CS 580

Algorithmic Game Theory

Instructor: Ruta Mehta

Game Theory

Multiple self-interested agents interacting in the same environment

Deciding what to do.

Q:What to expect? How good is it? Can it be controlled?

Game of Chicken (Traffic Light)

Algorithmic Game Theory

AGT, in addition, focuses on designing efficient algorithms to compute solutions that are crucial (e.g., to make accurate prediction).

■ What to expect

Research-oriented Course

- \Box Exposure to key concepts and proof techniques from AGT
- \Box Explore research problems and novel questions

■ What is expected from you

- □ Pre-req: Basic knowledge of linear-algebra, linear programming, probability, algorithms.
- \Box Energetic participation in class
- Research/Survey Project (individually or in a group of two).
- Instructor: Ruta Mehta (Me)
- TA: Vasilis Livanos
- Office hours:
	- Ruta: Tue 2-3pm in Siebel 3218
	- Vasilis: Thu 10-11am in TBD

Useful links

■ Webpage:

https://courses.engr.illinois.edu/cs580/fa2022

- Piazza Page: piazza.com/illinois/fall2022/cs580 ■ Webpage:

https://courses.engr.illinois.edu/cs580/fa2022

■ Piazza Page:

piazza.com/illinois/fall2022/cs580

■ Slack: FA22 - Algorithmic Game Theory CS 580

■ Gradescope for grading ■ Webpage:

https://courses.engr.illinois.edu/cs58

■ Piazza Page:

piazza.com/illinois/fall2022/cs580

■ Slack: FA22 - Algorithmic Game Theory

■ Gradescope for grading
-
-

Check webpage/piazza at least twice a week for the updates.

HW0 will be posted today.

Grading:

Srading:
 \Box 3 homeworks – 30% (10,10,10)
 \Box Research/Survey Project – 45% Grading:
 \Box 3 homeworks – 30% (10,10,10)
 \Box Research/Survey Project – 45%

• Work – 20%

• Presentation – 12.5% ding:

homeworks – 30% (10,10,10)

desearch/Survey Project – 45%

Work – 20%

Presentation – 12.5%

Presentation – 12.5% ding:

homeworks – 30% (10,10,10)

desearch/Survey Project – 45%

Nork – 20%

Presentation – 12.5%

Presentation – 12.5%

Presentation – 2.2% ding:

homeworks – 30% (10,10,10)

Report – 20%

Presentation – 12.5%

Report – 12.5%

inal Exam – 22% Grading:
 \Box 3 homeworks – 30% (10,10,10)
 \Box Research/Survey Project – 45%

• Work – 20%

• Presentation – 12.5%

• Report – 12.5%
 \Box Final Exam – 22%
 \Box Class participation – 3% \Box 3 homeworks – 30% (10,10,10)
 \Box Research/Survey Project – 45%

■ Work – 20%

■ Presentation – 12.5%

■ Report – 12.5%
 \Box Final Exam – 22%
 \Box Class participation – 3%

HW0 is for self-study (not to be submitted).

References

- T. Roughgarden, Twenty Lectures on Algorithmic Game Theory, 2016.
- References

 T. Roughgarden, Twenty Lectures on Algorithmic Game

Theory, 2016.

 N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (editors),

Algorithmic Game Theory, 2007. (Book available online for

free.) Algorithmic Game Theory, 2007. (Book available online for free.)
- R. Myerson, Game Theory: Analysis of conflict, 1991.

Recent papers, and other lecture notes that we will post on course website.

3 Broad Goals

. .

Goal #1

Understand outcomes arising from interaction of intelligent and self-interested agents.

Games and Equilibria

Prisoner's Dilemma

Two thieves caught for burglary. Two options: {confess, not confess}

Prisoner's Dilemma

Two thieves caught for burglary. Two options: {confess, not confess}

Only stable state!

Nash Eq.: No player gains by deviating individually

Why?

is the only NE. Why? Nash Eq.: No player gains by deviating individually

- **Finite (normal form) games and Nash equilibrium** existence
- Computation:
	- Zero-sum: minmax theorem,
	- □ General: (may be) Lemke-Howson algorithm
- Complexity: PPAD-complete
- Finite (normal form) games and Nash equilibrium

existence

 Computation:

□ Zero-sum: minmax theorem,

□ General: (may be) Lemke-Howson algorithm

 Complexity: PPAD-complete

 Other equilibrium notions correlated, games
- Incomplete information, Bayesian Nash
- Collusion, Core, Nash bargaining

Food for Thought

You and your friend choose a number …

Food for Thought

You and your friend choose a number …

What will you choose? What if $+/-50$?

