Incentivizing Truthful Feedback on Crowdsourcing Platforms

Sponsored 💖

Sponsored (1)

NUU A9L | Unlocked 4G LTE Smartphone | 6.3" Display | 32GB + 3GB RAM | 3000 mAh Battery | Android 11 Edition | Compatible with T-Mobile AT&T| 2022 | Q3 Indigo Blue...

★★★☆☆~49

\$9490 \$129.90

Display Size 6.3 inches

Memory 32 GB

Color Blue

Brand NUU

Save \$5.00 with coupon

√prime

FREE delivery Sun, Nov 20

Small Business ~

+1 colors/patterns

Samsung Galaxy S20+ 5G 128GB Fully Unlocked Smartphone (Renewed)

★★★★☆ ~ 1,761

\$24499 \$699.95

Display Size 6.7 inches

Memory 128.0 GB Color Cosmic Gray Brand SAMSUNG

FREE delivery Nov 17 - 21

V Climate Pledge Friendly v

More Buying Choices

\$211.00 (69 used & new offers)

Moto G Stylus 5G | 2021 | 2-Day battery | Unlocked | Made for US by Motorola | 6/256GB | 48MP Camera | Cosmic Emerald

*** 1,453

\$199⁹⁹ \$399.99

Display Size 6.8 inches

Memory 256 GB

Color

Brand Cosmic Emerald Motorola

√prime

FREE delivery Sun, Nov 20

More Buying Choices

\$191.99 (15 used & new offers)

Moto G stylus | 2021 | 2-Day battery | Unlocked | Made for US by Motorola | 4/128GB | 48MP Camera | Black

Introduction

- Rating systems: Users provide feedback about their experiences with a product.
 - Goal is to rate the quality of a product.

Introduction

- Rating systems: Users provide feedback about their experiences with a product.
 - Goal is to rate the quality of a product.
- Challenge is that users who report their reviews may not be truthful.

Introduction

- Rating systems: Users provide feedback about their experiences with a product.
 - Goal is to rate the quality of a product.
- Challenge is that users who report their reviews may not be truthful.
- This paper proposes a rewarding mechanism to the users so that they are incentivized to provide truthful feedback.

- Consider two types of plumbers X={Good, Bad}.
 - Distribution over types of plumbers is $P_X(x)$.

- Consider two types of plumbers X={Good, Bad}.
 - Distribution over types of plumbers is $P_x(x)$.
- A user observes a plumber arriving within 1) 5 minutes or 2) 5 to 10 minutes.
 - Observation set Y = {5minutes, 5-10 minutes}

- Consider two types of plumbers X={Good, Bad}.
 - Distribution over types of plumbers is $P_x(x)$.
- A user observes a plumber arriving within 1) 5 minutes or 2) 5 to 10 minutes.
 - Observation set Y = {5minutes, 5-10 minutes}
- For each type x of plumber, the distribution of observations is $p_v(x)$.

- Consider two types of plumbers X={Good, Bad}.
 - Distribution over types of plumbers is $P_x(x)$.
- A user observes a plumber arriving within 1) 5 minutes or 2) 5 to 10 minutes.
 - Observation set Y = {5minutes, 5-10 minutes}
- For each type x of plumber, the distribution of observations is $p_v(x)$.
- Each agent observes the arrival time of one or more plumbers, and they report the plumbers accordingly.

- Consider two types of plumbers X={Good, Bad}.
 - Distribution over types of plumbers is $P_X(x)$.
- A user observes a plumber arriving within 1) 5 minutes or 2) 5 to 10 minutes.
 - Observation set Y = {5minutes, 5-10 minutes}
- For each type x of plumber, the distribution of observations is $p_v(x)$.
- Each agent the arrival time of one or more plumbers, and they review the plumbers accordingly.
- We want to estimate $p_y(x)$ for every plumber type from the users' feedback.
 - Therefore, we want to incentivize workers to be truthful.

• X denotes the possible types of entities (in our case types of plumbers) and $P_X(x)$ denotes the distribution over these entities.

- X denotes the possible types of entities (in our case types of plumbers) and $P_X(x)$ denotes the distribution over these entities.
- Y denotes the set of observations for any task. $p_y(x)$ is the probability of an observation y given that the entity is x.

