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Problem Setting

We are given n agents and items {1, 2, . . . , k}. We must allocate these
items into n bundles such that

⋃
Bi = {1, 2, . . . , k} and for i ̸= j ,

Bi ∩ Bj = ∅.

Agent i has additive valuation function vi , meaning for any item x ,
vi (x) ≥ 0, and for some bundle of items B, we have vi (B) =

∑
x∈B vi (x).

Definition (Envy)

Agent i envies a bundle of items X if vi (X ) > vi (Bi )

Definition (Envy-Free Allocation [Fol66])

An allocation is i envy-free if no agent envies the bundle of any other
agent.
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Weaker Fairness Notions

Recall that an envy-free allocation does not always exist given some agents
and valuation functions. In particular, if there are 2 agents and 1 item that
the agents both positively value, there is no envy-free allocation.

This leads us to weaker fairness notions

Definition (Envy-Free Up to 1 Item – EF1 [Bud11])

An allocation is EF1 if ∀i , j , there exists x ∈ Bj such that agent i doesn’t
envy Bj \ {x}

Definition (Envy-Free Up to Any Item – EFX [Car+19])

An allocation is EFX if ∀i , j , for all x ∈ Bj , agent i doesn’t envy Bj \ {x}
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Background

Here are some results for additive valuations:

EF1 allocations always exist (agents draft the items) [Lip+04]

EFX allocations always exist for two agents (you split I choose) [PR20]

EFX allocations always exist for three agents. [CGM20]

EFX allocations always exist for n agents where all agents have
identical valuation functions. [PR20]

EFX allocations always exist for n agents when there are only two
unique valuation functions among the agents. [Mah20]

EFX allocations always exist for n agents where n − 2 agents have
identical valuation functions. [GNV+23]

EFX allocations always exist for n agents where for any item x ,
vi (x) = 0 or vi (x) = 1. [BSY23]
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Our Approach

Given some non-EFX allocation B = (B1,B2, . . . ,Bn), we can find agents
i , j and item x such that vi (Bj \ {x}) > vi (Bi ). Let B

′
i = Bi ∪ {x}. Let

B ′
j = Bj \ {x}.

Let B ′′
j =

{
B ′
i vj(B

′
i ) > vj(B

′
j )

B ′
j otherwise

Let B ′′
i =

{
B ′
j vj(B

′
i ) > vj(B

′
j )

B ′
i otherwise

Then, we define the function f that takes an input of a non-EFX
allocation, and outputs a new allocation such that for any k , we have

f (B)k :=


B ′′
i k = i

B ′′
j k = j

Bk otherwise
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Properties Of f

Agent j does not envy agent i in allocation f (B).

Proof

Note that f (B)j = B ′′
j and f (B)i = B ′′

i . If B
′′
j = B ′

i then
vj(B

′′
j ) = vj(B

′
i ) > vj(B

′
j ) = vj(B

′′
i ). On the other hand, if B ′′

j = B ′
j then

vj(B
′′
j ) = vj(B

′
j ) ≥ vj(B

′
j ) = vj(B

′′
i ).
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Properties Of f (Continued)

vi (f (B)i ) > vi (Bi ).

Proof

Consider the following two cases:

1 B ′′
i = B ′

i . Then, vi (f (B)i ) = vi (B
′
i ) = vi (Bi ∪ {x}) > vi (Bi ).

2 B ′′
i = B ′

j . Then, vi (f (B)i ) = vi (B
′
j ) = vi (Bj \ {x}) > vi (Bi )
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Properties Of f (Continued) (Continued)

Agent i envies agent j less in allocation f (B) than in allocation B. In
other words, vi (f (B)j)− vi (f (B)i ) < vi (Bj)− vi (Bi ).

