CS 580

Algorithmic Game Theory

Instructor: Ruta Mehta

Game Theory

Multiple self-interested agents interacting in the same environment

Deciding what to do.

Q: What to expect? How good is it? Can it be controlled?

Game of Chicken (Traffic Light)

Algorithmic Game Theory

AGT, in addition, focuses on designing efficient algorithms to compute solutions that are crucial (e.g., to make accurate prediction).

What to expect

Research-oriented Course

- Exposure to key concepts and proof techniques from AGT
- Explore research problems and novel questions

What is expected from you

- Pre-req: Basic knowledge of linear-algebra, linear programming, probability, algorithms.
- □ Energetic participation in class
- Research/Survey Project (individually or in a group of two).

- Instructor: Ruta Mehta (Me)
- TA: Vasilis Livanos
- Office hours:
 - □Ruta: Tue 2-3pm in Siebel 3218
 - □ Vasilis: Thu 10-11am in TBD

Useful links

Webpage:

https://courses.engr.illinois.edu/cs580/fa2022

- Piazza Page: piazza.com/illinois/fall2022/cs580
- Slack: FA22 Algorithmic Game Theory CS 580
- Gradescope for grading

Check webpage/piazza at least twice a week for the updates.

HW0 will be posted today.

Grading:

□ 3 homeworks – 30% (10,10,10)

□ Research/Survey Project – 45%

- Work 20%
- Presentation 12.5%
- Report 12.5%
- □ Final Exam 22%

 \Box Class participation – 3%

HW0 is for self-study (not to be submitted).

References

- T. Roughgarden, Twenty Lectures on Algorithmic Game Theory, 2016.
- N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (editors), Algorithmic Game Theory, 2007. (Book available online for free.)
- R. Myerson, Game Theory: Analysis of conflict, 1991.

Recent papers, and other lecture notes that we will post on course website.

3 Broad Goals

Goal #1

Understand outcomes arising from interaction of intelligent and self-interested agents.

Games and Equilibria

Prisoner's Dilemma

Two thieves caught for burglary. Two options: {confess, not confess}

Prisoner's Dilemma

Two thieves caught for burglary. Two options: {confess, not confess}

Only stable state!

Why?

Nash Eq.: No player gains by deviating individually

No pure stable state! Nash Eq.: No player gains by deviating individually Why?

- Finite (normal form) games and Nash equilibrium existence
- Computation:
 - □ Zero-sum: minmax theorem,
 - □ General: (may be) Lemke-Howson algorithm
- Complexity: PPAD-complete
- Other equilibrium notions correlated, markets, security games
- Incomplete information, Bayesian Nash
- Collusion, Core, Nash bargaining

Food for Thought

You and your friend choose a number ...

Food for Thought

You and your friend choose a number ...

What will you choose? What if +/- 50?

What are Nash equilibria?

Tragedy of commons

Limited but open resource shared by many.

Stable: Over use => Disaster

Analyze quality of the outcome arising from strategic interaction, i.e. OPT vs NE.

Price of Anarchy

Commute time: 1.5 hours

Commute time: 1.5 hours

60 commuters

Commute time: 2 hours!

Braess' Paradox in real life

- Network routing games
- Congestion (potential) games
- PoA in linear congestion games
 Smoothness framework
- Iterative play (dynamics) and convergence

Designing rules to ensure "good" outcome under strategic interaction among selfish agents.

Mechanism Design

At the core of large industries

Online markets – eBay, Uber/Lyft, TaskRabbit, cloud markets

Spectrum auction – distribution of public good. enables variety of mobile/cable services.

Search auction – primary revenue for google!

Tons of important applications

Fair Division – school/course seats assignment, kidney exchange, air traffic flow management, ...

> Matching residents to hospitals, Voting, review, coupon systems. So on ...

MD without money

□ Fair division

- Divisible items: Competitive equilibrium
- Indivisible items: EF1, EFX, MMS, Max. Nash Welfare, ...

□ Stable matching, Arrow's theorem (voting)

MD with money

- □ First price auction, second price auction, VCG
- □ Generalized second price auction for search (Google)
- □ Optimal auctions: Myerson auction and extensions
- □ Prophet inequalities and simple auctions
- \Box Fair MD (may be)

Fun Fact!

Olympics 2012 Scandal Check out Women's doubles badminton tournament

Video of the fist controversial match

Example: How to divide fairly?

How to divide among the two so that both are happy with their share, and the division seems "fair" to both?

Sol'n: I-Cut-You-Choose

PS: Finds mention in the Bible, in the Book of Genesis (chapter 13).

Example: How to divide fairly?

