algorithm?

$$P \quad \begin{cases} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{cases}$$

$$Q \quad \forall j, \left(\begin{matrix} \mathbf{x}^T B \end{matrix} \right)_j \leq \pi_B$$

$$\mathbf{x} \in \Delta_m$$

Let (x, y) be a NE. Suppose we know supp(x) and supp(y). Now can we find a NE? Can we do better than "brute-force"?

Not so far. And may be never!

It is one of the hardest problems in PPAD.

What about special cases/approximation?

Rank(A) or rank(B) is constant

■ O(1)-approximate NE: quasi-polynomial time algorithm

■ Constant rank games: rank(A+B) is a constant □FPTAS

$$P \mid \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n$$

$$Q \begin{vmatrix} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{vmatrix}$$

$$(y, \pi_A, x, \pi_B) \in P \times Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

$$\max: -(\pi_A + \pi_B)$$

s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank of a game: rank(A+B)Zero-sum \equiv Rank-0 games

$$P \mid \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n$$

$$Q \begin{array}{c} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

$$(y, \pi_A, x, \pi_B) \in P \times Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then $2\text{-Nash} \rightarrow \text{linear programming}$

Rank of a game: rank(A+B)

Poly-time approximation for constant rank games [KT'03].

Poly-time exact for rank-1 games [AGMS'11]. Exact for rank > 2 is PPAD-hard [M'13].

Open Problems

- Status of PPAD.
 - ☐ Is constant factor approximation of 2-Nash PPAD-hard?

- Not risk neutral? → Prospect Theory
 - \square Expected utility \equiv risk neutral