What are Nash equilibria?

Tragedy of commons

Limited but open resource shared by many.

Analyze quality of the outcome arising from Goal #2
strategic interaction, i.e. OPT vs NE.

Price of Anarchy

Commute time: 1.5 hours

Commute time: 1.5 hours

60 commuters

Commute time: 2 hours!

Braess' Paradox in real life

- Network routing games
- Congestion (potential) games
- Network routing games
■ Congestion (potential) games
■ PoA in linear congestion games
□ Smoothness framework □ Smoothness framework
- \blacksquare Iterative play (dynamics) and convergence

Goal #3

Designing rules to ensure "good" outcome under strategic interaction among selfish agents.

Mechanism Design

At the core of large industries

At the core of large industries

Online markets – eBay, Uber/Lyft, TaskRabbit,

cloud markets cloud markets

At the core of large industries

Dnline markets – eBay, Uber/Lyft, TaskRabbit,

cloud markets

Spectrum auction – distribution of public good.

enables variety of mobile/cable services. enables variety of mobile/cable services. Online markets – eBay, Uber/Lyft, TaskRabbit,
cloud markets
Spectrum auction – distribution of public good.
enables variety of mobile/cable services.
Search auction – primary revenue for google!

Tons of important applications

Tons of important applications
Fair Division – school/course seats assignment,
idney exchange, air traffic flow management, ... kidney exchange, air traffic flow management, …

ons of important applications
ision – school/course seats assignment,
change, air traffic flow management, ...
Matching residents to hospitals,
Voting, review, coupon systems. Voting, review, coupon systems. So on …

■ MD without money

Fair division

- Divisible items: Competitive equilibrium
- Indivisible items: EF1, EFX, MMS, Max. Nash Welfare, ...

 \Box Stable matching, Arrow's theorem (voting)

ND with money

- \Box First price auction, second price auction, VCG
- Generalized second price auction for search (Google) ■ Divisible items: Competitive equilibrium

■ Indivisible items: EF1, EFX, MMS, Max. Nash Welfare, ...
 \Box Stable matching, Arrow's theorem (voting)
 \Box First price auction, second price auction, VCG
 \Box Generalize
- Optimal auctions: Myerson auction and extensions ■ marxisole nems. EFT, EFA, MMS, Max. Nash wendle, ...
 $□$ Stable matching, Arrow's theorem (voting)
 $□$ First price auction, second price auction, VCG
 $□$ Generalized second price auction for search (Google
 $□$ Opti
-
-

Fun Fact!

Olympics 2012 Scandal Check out Women's doubles badminton tournament

Video of the fist controversial match

Example: How to divide fairly?

How to divide among the two so that both are happy with their share, and the division seems "fair" to both? Sol'n: I-Cut-You-Choose

PS: Finds mention in the Bible, in the Book of Genesis (chapter 13).

Example: How to divide fairly?

Sol'n: I-Cut-you-Choose

Envyfree: No one envies other's share

Proportional: Each gets at least half the value (assuming $v(A \cup B) \le v(A) + v(B)$, for $A, B \subseteq Cake$)

PS: Finds mention in the Bible, in the Book of Genesis (chapter 13).

Divisible goods

Goal: Find fair and efficient allocation

Model

- \blacksquare A: set of *n* agents
- \blacksquare M: set of m divisible goods (manna)

- \blacksquare Each agent *i* has
	- \Box Concave valuation function $V_i: R^m_+ \to R_+$ over bundles of items Concave valuation function $V_i: R_+^m \to R_+$ over bundles of items
 \Box Captures *decreasing marginal returns*.
	-

Goal: Find fair and efficient allocation

(Efficient)

Allocation: Bundle $X_i \in R_+^m$ to agent i

Envy-free: No agent envies other's allocation over her own.

> For each agent *i*, $V_i(X_i) \geq V_i(X_i)$, $\forall j \in [n]$

Proportional: Each agent i gets value at least $\frac{v_i(M)}{M}$

For each agent *i*, $V_i(X_i) \sum_{n=1}^{v_i(M)}$

Pareto-optimal: No other allocation is better for all.

