EFX Allocations for Additive Valuations

David Wallach and Eric Liu

University of Illinois Urbana-Champaign

CS 580: Algorithmic Game Theory Taught by Ruta Mehta

November 16, 2023

We are given *n* agents and items $\{1, 2, ..., k\}$. We must allocate these items into *n* bundles such that $\bigcup B_i = \{1, 2, ..., k\}$ and for $i \neq j$, $B_i \cap B_j = \emptyset$.

Agent *i* has additive valuation function v_i , meaning for any item *x*, $v_i(x) \ge 0$, and for some bundle of items *B*, we have $v_i(B) = \sum_{x \in B} v_i(x)$.

Definition (Envy)

Agent *i* envies a bundle of items X if $v_i(X) > v_i(B_i)$

Definition (Envy-Free Allocation [Fol66])

An allocation is *i envy-free* if no agent envies the bundle of any other agent.

Recall that an envy-free allocation does not always exist given some agents and valuation functions. In particular, if there are 2 agents and 1 item that the agents both positively value, there is no envy-free allocation.

This leads us to weaker fairness notions

Definition (Envy-Free Up to 1 Item - EF1 [Bud11])

An allocation is *EF1* if $\forall i, j$, there exists $x \in B_j$ such that agent i doesn't envy $B_j \setminus \{x\}$

Definition (Envy-Free Up to Any Item – *EFX* [Car+19])

An allocation is *EFX* if $\forall i, j$, for all $x \in B_j$, agent *i* doesn't envy $B_j \setminus \{x\}$

3 / 20

Here are some results for additive valuations:

- EF1 allocations always exist (agents draft the items) [Lip+04]
- EFX allocations always exist for two agents (you split I choose) [PR20]
- EFX allocations always exist for three agents. [CGM20]
- EFX allocations always exist for *n* agents where all agents have identical valuation functions. [PR20]
- EFX allocations always exist for *n* agents when there are only two unique valuation functions among the agents. [Mah20]
- EFX allocations always exist for *n* agents where *n* − 2 agents have identical valuation functions. [GNV+23]
- EFX allocations always exist for *n* agents where for any item *x*, $v_i(x) = 0$ or $v_i(x) = 1$. [BSY23]

Our Approach

Given some non-EFX allocation $B = (B_1, B_2, ..., B_n)$, we can find agents i, j and item x such that $v_i(B_j \setminus \{x\}) > v_i(B_i)$. Let $B'_i = B_i \cup \{x\}$. Let $B'_j = B_j \setminus \{x\}$.

Let
$$B_j'' = \begin{cases} B_i' & v_j(B_i') > v_j(B_j') \\ B_j' & \text{otherwise} \end{cases}$$

Let $B_i'' = \begin{cases} B_j' & v_j(B_i') > v_j(B_j') \\ B_i' & \text{otherwise} \end{cases}$

Then, we define the function f that takes an input of a non-EFX allocation, and outputs a new allocation such that for any k, we have

$$f(B)_k := egin{cases} B_i'' & k = i \ B_j'' & k = j \ B_k & ext{otherwise} \end{cases}$$

• Agent j does not envy agent i in allocation f(B).

Proof

Note that
$$f(B)_j = B''_j$$
 and $f(B)_i = B''_i$. If $B''_j = B'_i$ then
 $v_j(B''_j) = v_j(B'_i) > v_j(B'_j) = v_j(B''_i)$. On the other hand, if $B''_j = B'_j$ then
 $v_j(B''_j) = v_j(B'_j) \ge v_j(B'_j) = v_j(B''_i)$.

•
$$v_i(f(B)_i) > v_i(B_i)$$
.

Proof

Consider the following two cases:

1
$$B_i'' = B_i'$$
. Then, $v_i(f(B)_i) = v_i(B_i') = v_i(B_i \cup \{x\}) > v_i(B_i)$.

②
$$B_i'' = B_j'$$
. Then, $v_i(f(B)_i) = v_i(B_j') = v_i(B_j \setminus \{x\}) > v_i(B_i)$

э

Agent i envies agent j less in allocation f(B) than in allocation B. In other words, v_i(f(B)_j) - v_i(f(B)_i) < v_i(B_j) - v_i(B_j).

Proof

Note that $B_i \cup B_j = f(B_i) \cup f(B_j)$. Thus, $v_i(B_i) + v_i(B_j) = v_i(B_i \cup B_j) = v_i(f(B_i) \cup f(B_j)) = v_i(f(B_i)) + v_i(f(B_j))$. Then recall that $v_i(f(B_i)) > v_i(B_i)$ so $v_i(f(B_i)) + v_i(B_i) + v_i(B_j) > v_i(B_i) + v_i(f(B_i)) + v_i(f(B_j))$ so $v_i(f(B_j)) < v_i(B_j)$. Thus, $v_i(f(B_j)) - v_i(f(B_j)) < v_i(B_j) - v_i(B_i)$.

8 / 20

Define $f^k(B) = \underbrace{f(f(\dots(f(f(B)))))}_{k \text{ times}}$. For any number of agents, number of items, valuation functions, and initial allocation B, is there some k such that $f^k(B)$ is an EFX allocation?

Short answer: no.

A degenerate valuation function v is a valuation function such that for some sets of items A, B with $A \neq B$, we have v(A) = v(B).

