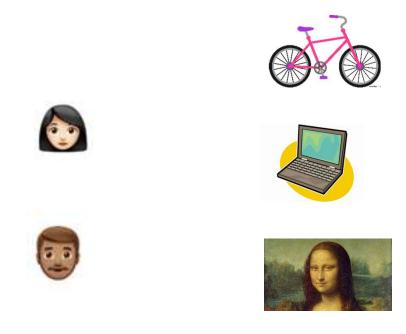
Fair Division of Indivisible Items (Part II)

CS 580

Instructor: Ruta Mehta

N: set of n agents, 1,..., n,

M: set of m indivisible items (like cell phone, painting, etc.)



- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
 - ☐ Monotone: the more the happier

Proportionality

- \blacksquare A set N of n agents, a set M of m indivisible goods
- Proportionality: Allocation $A = (A_1, ..., A_n)$ is proportional if each agent gets at least 1/n share of all items:

$$v_i(A_i) \ge \frac{v_i(M)}{n}, \quad \forall i \in N$$

Cut-and-choose?

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end.
- Clearly, *i* partitions items in a way that maximizes the value of her least preferred bundle.
- $\mu_i :=$ Maximum value of i's least preferred bundle

NA.

Maximin Share (MMS) [B11]

Cut-and-choose.

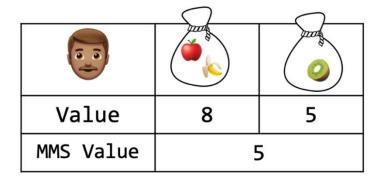
- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_i :=$ Maximum value of i's least preferred bundle
- $\Pi := \text{Set of all partitions of items into } n \text{ bundles}$
- $\blacksquare \mu_i \coloneqq \max_{A \in \Pi} \min_{A_k \in A} v_i(A_k)$
- MMS Allocation: A is called MMS if $v_i(A_i) \ge \mu_i$, $\forall i$
- Additive valuations: $v_i(A_i) = \sum_{i \in A_i} v_{ij}$

M

MMS value/partition/allocation

Agent\Items	*	1	
	3	1	2
5.5	4	4	5

	A	
Value	3	3
MMS Value	3	3



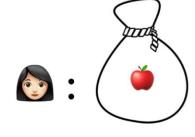
100

MMS value/partition/allocation

Agent\Items	*	1	
	3	1	2
5.5	4	4	5

-	\bigcap				
Value	3	3			
MMS Value	3	3			

	\bigcap				
5 5					
Value	8	5			
MMS Value	5				



Finding MMS value is NP-hard!

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2: yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$
- $n \ge 3$: NO [PW14]

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2 : yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$
- $n \ge 3$: NO [PW14]
- α -MMS allocation for $\alpha \in [0,1]$: $v_i(A_i) \ge \alpha . \mu_i$
 - □ 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
 - □ 3/4-MMS exists [GHSSY18]
 - \Box (3/4 + 1/(12n))-MMS exists [GT20]

Properties

Normalized valuations

1.9 MMS partition of ageli:

V; (A) > ··· > V; (An) = Ui > 1

EV; (AK) = V; (M) > n!

K \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$ $\square \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$

Properties

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \sum_{i} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

Properties

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \sum_{i} v_{ij} = n \Rightarrow \mu_i \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

	B		Carried X			(1)	2	3	4	5
(3)	1	2	(5)	4	(E)	5	4	(3)	2	1
4	4	(5)	3	2		5	4	4	3	2

Challenge

- Allocation of high-value items!
- If for all $i \in N$
 - $\square \ v_i(M) = n \ \Rightarrow \mu_i \leq 1$
 - $\square \ v_{ij} \leq \epsilon, \forall i, j \quad \Rightarrow \quad \text{and} \quad \forall_{ij} \leq \epsilon$

$$v_{ij} \leq \epsilon, \forall i, j \qquad g_1 \geq g_2 > \cdots > g_m$$

$$V_i \text{ (M) } \begin{cases} i, i \text{ remains then } v_i \text{ (refiniting goods)} \geq n - k. \end{cases}$$

$$V_i : V_i \left(\begin{cases} g_1, g_2, g_3 \end{cases} \right) < (I - \epsilon)$$

$$V_i : \left(g_1, g_2, g_3 \right) < (I - \epsilon) \end{cases}$$

$$V_i : \left(g_1, g_2, g_3 \right) < (I - \epsilon) \end{cases}$$

$$V_i : \left(g_1, g_2, g_3 \right) < (I - \epsilon) \end{cases}$$

$$V_i : \left(g_1, g_2, g_3 \right) < (I - \epsilon) \end{cases}$$

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

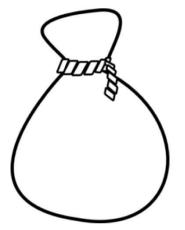
- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- Assign *B* to *i* and remove both