- X denotes the possible types of entities (in our case types of plumbers) and $P_X(x)$ denotes the distribution over these entities.
- Y denotes the set of observations for any task. $p_y(x)$ is the probability of an observation y given that the entity is x.
- T tasks and W workers.

- X denotes the possible types of entities (in our case types of plumbers) and $P_X(x)$ denotes the distribution over these entities.
- Y denotes the set of observations for any task. $p_y(x)$ is the probability of an observation y given that the entity is x.
- T tasks and W workers.
- Worker W responds to tasks T_w, task t is evaluated by Workers W_t.
 - Assume $W_t > 1$.

- X denotes the possible types of entities (in our case types of plumbers) and $P_X(x)$ denotes the distribution over these entities.
- Y denotes the set of observations for any task. $p_y(x)$ is the probability of an observation y given that the entity is x.
- T tasks and W workers.
- Worker W responds to tasks T_w, task t is evaluated by Workers W_t.
 - Assume $W_t > 1$.
- Y_{wt} denotes the response provided by the wth worker for the tth task

- X denotes the possible types of entities (in our case types of plumbers) and $P_X(x)$ denotes the distribution over these entities.
- Y denotes the set of observations for any task. $p_y(x)$ is the probability of an observation y given that the entity is x.
- T tasks and W workers.
- Worker W responds to tasks T_w, task t is evaluated by Workers W_t.
 - Assume $W_t > 1$.
- Y_{wt} denotes the response provided by the wth worker for the tth task
- v_w (y) is rewarded to worker w for a response y.

Problem Statement

• The goal is to design a rewarding mechanism $v: Y \to [0, 1]$ that incentivizes truthful reviews from workers.

Problem Statement

- The goal is to design a rewarding mechanism $v: Y \to [0, 1]$ that incentivizes truthful reviews from workers.
- One way to ensure that agents are truthful is to induce a Bayes-Nash equilibrium.

Problem Statement

- The goal is to design a rewarding mechanism $v: Y \to [0, 1]$ that incentivizes truthful reviews from workers.
- One way to ensure that agents are truthful is to induce a Bayes-Nash equilibrium.
- A rewarding mechanism induces a Bayes-Nash equilibrium if the strategy profile (response of workers) { Y_{wt} : w ∈ W, t ∈ T_w } satisfies the inequality:

```
E[v_w (\{Y_{wt} : w \in W, t \in T_w\})] \ge E[v_w (\{Y'_{wt} : w \in W, t \in T_w\} \cup \{Y_{w't} : w' \in W, w' \ne w, t \in T_{w'}\})]
```

for each alternative strategy $\{Y'_{wt} : t \in T_w\} \neq \{Y_{wt} : t \in T_w\}$ and all workers w.

Intuitive Explanation

- The Bayes-Nash Equilibrium says that if all the other workers adhere to the strategy profile $\{Y_{wt} : w \in W, t \in T_w \}$ then it is beneficial to worker w to also adhere to $\{Y_{wt} : w \in W, t \in T_w \}$.
- In our case, we would want the truthful strategy to be a Bayes-Nash Equilibrium.
- Further, if the inequality is strict, then it is called a strict Bayes-Nash Equilibrium.

Informational Requirements and Assumptions

- Assumptions and Public Knowledge
 - Generating model (P_X, p) is separated: For every $y \neq y'$, $E_{X \sim P_X} \Big[p_y(X) p_{y'}(X) \Big] < E_{X \sim P_X} \Big[p_y^2(X) \Big] E_{X \sim P_X} \Big[p_y^2(X) \Big]$.

Informational Requirements and Assumptions

- Assumptions and Public Knowledge
 - Generating model (P_X, p) is separated: For every $y \neq y'$, $E_{X \sim P_X} \Big[p_y(X) p_{y'}(X) \Big] < E_{X \sim P_X} \Big[p_y^2(X) \Big] E_{X \sim P_X} \Big[p_y^2(X) \Big]$.
 - α -separation quantifies the gap:

$$\alpha + E_{X \sim P_X} [p_y(X)p_{y'}(X)] < E_{X \sim P_X} [p_y^2(X)]E_{X \sim P_X} [p_{y'}^2(X)].$$