Theorem ([CGM20])

If an EFX allocation always exists for n agents with non-degenerate additive valuation functions, then an EFX allocation always exists for n agents with any additive valuation functions.

[Akr+23] extends this result to more general monotone valuation functions.

Consider the case where there are two agents. We know from [PR20] that "you split I choose" always gives an EFX allocation. However, we have another proof that there is always an EFX allocation for two agents.

Claim

Given two agents with additive valuation functions and any initial allocation B, there is some k such that $f^k(B)$ is an EFX allocation.

Proof

For two agents and for any allocation B with EFX envy, f(B) has strictly less total envy than B. Thus, $f^k(B)$ has less total envy than B, so $f^k(B) \neq B$. Assume that there is no k such that $f^k(B)$ is an EFX allocation. Then, the set $\{f^k(B) : \forall k \ge 0\}$ is a set of infinite distinct allocations, which is a contradiction.

11/20

< ロ > < 同 > < 回 > < 回 > < 回 > <

Consider the case where there are n agents that all have the same valuation function v. Plaut and Roughgarden [PR20] give a somewhat complicated way of constructing an EFX allocation. We have another proof that there is always an EFX allocation for n agents with the same additive valuation function.

Claim

Let g(B) = f(B) except that agent *i* is specifically $\operatorname{argmin}_i(v(B_i))$. Given *n* agents with additive valuation function *v* and any initial allocation *B*, there is some *k* such that $g^k(B)$ is an EFX allocation.

Proof

For *n* agents with valuation function *v* and for allocation *B* with EFX envy, min_i $v(g(B)_i) > \min_i v(B_i)$. Thus, $f^k(B) \neq B$. Assume that there is no *k* such that $g^k(B)$ is an EFX allocation. Then, the set $\{g^k(B) : \forall k \ge 0\}$ is a set of infinite distinct allocations, which is a contradiction.

	item 1	item 2	item 3	item 4
agent a	0.6	0.3	0.1	ϵ
agent b	0.1	0.6	0.3	ϵ
agent c	0.3	0.1	0.6	ϵ

Here, agent *a* values item 1 the most, agent *b* values item 2 the most, and agent *c* values item 3 the most. Additionally, we have a fourth item which all the agents value minimally (ϵ) . Let's allocate item 2 to *a*, item 3 to *b*, and item 1 to *c*. Let's also allocate item 4 to *a*.

14 / 20

Definition

The *Nash welfare* of an allocation is defined as the geometric mean of agents' valuations for their own bundles [Nas50]:

Nash Welfare
$$= \left(\prod_{i=1}^n v_i(B_i)
ight)^{1/n}$$

Conjecture

If M is the maximum Nash welfare allocation, there is some k such that $f^k(M)$ is an EFX allocation.

Definition

A cyclic allocation is an allocation such that for some k > 0 we have $f^k(B) = B$

Definition

An allocation B' dominates allocation B if B' is better for all agents, meaning for all i, $v_i(B'_i) \ge v_i(B_i)$.

Definition

A Pareto optimal allocation is an allocation B such that there is no allocation B' that dominates B.

Conjecture

There are no Pareto optimal allocations that are cyclic.

Wallach, Liu (UIUC)

[Akr+23] Hannaneh Akrami et al. "EFX: a simpler approach and an (almost) optimal guarantee via rainbow cycle number". In: Proceedings of the 24th ACM Conference on Economics and Computation. 2023, pp. 61–61.

- [BSY23] Xiaolin Bu, Jiaxin Song, and Ziqi Yu. "EFX Allocations Exist for Binary Valuations". In: International Workshop on Frontiers in Algorithmics. Springer. 2023, pp. 252–262.
- [Bud11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: Journal of Political Economy 119.6 (2011), pp. 1061–1103.
- [Car+19] Ioannis Caragiannis et al. "The unreasonable fairness of maximum Nash welfare". In: ACM Transactions on Economics and Computation (TEAC) 7.3 (2019), pp. 1–32.

[CGM20] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. "EFX exists for three agents". In: Proceedings of the 21st ACM Conference on Economics and Computation. 2020, pp. 1–19.

- [Fol66] Duncan Karl Foley. *Resource allocation and the public sector*. Yale University, 1966.
- [GNV+23] Pratik Ghosal, Prajakta Nimbhorkar, Nithin Varma, et al. "EFX Exists for Four Agents with Three Types of Valuations". In: *arXiv preprint arXiv:2301.10632* (2023).

[Lip+04] Richard J Lipton et al. "On approximately fair allocations of indivisible goods". In: Proceedings of the 5th ACM Conference on Electronic Commerce. 2004, pp. 125–131. [Mah20] Ryoga Mahara. "Existence of EFX for Two Additive Valuations. CoRR abs/2008.08798 (2020)". In: arXiv preprint arXiv:2008.08798 (2020).

[Nas50] John F. Nash. "The Bargaining Problem". In: Econometrica 18.2 (1950), pp. 155–162. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/1907266 (visited on 11/15/2023).

[PR20] Benjamin Plaut and Tim Roughgarden. "Almost envy-freeness with general valuations". In: SIAM Journal on Discrete Mathematics 34.2 (2020), pp. 1039–1068.

The End

→ < ∃ →</p>

2