<(1-6)

$$v_{ij} \leq \epsilon, \forall i, j \qquad \forall i (M) \sim \gamma$$

Claim: After round k, if i remains then v_i (remaining goods) $\geq n - k$.

PS: In every rousel, value of the assigned set of items for aget i < I.



Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- Assign *B* to *i* and remove them both

$$v_{ij} \le \epsilon, \forall i, j$$

Thm: Every agent gets at least $(1 - \epsilon)$.

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- \blacksquare Assign *B* to *i* and remove them both

Warm Up: 1/2-MMS Allocation

- If all $v_{ij} \leq 1/2$ then?
 - □ Done, using bag filling.
- What if some $v_{ij} > \frac{1}{2}$?

i'
$$An > Pahihon(M, n)$$

Al Az

Az

Az

Valid Reductions

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \quad \sum_{i} v_{ij} = n \quad \Rightarrow \quad \mu_{i} \leq 1$
- Ordered Instance: Agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$
- Valid Reduction (α -MMS): If there exists $S \subseteq M$ and $i^* \in N$
 - $\square v_{i^*}(S) \geq \alpha . \mu_{i^*}^n(M)$

⇒ reduce the instance size!

$$\square \mu_i^{n-1}(M \setminus S) \ge \mu_i^n(M), \forall i \neq i^*$$

Claim. Suppose agent $i \neq i^*$ gets A_i in the be an α -MMS allocation of $M \setminus S$ to agents $N \setminus \{i^*\}$, then $(A_1, \dots, A_{i^*-1}, S, A_{i^*+1}, \dots, A_n)$ is an α -MMS allocation in the original instance.

Pf:

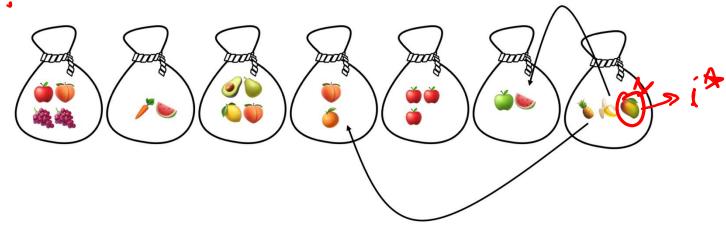
$$V_i(Ai) \ge \alpha U_i^{n-1}(M \mid S) \ge \alpha$$
. $U_i^n(M)$
 $V_i^*(S) \ge \alpha U_i^n(M)$.

M

1/2-MMS Allocation

Step 1: Valid Reductions

 \square If $v_{i^*1} \ge 1/2$ then assign item 1 to i^*

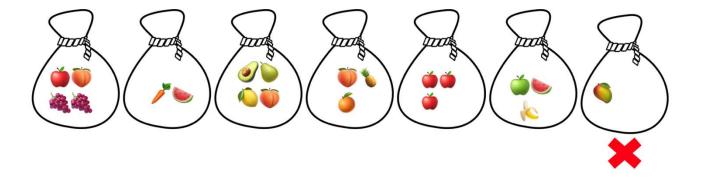


Ŋ.

1/2-MMS Allocation

Step 1: Valid Reductions

 \square If $v_{i^*1} \ge 1/2$ then assign item 1 to i^*



1/2-MMS Allocation

Re-normalization

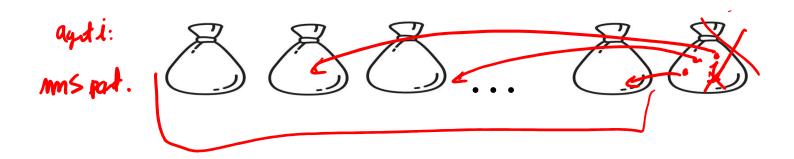
- Step 0: Normalized Valuations: $\sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1$
- Step 1: Valid Reductions (1-6)
 - \square If $v_{i^*1} \ge 1/2$ then assign item 1 to i^* . Remove good 1 and agent i^*
 - ☐ After every valid reduction, normalize valuations
- Step 2: Bag Filling & Vij < \frac{1}{2} = C

2/3-MMS Allocation [GMT19] If all $v_{ij} \le 1/3$ then?