Informational Requirements and Assumptions

- Assumptions and Public Knowledge
 - Generating model (P_X, p) is separated: For every $y \neq y'$, $E_{X \sim P_X} \Big[p_{\mathcal{Y}}(X) p_{\mathcal{Y}'}(X) \Big] < E_{X \sim P_X} \Big[p_{\mathcal{Y}}^2(X) \Big] E_{X \sim P_X} \Big[p_{\mathcal{Y}'}^2(X) \Big].$
 - α -separation quantifies the gap:

$$\alpha + E_{X \sim P_X} [p_y(X)p_{y'}(X)] < E_{X \sim P_X} [p_y^2(X)]E_{X \sim P_X} [p_{y'}^2(X)].$$

- Workers and host do not know the generating model (P_X, p)
 - Know that the model is separated.
- Workers and host assume that everyone is statistically identical.

Square Root Agreement Rule

- W_t = set of workers that respond to task t.
- T_w = set of tasks that worker w submitted a response to.
 - $T = AII \text{ tasks}; |T_w| \leq T \forall w.$
- Y_{wt} = Response of worker w to task t.

 W_t = set of workers that evaluated task t.

 T_w = set of tasks that worker w submitted a response to.

 $T = AII \text{ tasks; } |T_w| \leq T \ \forall w.$

Square Root Agreement Rule Y_{wt} = Response of worker w to task t.

- Repeat the following for every worker $w \in [n]$:
 - Let T_w be the set of tasks answered by worker w.
 - For every task $t \notin T_w$ **not** answered by this worker, select two different workers i, j who replied to task t.
 - Compute their #agreements on every possible observation y:

$$A(y) = \sum_{t \notin T_{w}} 1\{Y_{it} = Y_{jt} = y\}$$

• Scale appropriately to define a popularity index $I_w(y)$ for every observation y:

$$I_{w}(y) = \frac{1}{T - |T_{w}|} \left(1 + \sum_{t \notin T_{w}} 1\{Y_{it} = Y_{jt} = y\} \right).$$

Square Root Agreement Rule

 W_t = set of workers that evaluated task t.

 T_w = set of tasks that worker w submitted a response to.

 $T = AII \text{ tasks}; |T_w| \leq T \ \forall w.$

 Y_{wt} = Response of worker w to task t.

- Repeat the following for every worker $w \in [n]$:
 - Let T_w be the set of tasks answered by worker w.

Square Root Agreement Rule

 W_t = set of workers that evaluated task t.

 T_w = set of tasks that worker w submitted a response to.

 $T = \text{All tasks}; |T_w| \leq T \ \forall w.$

 Y_{wt} = Response of worker w to task t.

- Repeat the following for every worker $w \in [n]$:
 - Let T_w be the set of tasks evaluated by worker w.
 - For every task $t \notin T_w$ **not** evaluated by this worker, select two different workers i, j who replied to task t.

 W_t = set of workers that evaluated task t.

 T_w = set of tasks that worker w submitted a response to.

 $T = AII \text{ tasks; } |T_w| \le T \ \forall w.$

 Y_{wt} = Response of worker w to task t.

Square Root Agreement Rule

- Repeat the following for every worker $w \in [n]$:
 - Let T_w be the set of tasks evaluated by worker w.
 - For every task $t \notin T_w$ **not** evaluated by this worker, select two different workers i, j who replied to task t.
 - Compute their #agreements on every possible observation *y*:

$$A(y) = \sum_{t \notin T_W} 1\{Y_{it} = Y_{jt} = y\}$$

 W_t = set of workers that evaluate task t.

 T_w = set of tasks that worker w submitted a response to.

 $T = AII \text{ tasks; } |T_w| \le T \ \forall w.$

 Y_{wt} = Response of worker w to task t.

Square Root Agreement Rule

- Repeat the following for every worker $w \in [n]$:
 - Let T_w be the set of tasks evaluated by worker w.
 - For every task $t \notin T_w$ **not** evaluated by this worker, select two different workers i, j who replied to task t.
 - Compute their #agreements on every possible observation *y*:

$$A(y) = \sum_{t \notin T_W} 1\{Y_{it} = Y_{jt} = y\}$$

• Scale appropriately to define a popularity index $I_w(y)$ for every observation y:

$$I_w(y) = \frac{1}{T - |T_w|} (1 + A(y)).$$

 W_t = set of workers that evaluated task t.

