Fair and Pareto-Optimal Allocation of Indivisible Chores CS 580 Final Project

Zhuangjin (Jane) Du

University of Illinois Urbana-Champaign

December 1, 2022

Introduction

- 2 Some Existing Subproblems
 - EF1 with mixed chores + goods
 - EF1 + PO using fPO
- 3 Other fair allocations of chores
 - MMS, EFX

Recap from Class

• EF1:

$$v_i(A_i) \ge v_i(A_j) - \max_{g \in A_j} v_i(g) \quad \forall i, j \in N$$

PROP1

$$v_i(A_i) \ge v_i(M)/n - \max_{g \in M \setminus A_i} v_i(g) \quad \forall i \in N$$

• **MMS** For $k \in \mathbb{N}$, let $\mathcal{P}^k(M)$ be the set of all partitions of \mathcal{M} into k bundles.

$$MMS_{i}^{k} = \max_{(S_{1},...,S_{k}) \in \mathcal{P}^{k}(M)} \min_{t \in [k]} v_{i}(S_{t}) \quad i \in N$$

• **PO**: x is PO if it is not dominated by some integral allocation x', i.e.

$$v_i(\mathbf{x}_i) \leq v_i(\mathbf{x}_i')$$

Recap from Class

- Round Robin for EF1 goods for weakly additive utilities
- Envy-cycle-elimination for EF1 goods with monotone in creasing utilities
- ullet EF1 + PO for goods exists for *additive* valuations. Computation in pseudopolynomial time.

EF1 for Chores

An example of an allocation of mixed chores and goods

	\mathbf{g}_1	\mathbf{g}_2	g 3	g 4
a_1	3	-4	-4	-4
a ₂	3	-4	-4	-4

Definitions in Chore Allocation

Envy-freeness up to one item (EF1)

An integral allocation x is said to be envy-free up to one item (EF1) if for every pair of agents $i, j \in N$ such that $x_i \cup x_j \neq \emptyset$, there exists an item $r \in x_i \cup x_j$ such that $v_i (x_i \setminus \{r\}) \geq v_i (x_j \setminus \{r\})$

Pain-per-buck

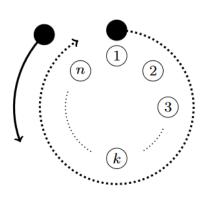
We can look at minimum payments where each agent receives p_j per unit of chore. Each agent then seeks to minimize her total cost subject to payment constraint (receiving a total payment above a threshold)

Double Round Robin

Partition the set of objects O into two sets O^+ , O^- :

$$O^{+} = \{ o \in O \mid \exists i \in N \text{ s.t. } u_{i}(o) > 0 \}$$

 $O^{-} = \{ o \in O \mid \forall i \in N, u_{i}(o) \leq 0 \}$



Runtime: $O(\max m \log m, mn)^1$

Haris Aziz et al. Fair allocation of combinations of indivisible goods and chores. Mar. 17, 2021. arXiv: 1807.10684[cs]. URL: http://arxiv.org/abs/1807.10684 (visited on 09/21/2022).

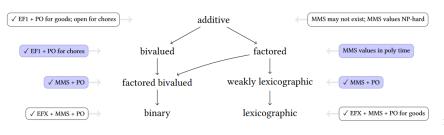
Bivalued and other subproblems

- **binary**: all valuations are in $\{0, -1\}$. Trivial: first apply 0's, then assign -1's evenly if possible.
- factored bivalued: all valuations lie in $\{a,b\}$ for integer b/a. Polynomial-time if b/a is an integer, NP-hard if a, b are coprime [1]
- ullet general bivalued: easy and difficult chores: 1 for difficult chores, and p>1 for easy chores

Weakly Lexicographic

Fractional Pareto Optimal (fPO)

For a price vector p such that $p(c) > 0 \forall c \in M$, an allocation is fractionally Pareto optimal if it is not Pareto dominated by any fractional allocation. Computing: pseudopolynomial time for goods.



²Soroush Ebadian, Dominik Peters, and Nisarg Shah. How to Fairly Allocate Easy and Difficult Chores.

Bivalued chore algorithm

How do we achieve Pareto Optimality?

In bivalued chores, we know that fPO and PO are equivalent.[3]

Price envy-free up to one chore (pEF1)

For all $i, j \in N$ there is a chore $c \in x_i$ such that $P(x_i \setminus c) \leq (x_j)$. i is said to pEF1-envy j if this inequality is not true [5].

Bivalued chore algorithm³

- **1** Initialization: Partition agents into groups $N_1 ... N_R$, who are pEF1 within the group.
- **2** Chore Reallocation The biggest spender (BS b) envies the least spender (LS ℓ). If MBB edge exists, transfer from b to ℓ .
- **9** Price Adjust If edge doesn't exist, we may raise prices of chores in b. Groups are raised exactly once and in order $N_1 \dots N_R$
- Chore Reallocation Once LS enters a raised group, no more price-rise. Transfer from BS to LS via alternating paths.

³Jugal Garg, Aniket Murhekar, and John Qin. "Fair and Efficient Allocations of Chores under Bivalued Preferences". In: Proceedings of the AAAI Conference on Artificial Intelligence 36.5 (June 28, 2022), pp. 5043–5050. ISSN: 2374-3468, 2159-5399. DOI: 10.1609/aaai.v36i5.20436. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20436 (visited on 10/13/2022).

MMS with chores

Weakly lexicographic:

Ask each agent to rank items, allowing for ties.

- Computing MMS values is NP-hard (for both chores and goods) under general additive valuations, but is polynomial-time for factored utility functions.
- Weakly lexicographic or factored bivalued utilities have an MMS+PO allocation computable in polynomial time [4].
- Work has been done for approximately-EFX chore assignment as well, including poly-time 5-approximation of EFX for 3 agents [6].

References

- [1] Hannaneh Akrami et al. Maximizing Nash Social Welfare in 2-Value Instances. Oct. 1, 2021. arXiv: 2107.08965[cs]. URL: http://arxiv.org/abs/2107.08965 (visited on 12/01/2022).
- [2] Haris Aziz et al. Fair allocation of combinations of indivisible goods and chores. Mar. 17, 2021. arXiv: 1807.10684[cs]. URL: http://arxiv.org/abs/1807.10684 (visited on 09/21/2022).
- [3] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. "Finding Fair and Efficient Allocations". In: Proceedings of the 2018 ACM Conference on Economics and Computation. EC '18: ACM Conference on Economics and Computation. Ithaca NY USA: ACM. June 11, 2018, pp. 557-574, ISBN: 978-1-4503-5829-3, DOI: 10.1145/3219166.3219176. URL: https://dl.acm.org/doi/10.1145/3219166.3219176 (visited on 12/01/2022).
- [4] Soroush Ebadian, Dominik Peters, and Nisarg Shah. How to Fairly Allocate Easy and Difficult Chores
- [5] Jugal Garg, Aniket Murhekar, and John Qin. "Fair and Efficient Allocations of Chores under Bivalued Preferences". In: Proceedings of the AAAI Conference on Artificial Intelligence 36.5 (June 28, 2022), pp. 5043-5050. ISSN: 2374-3468, 2159-5399. DOI: 10.1609/aaai.v36i5.20436. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20436 (visited on
 - 10/13/2022).