Sol'n: I-Cut-you-Choose

Envyfree: No one envies other's share

Proportional: Each gets at least half the value (assuming $v(A \cup B) \le v(A) + v(B)$, for $A, B \subseteq Cake$)

PS: Finds mention in the Bible, in the Book of Genesis (chapter 13).

Divisible goods

Goal: Find *fair* and *efficient* allocation

Model

- A: set of n agents
- *M*: set of *m* divisible goods (manna)

- Each agent *i* has
 - \Box Concave valuation function $V_i: \mathbb{R}^m_+ \to \mathbb{R}_+$ over bundles of items
 - Captures *decreasing marginal returns*.

Goal: Find fair and efficient allocation

Non-wasteful (Efficient)

Allocation: Bundle $X_i \in R^m_+$ to agent *i*

Envy-free: No agent *envies* other's allocation over her own.

For each agent *i*, $V_i(X_i) \ge V_i(X_j), \forall j \in [n]$

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{n}$

For each agent *i*, $V_i(X_i) \xrightarrow{v_i(M)}{n}$

Pareto-optimal: No other allocation is better for all.

Welfare Maximizing $(max: \sum_i V_i)$

Example: Half moon cookie

(iii)

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{n}$

Non-wasteful (Efficient)

Allocation

in red [20, 20, 30] [0, 0, 0]

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{n}$ Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

[3, 2, 2] [1/2, 1/2, 1/2]

Allocation

in red [20, 20, 30] [1/2, 1/2, 1/2]

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{n}$ Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

Welfare Maximizing $(max: \sum_i V_i)$

[3, 2, 2] [1, 1/2, 0]

Allocation

in red [2

[20, 20, 30] [0, 1/2, 1]

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Each agent *i* gets value at least $\frac{v_i(M)}{n}$ Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

Welfare Maximizing $(max: \sum_i V_i)$

Allocation

in red [20, 20, 30] [1, 1, 1]

Envy-free: No agent *envies* other's allocation over her own.

Proportional: Eac agent *i* gets value at least $\frac{v_i(M)}{n}$ Non-wasteful (Efficient)

Pareto-optimal: No other allocation is better for all.

(Nash) Welfare Maximizing $(\Pi_i V_i)$

[3, 2, 2] [1, 1/2, 0]

Allocation

in red [

[20, 20, 30] [0, 1/2, 1]

Envy-free

Proportional

Non-wasteful (Efficient)

Pareto-optimal

(Nash) Welfare Maximizing

Competitive Equilibrium (with equal income)

Competitive (market) Equilibrium (CE) *traditional setting...*

Demand optimal bundle

Competitive (market) Equilibrium (CE) *traditional setting...*

CE Example

traditional setting...

Demand ≠ **Supply!**

\$20

[0, 1]

CE Example

traditional setting...

CEEI: Properties

An agent can afford anyone's bundle, but demands hers ⇒ Envy-free

Envy-free + everything allocated ⇒ Proportional

1st welfare theorem ⇒ Pareto-optimal

Demand optimal bundle

Competitive Equilibrium: Demand = Supply

CE History

Adam Smith (1776)

Leon Walras (1880s)

Irving Fisher (1891)

Arrow-Debreu (1954)

(Nobel prize)

(Existence of CE in the exchange model w/ firms)

....

Computation of CE (w/ goods)

Algorithms

- Convex programming formulations
 - □ Eisenberg-Gale (1959): CEEI w/ 1-homogeneous valuations
 - □ Shmyrev (2009), DGV (2013), CDGJMVY (2017) ...
- (Strongly) Poly-time algorithms (linear valuations)
 - DPSV (2002), Orlin (2010), DM (2015), GV (2019) ...
- Simplex-like algorithms: Eaves (1976), GM.SV (2011), GM.V (2014), ...

Complexity

- PPAD: Papadimitrou'92, CDDT'09, VY'11, CPY'17, Rubinstein'18, ...
- FIXP: EY'09, GM.VY'17, F-RHHH'21 ...

Learning: RZ'12, BDM.UV'14, ..., FPR'22, ...

Matching/mechanisms: BLNPL'14, ..., KKT'15, ..., FGL'16, ..., AJT'17, ..., BGH'19, BNT-C'19, ...

*Alaei, Bei, Branzei, Chen, Cole, Daskalakis, Deng, Devanur, Duan, Dai, Etessami, Feldman, Fiat, Filos-Ratsikas, Garg, Gkatzelis, Hansen, Hogh, Hollender, Jain, Jalaly, Hoefer, Kleinberg, Lucier, Mai, Mehlhorn, Mehta, Mansour, Morgenstern, Nisan, Paes, Lee, Leme, Papadimitriou, Paparas, Parkes, Roth, Saberi, Sohoni, Talgam-Cohen, Tardos, Vazirani, Vegh, Yazdanbod, Yannakakis, Zhang,......