 T_w = set of tasks that worker w submitted a response to.

 $T = \text{All tasks; } |T_w| \leq T \ \forall w.$ $Y_{wt} = \text{Response of worker } w \text{ to task } t.$

Square Root Agreement Rule

$$I_w(y) = \frac{1}{T - |T_w|} \left(1 + \sum_{t \notin T_w} 1\{Y_{it} = Y_{jt} = y\} \right).$$

• For a task t that worker w answered (say y), reward the worker only if she agrees with an arbitrarily selected co-worker w':

$$v_w(Y_w = s) = \frac{1\{Y_{w'} = s\}}{\sqrt{I_w(y)}}, s \in \mathcal{Y}$$

inversely proportional to the popularity of the agreement.

• Agent w is to choose between reporting y and $y' \neq y$.

- Agent w is to choose between reporting y and $y' \neq y$.
- Expected reward for the choice of report (strategy) $s \in \mathcal{Y}$:

$$E[1\{Y_{w'} = s \mid Y_w = y\}] = \begin{cases} P(Y_{w'} = y \mid Y_w = y) : s = y \text{ (truthful)} \\ P(Y_{w'} = y' \mid Y_w = y) : s = y' \neq y \end{cases}.$$

- Agent w is to choose between reporting y and $y' \neq y$.
- Expected reward for the choice of report (strategy) $s \in \mathcal{Y}$:

$$E[1\{Y_{w'} = s \mid Y_w = y\}] = \begin{cases} P(Y_{w'} = y \mid Y_w = y) : s = y \text{ (truthful)} \\ P(Y_{w'} = y' \mid Y_w = y) : s = y' \neq y \end{cases}.$$

 Agents are statistically identical; If I observe y, it is likely that others observe y.

- Agent w is to choose between reporting y and $y' \neq y$.
- Expected reward for the choice of report (strategy) $s \in \mathcal{Y}$:

$$E[1\{Y_{w'} = s \mid Y_w = y\}] = \begin{cases} P(Y_{w'} = y \mid Y_w = y) : s = y \text{ (truthful)} \\ P(Y_{w'} = y' \mid Y_w = y) : s = y' \neq y \end{cases}.$$

- Agents are statistically identical; If I observe y, it is likely that others observe y.
 - This incentivizes truthful behavior, based on an agent's observation.

- Agent w is to choose between reporting y and $y' \neq y$.
- Expected reward for the choice of report (strategy) $s \in \mathcal{Y}$:

$$E[1\{Y_{w'} = s \mid Y_w = y\}] = \begin{cases} P(Y_{w'} = y \mid Y_w = y) : s = y \text{ (truthful)} \\ P(Y_{w'} = y' \mid Y_w = y) : s = y' \neq y \end{cases}.$$

- Agents are statistically identical; If I observe y, it is likely that others observe y.
 - This incentivizes truthful behavior, based on an agent's observation.
- Issue: Workers may find it more likely for others to submit a highly popular observation.

Intuition 2: Importance of Popularity Index

• Popularity index, asymptotic:

$$I_{w}(y) = \frac{1}{T - |T_{w}|} \left(1 + \sum_{t \notin T_{w}} 1\{Y_{i} = Y_{j} = y\} \right)$$

$$\to^{T_{w}, T \to \infty} P(Y_{i} = Y_{j} = y).$$

Intuition 2: Importance of Popularity Index

• Popularity index, asymptotic:

$$I_{w}(y) = \frac{1}{T - |T_{w}|} \left(1 + \sum_{t \notin T_{w}} 1\{Y_{i} = Y_{j} = y\} \right)$$

$$\to^{T_{w}, T \to \infty} P(Y_{i} = Y_{j} = y).$$

Repels workers from submitting an answer based on its popularity.

Result: SRA induces a Bayes-Nash Eq.

• Suppose all other agents
$$\neq w$$
 are truthful.
$$E[v_w(s)] = \begin{cases} \frac{P(Y_{w'} = y | Y_w = y)}{I_w(y)} : s = y \text{ (truthful)} \\ \frac{P(Y_{w'} = y' | Y_w = y)}{I_w(y')} : s = y' \neq y \end{cases}$$

Result: SRA induces a Bayes-Nash Eq.