Proof

Note that Bi ∪ Bj = f (Bi ) ∪ f (Bj). Thus,
vi (Bi ) + vi (Bj) = vi (Bi ∪ Bj) = vi (f (Bi ) ∪ f (Bj)) = vi (f (Bi )) + vi (f (Bj)).
Then recall that vi (f (Bi )) > vi (Bi ) so
vi (f (Bi )) + vi (Bi ) + vi (Bj) > vi (Bi ) + vi (f (Bi )) + vi (f (Bj)) so
vi (f (Bj)) < vi (Bj). Thus, vi (f (B)j)− vi (f (B)i ) < vi (Bj)− vi (Bi ).
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Main Question

Define f k(B) = f (f (. . . (f (f (︸ ︷︷ ︸
k times

B))))). For any number of agents, number

of items, valuation functions, and initial allocation B, is there some k such
that f k(B) is an EFX allocation?

Short answer: no.
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Degenerate Cases

A degenerate valuation function v is a valuation function such that for
some sets of items A, B with A ̸= B, we have v(A) = v(B).

Theorem ([CGM20])

If an EFX allocation always exists for n agents with non-degenerate
additive valuation functions, then an EFX allocation always exists for n
agents with any additive valuation functions.

[Akr+23] extends this result to more general monotone valuation
functions.
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Two Agent Case

Consider the case where there are two agents. We know from [PR20] that
“you split I choose” always gives an EFX allocation. However, we have
another proof that there is always an EFX allocation for two agents.

Claim

Given two agents with additive valuation functions and any initial
allocation B, there is some k such that f k(B) is an EFX allocation.

Proof

For two agents and for any allocation B with EFX envy, f (B) has strictly
less total envy than B. Thus, f k(B) has less total envy than B, so
f k(B) ̸= B. Assume that there is no k such that f k(B) is an EFX
allocation. Then, the set {f k(B) : ∀k ≥ 0} is a set of infinite distinct
allocations, which is a contradiction.
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n Agents With Identical Valuation Functions

Consider the case where there are n agents that all have the same
valuation function v . Plaut and Roughgarden [PR20] give a somewhat
complicated way of constructing an EFX allocation. We have another
proof that there is always an EFX allocation for n agents with the same
additive valuation function.

Claim

Let g(B) = f (B) except that agent i is specifically argmini (v(Bi )). Given
n agents with additive valuation function v and any initial allocation B,
there is some k such that gk(B) is an EFX allocation.
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Continued

Proof

For n agents with valuation function v and for allocation B with EFX envy,
mini v(g(B)i ) > mini v(Bi ). Thus, f

k(B) ̸= B. Assume that there is no k
such that gk(B) is an EFX allocation. Then, the set {gk(B) : ∀k ≥ 0} is
a set of infinite distinct allocations, which is a contradiction.
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Counterexample for Non-Identical Valuations

item 1 item 2 item 3 item 4

agent a 0.6 0.3 0.1 ϵ

agent b 0.1 0.6 0.3 ϵ

agent c 0.3 0.1 0.6 ϵ

Here, agent a values item 1 the most, agent b values item 2 the most, and
agent c values item 3 the most. Additionally, we have a fourth item which
all the agents value minimally (ϵ). Let’s allocate item 2 to a, item 3 to b,
and item 1 to c . Let’s also allocate item 4 to a.

a b

c

a b

c

a b

c

a b

c
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Conjecture 1

Definition

The Nash welfare of an allocation is defined as the geometric mean of
agents’ valuations for their own bundles [Nas50]:

Nash Welfare =

(
n∏

i=1

vi (Bi )

)1/n

Conjecture

If M is the maximum Nash welfare allocation, there is some k such that
f k(M) is an EFX allocation.
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Conjecture 2

Definition

A cyclic allocation is an allocation such that for some k > 0 we have
f k(B) = B

Definition

An allocation B ′ dominates allocation B if B ′ is better for all agents,
meaning for all i , vi (B

′
i ) ≥ vi (Bi ).

Definition

A Pareto optimal allocation is an allocation B such that there is no
allocation B ′ that dominates B.

Conjecture

There are no Pareto optimal allocations that are cyclic.
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The End
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