If all
$$v_{ii} \le 1/3$$
 then?

Step 1: Valid Reductions

 \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*



1

n-1

n

2/3-MMS Allocation [GMT19]

```
Step 1: Valid Reductions

\Box \text{ If } v_{i^*1} \geq 2/3 \text{ then assign item 1 to } i^*

\Box \text{ If } v_{i^*n} + v_{i^*(n+1)} \geq 2/3 \text{ then assign } \{n, n+1\} \text{ to } i^*

For agent i \neq i^*, let the MMS defining pathicin be A_k
```

Ŋe.

2/3-MMS Allocation [GMT19]

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

Why valid reduction?

For agent 1+it let He MMS defining partition be

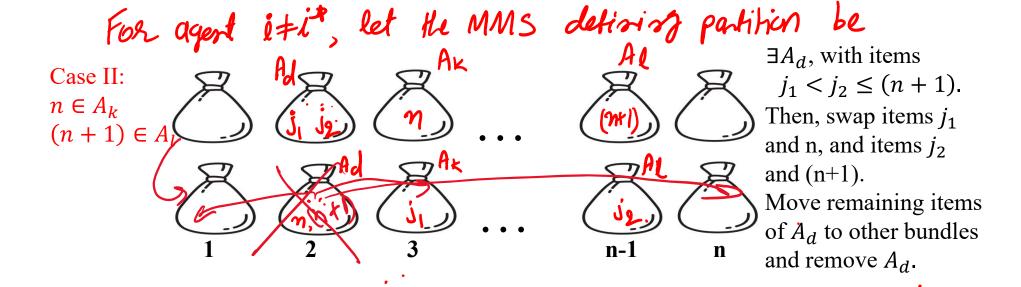
 $\exists A_d$, with items $j_1 < j_2 \le (n+1)$. Then, swap items j_1 and n, and items j_2 and (n+1). This may only increase $v_i(A_k)$ & $\dot{v}_i(A_l)$ because $v_i(j_1) \ge v_i(n)$ & $v_i(j_2) \ge v_i(n+1)$.

2/3-MMS Allocation [GMT19]

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

Why valid reduction?

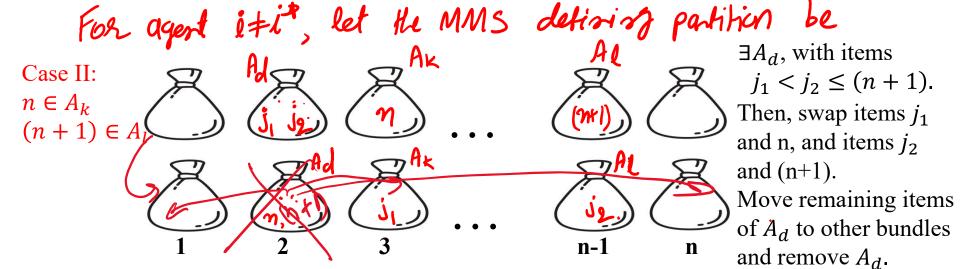


2/3-MMS Allocation [GMT19]

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

Why valid reduction?



Again, value of none of the remaining bundles has decreased.

 \Rightarrow MMS value of agent *i* has only increased in the reduced instance.

Step 1: Valid Reductions

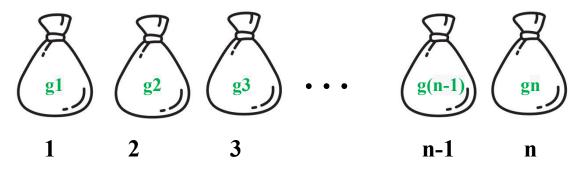
- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*

Step 2: Generalized Bag Filling with $\epsilon = \frac{1}{3}$

- □ Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$.
- Assign items starting from (n + 1)th to the first available bag, and give it to the first agent who shouts (values it at least $2/3 = (1 \epsilon)$).

