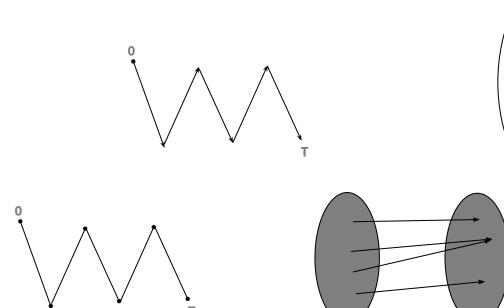
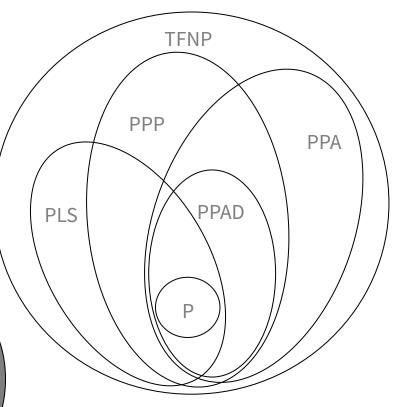

Total Function Complexity

WonJun Park

Function Problems Review

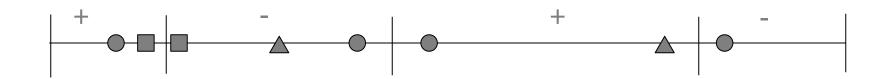
- NP asks decision problems with Yes/No answer
 - Usually tied to existence or solution checking
- FNP problems find the solution
- TFNP problems are guaranteed to have a solution
- TFNP problems are likely not NP-hard

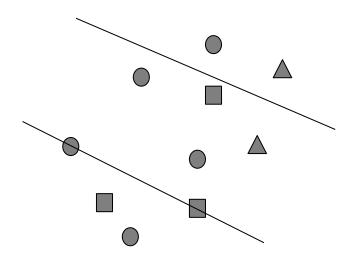



Paper Overview

Inefficient proofs of existence

Why are these new complexity classes useful?


o Class-Complete problems


Hardness Results for Consensus Halving

- A dictator must split resources into two groups so that every agent believes those two groups to be equal
- Solution will always exist with n cuts if we are satisfying n agents
- Valuations are on a interval [0,1]

Do approximations make it easier?

- ε-approximate consensus halving problem
 - o 2 Block Uniform
 - PPA-Complete
 - Inverse Exponential ε
 - PPA-Complete
 - \circ Constant $\varepsilon < 0.2$
 - PPA-Complete
- ε-approximate necklace splitting problem
 - \circ PPA-Hard, but complete for $\varepsilon < 0.2$
- ε-approximate pizza cutting problem
 - \circ PPA-Hard, but complete for $\varepsilon < 0.2$

Hardness results of Various equilibria

- High-payoff 2-player NE is NP-Complete
- 2-player NE is PPAD-Complete
- NE for Congestion games is PPAD \(\text{PLS-Complete} \)
 - Leads to a corollary that finding a fixed point of a gradient descent problem for a smooth gradient is also
 PPAD∩PLS-Complete

Discussion

Have these new complexity classes helped?

- Complexity classes presented here were only the most useful
 - CLS
 - CCLS
 - o FOPI
 - UEOPL
- Some classes still do not have "natural" complete problems
 - If the complexity class's existence is defined by a graph with a circuit, and all complete problems also need to use a circuit, isn't the class almost trivial?

Have these new complexity classes helped?

- Classes are still being populated by new research into problems
- Many problems are related to game theory or social welfare
- PPA had a non-circuit based problem (Consensus Halving) defined in 2018
- Provides insight into how closely related many social welfare problems are

Algorithmic Progress

- Algorithms to solve NE have existed since before TFNP
- Algorithms to solve many social welfare problems have not been efficiently created yet, and the aforementioned algorithms could link into that process
- The collapsing of CLS, CCLS, etc. also links many problems with gradient descent algorithms