• Suppose all other agents $\neq w$ are truthful.

$$E[v_{w}(s)] = \begin{cases} \frac{P(Y_{w'} = y | Y_{w} = y)}{I_{w}(y)} : s = y \text{ (truthful)} \\ \frac{P(Y_{w'} = y' | Y_{w} = y)}{I_{w}(y')} : s = y' \neq y \end{cases}$$

• Truthful reward ≥ False reward if

$$P(Y_{w} = Y_{w'} = y)P(Y_{w} = Y_{w'} = y') \ge P(Y_{w'} = y', Y_{w} = y)$$

$$\Leftrightarrow \sum_{x} P_{X}(x)p_{y}^{2}(x) \sum_{x} P_{X}(x)p_{y'}^{2}(x) \ge \left(\sum_{x} P_{X}(x)p_{y}(x)p_{y'}(x)\right)^{2}$$

for every $y' \neq y$.

Result Cont'd: Strict Bayes Nash

$$P(Y_w = Y_{w'} = y)P(Y_w = Y_{w'} = y') > P(Y_{w'} = y', Y_w = y)$$

- SRA is strictly Bayes-Nash incentive compatible in expectation if model is separable for some $\alpha > 0$.
 - Difference in reward for submitting true vs. false response is lower bounded by a value

$$\omega = \omega(T, \alpha, |\mathcal{Y}|, n)$$

when *T* is sufficiently large.

Extensions Overview

• Ex-ante collaboration: Workers may agree to submit a strategy $\sigma_w(s|y) \in \Delta(\mathcal{Y})$

before the game starts.

- Symmetric strategy: $\sigma_w = \sigma \ \forall w$.
 - Everyone submits s = 1 regardless of observation y.
- [Theorem] Truthful responses strictly maximize rewards over all symmetric strategies when #tasks $\rightarrow \infty$.

Collusion and Equilibrium

- Workers are not allowed to communicate throughout the game.
- It may be possible that workers communicate/collaborate beforehand to reduce effort while maintaining high reward.
- One such implication is a symmetric strategy profile, where all workers agree on a fixed modification $y \mapsto q(y)$.
 - For example, we want to get rid of cases when submitting trivial answers can achieve a high payoff. Otherwise, workers can receive high reward with low effort.

Collusion and Equilibrium

ullet Uninformativeness of a symmetric strategy profile q is define as

$$\Omega(q) = \frac{1}{|\mathcal{Y}|(|\mathcal{Y}| - 1)} \sum_{y,y'} \sum_{y'':y'' \neq y'} \sqrt{q_y(y')q_y(y'')}$$

and say that a strategy q is ω -uninformative if $\Omega(q) \geq \omega$.

- $\Omega(q) = 0 \Leftrightarrow q$ is fully-informative: q(y) has disjoint supports.
- $\Omega(q)$ is maximized if the report q is chosen independently of the true answer.
- Given enough tasks, a fully-informative strategy profile maximizes reward. In other words, SRA is strongly truthful across symmetric equilibria, asymptotically.

Strong Truthfulness Over All Equilibria

- Crowdsourcing host can choose how to assign tasks.
- Suppose $\frac{wN}{n} < M$ (fix to our notation).
- Asymmetric strategies that may arise (Sec. 5.3).
- State theorem 4.

Limitations and Our Extension

- Because workers are assumed to be statistically identical, a majority vote is the most accurate estimate of the underlying truth.
- When workers are heterogeneous, e.g. follow the Dawid-Skene model $p_w = P(Y_{wt} = y^*) \ \forall t$,

then SRA fails to incentivize truthful behavior.

- Most algorithms that efficiently aggregate worker responses are designed for the Dawid-Skene model, and it is of interest how to incentivize truthful behavior under such settings.
- Mechanisms designed for heterogeneous workers require extraneous reports, i.e. is not minimal.
- We are currently designing a mechanism that incentivizes truthful response when workers are heterogeneous.

Summary

- SRA incentivizes truthful responses without requiring extraneous reports.
- Under SRA, an honest response maximizes workers' rewards over symmetric equilibria.