After Step 1, For each agent *i*, $v_{ij} < \frac{2}{3}$, $\forall j \leq n$ $v_{ij} < \frac{1}{3}$, $\forall j > n$

Claim. If agent i^* is the first to shout, then for any agent $i \neq i^*$ the bag is of value at most 1.



M

2/3-MMS Allocation [GMT19]

(Re)normalization

Step 0: Normalized Valuations: $\sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1$

Step 1: Valid Reductions

- \square If $v_{i^*1} \ge 2/3$ then assign item 1 to i^*
- □ If $v_{i^*n} + v_{i^*(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i^*
- ☐ After every valid reduction, normalize valuations

Step 2: Generalized Bag Filling with $\epsilon = \frac{1}{3}$

□ Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$

Chores

- \blacksquare N: set of n agents, 1,..., n,
- M: set of m indivisible chores

- Agent *i* has a disutility function $d_i: 2^m \to \mathbb{R}_+$ over subsets of items □ Monotone: the more the **un-**happier
- Additive: $d_i(S) = \sum_{j \in S} d_{ij}$, for any subset $S \subseteq M$

- \blacksquare N: set of n agents, 1,..., n,
- *M*: set of *m* indivisible chores
- Agent *i* has a disutility function $d_i: 2^m \to \mathbb{R}_-$ over subsets of items
 - \square Additive: $d_i(S) = \sum_{j \in S} d_{ij}$, for any subset $S \subseteq M$

Allocation
$$A = (A_1, ..., A_n)$$

EF1: No agent envies another after removing one of her chores.

$$\forall i, k \in \mathbb{N}, \quad d_i(A_i \setminus c) \leq d_i(A_k), \quad \exists c \in A_i$$

EF1: Algorithms

Round Robin

- 1. Order agents arbitrarily.
- 2. Let them pick their best chore (least painful chore), one-at-a-time, in that order.

Observations:

If agent k picks the last chore, then agent (k + 1) does not envy anyone. Why?

EF1: Algorithms

Envy-cycle-elimination

- $A = (\emptyset, ..., \emptyset)$
- 2. While there are unassigned chores
 - 1. Construct envy-graph of A and remove any cycles.
 - 2. Give an unassigned chore to??

Observations:

- Cycle elimination does not increase any agent's disutility.
- Giving a chore to sink maintains EF1. Why?

MMS

- \blacksquare N: set of n agents, 1,..., n,
- M: set of m indivisible chores
- Agent *i* has a disutility function $d_i: 2^m \to \mathbb{R}_-$ over subsets of items

 □ Additive: $d_i(S) = \sum_{i \in S} d_{ij}$, for any subset $S \subseteq M$
- $\Pi := \text{Set of all partitions of items into } n \text{ bundles}$

MMS value:
$$MMS_i = \mu_i = \min_{A \in \Pi} \max_{A_k \in A} d_i(A_k)$$

 α -MMS allocation for $\alpha \geq 1$: $\forall i, d_i(A_i) \leq \alpha \mu_i$

1-MMS allocation may not exist!

EF1 to α -MMS

Claim. If $(A_1, ..., A_n)$ is EF1 then it is 2-MMS

Observations:
$$\mu_i \ge \frac{d_i(M)}{n}$$
 and $\mu_i \ge \max_{j \in M} d_{ij}$

Proof.

Summary

Covered

- Additive Valuations:
 - □ ½-MMS allocation (poly-time algorithm)
 - □ 2/3-MMS allocation (polynomial-time algorithm)

State-of-the-art

- More general valuations
 - □ MMS [GHSSY18]
- Groupwise-MMS [BBKN18]
- Chores: 11/9-MMS [HL19]

Major Open Questions (additive)

- c-MMS + PO: polynomial-time algorithm for a constant c > 0
- Existence of 4/5-MMS allocation? For 5 agents?

References (Indivisible Case).

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)

[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: *AAAI 2018*

[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017

[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAAI 2019

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018

[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: *J. Political Economy* 119.6 (2011)

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016

[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019

[GT20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020

[GHSSY18] Mohammad Ghodsi, Mohammad Taghi Haji Aghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In EC 2018

[HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In: arxiv:1907.04505

[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: *J. ACM 65.2* (2018), 8:1–8:27

[PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014

[W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In: *Operations Research Letters 20.4 (1997)*