> Welfare Maximizing $(max: \sum_i V_i)$

Example: Half moon cookie

Envy-free: No agent envies other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{M}$

(Efficient)

Allocation

[20, 20, 30] [0, 0, 0] in red

Envy-free: No agent envies other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{M}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

 $[3, 2, 2]$ [1/2, 1/2, 1/2]

Allocation

in red $[20, 20, 30]$ [1/2, 1/2, 1/2]

Envy-free: No agent envies other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{M}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

> Welfare Maximizing $(max: \sum_{i} V_i)$

 $[3, 2, 2]$ [1, 1/2, 0]

Allocation

in red $[20, 20, 30]$ [0, 1/2, 1]

Envy-free: No agent envies other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{M}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

> Welfare Maximizing $(max: \sum_{i} V_i)$

 $[3, 2, 2]$ [0, 0, 0]

Allocation

in red $[20, 20, 30]$ [1, 1, 1]

Envy-free: No agent envies other's allocation over her own.

Agreeable (Fair) Non-wastet

(Efficient

Envy-free: No agent *envies*

Pareto-optimal: Monother's allocation over her own.

Proportional: Eac agent *i*

gets value at least $\frac{v_i(M)}{n}$

Maximizing (gets value at least $\frac{v_i(M)}{M}$

(Efficient)

Pareto-optimal: No other allocation is better for all.

> (Nash) Welfare **Maximizing** $(\Pi_i V_i)$

 $[3, 2, 2]$ [1, 1/2, 0]

Allocation

in red $[20, 20, 30]$ [0, 1/2, 1]

Proportional

(Efficient)

Envy-free Pareto-optimal

(Nash) Welfare Maximizing

Competitive Equilibrium (with equal income)

Competitive (market) Equilibrium (CE) traditional setting…

44

Competitive (market) Equilibrium (CE) traditional setting…

CE Example

traditional setting…

Demand \neq Supply!

 ϵ 20 S20

[0, 1]

CE Example

traditional setting…

CEEI: Properties

An agent can afford anyone's bundle, but demands hers \Rightarrow Envy-free

 ϵ \rightarrow Envy-free + everything allocated \Rightarrow Proportional

> 1^{st} welfare theorem \Rightarrow Pareto-optimal

Demand optimal bundle

Competitive Equilibrium: Demand = Supply

CE History

Adam Smith (1776)

Leon Walras (1880s)

Irving Fisher (1891)

Arrow-Debreu (1954)

(Nobel prize)

(Existence of CE in the exchange model w/ firms)

Computation of CE (w/ goods) **Dimputation of CE (w/ goods)**

orithms

Convex programming formulations
 \Box Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations
 \Box Shmyrev (2009), DGV (2013), CDGJMVY (2017) …

Strongly) Poly-time algorithms (li

Algorithms

- Convex programming formulations
	- \Box Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations
	-
- (Strongly) Poly-time algorithms (linear valuations)
	- \Box DPSV (2002), Orlin (2010), DM (2015), GV (2019) ...
- Simplex-like algorithms: Eaves (1976), GM.SV (2011), GM.V (2014), …

Complexity

- PPAD: Papadimitrou'92, CDDT'09, VY'11, CPY'17, Rubinstein'18, …
- \blacksquare FIXP: EY'09, GM.VY'17, F-RHHH'21 ...

□ Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations

□ Shmyrev (2009), DGV (2013), CDGJMVY (2017) ...

■ (Strongly) Poly-time algorithms (linear valuations)

□ DPSV (2002), Orlin (2010), DM (2015), GV (2019) ...
 Matching/mechanisms: BLNPL'14, …, KKT'15, …, FGL'16, …, AJT'17, …, BGH'19, BNT-C'19, …

*Alaei, Bei, Branzei, Chen, Cole, Daskalakis, Deng, Devanur, Duan, Dai, Etessami, Feldman, Fiat, Filos-Ratsikas, Garg, Gkatzelis, Hansen, Hogh, Hollender, Jain, Jalaly, Hoefer, Kleinberg, Lucier, Mai, Mehlhorn, Mehta, Mansour, Morgenstern, Nisan, Paes, Lee, Leme, Papadimitriou, Paparas, Parkes, Roth, Saberi, Sohoni, Talgam-Cohen, Tardos, Vazirani, Vegh, Yazdanbod, Yannakakis, Zhang,… … …