Lecture 3: Fair Division of Indivisibles (Part 1)

CS 580

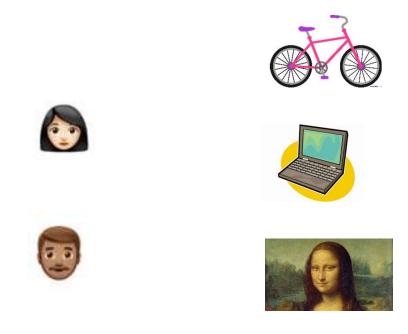
Instructor: Ruta Mehta

Fair Division

Goal: allocate fairly and efficiently.

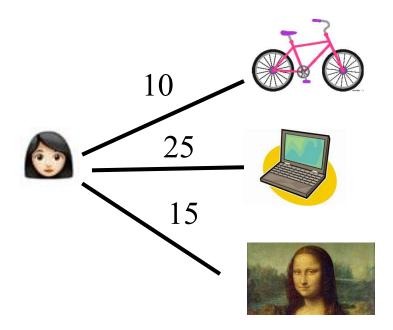
And do it quickly (fast algorithm)!

- *n* agents: 1,..., n,
- M: set of m indivisible items (like cell phone, painting, etc.)



- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
 - ☐ Monotone: the more the happier

Additive Valuations: $v_i(S) = \sum_{j \in S} v_{ij}$



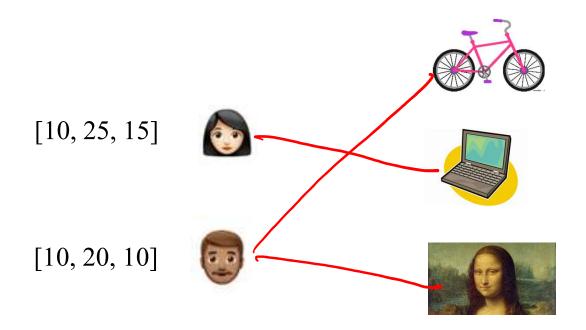
- Ŋ.
 - *n* agents: 1,..., n,
 - *M*: set of *m* indivisible items (like cell phone, painting, etc.)
 - Agent *i* has a valuation function $v_i: 2^m \to \mathbb{R}$ over subsets of items □ Monotone: the more the happier
 - Goal: Find a *fair* allocation

Fairness:

Envy-free (EF): no one envies other's bundle

Proportional (Prop): each agent *i* gets at least $\frac{v_i(M)}{n} \rightarrow \sqrt{i} \left(\frac{M}{n}\right)$

Allocations, and their value



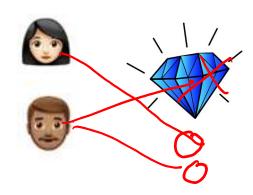
- Ŋ.
 - \blacksquare *n* agents: 1,..., n,
 - *M*: set of *m* indivisible items (like cell phone, painting, etc.)
 - Agent *i* has a valuation function $v_i: 2^m \to \mathbb{R}$ over subsets of items □ Monotone: the more the happier
 - Goal: Find a *fair* allocation

Fairness:

Envy-free (EF): no one envies other's bundle

Proportional (Prop): each agent i gets at least $\frac{v_i(M)}{n}$

Neither exists!



Plan

- EF1: EF up to one item
 - □ Round-Robin algorithm
 - □ Envy-cycle elimination algorithm
- Stronger notions + Open questions
 - □ "Good" EF1 allocations: EF1 + Pareto optimal
 - □ EFX: EF up to *any* item
- Prop1: Prop up to one item
 - □ Algorithm through CE. PO in addition.

Envy-Freeness for Indivisibles

EF up to One Item (EF1) [B11]

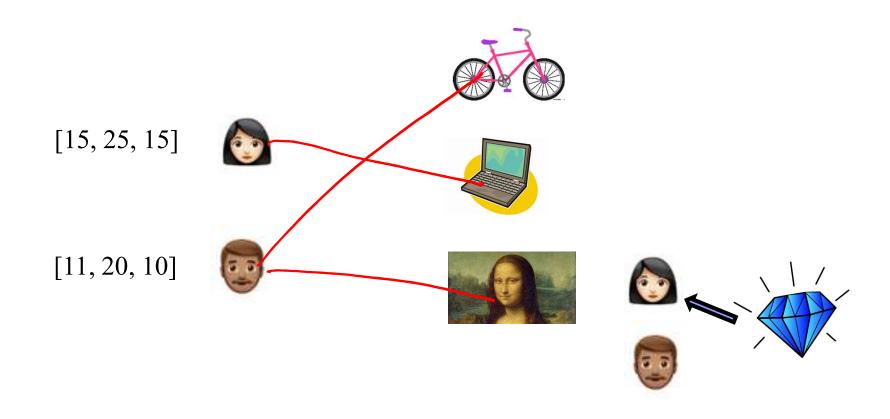
■ An allocation $(A_1, ..., A_n)$ is EF1 if for every agent i

$$\forall k \in N$$
, $v_i(A_i) \ge v_i(A_k \setminus g)$, $\exists g \in A_k$

That is, agent i may envy agent k, but the envy can be eliminated if we remove a single item from k's bundle

100

Envy-Freeness up to One Item (EF1) [B11]



Fast Algorithms for EF1

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \square Allocate *i* her most valuable item among the unallocated ones

	g_1	9	2	g	K	94	95	4			R1	R2
a_1	10	15		9		8	3	43		a_1	9,25	9-70
a_2	10	8		15)	9	4	a ₁		a_2	9/21/	9< 24
a_3	10g	9		8		Xg	5	92		a_3	94715	
							•		1	7		

Theorem. The final allocation is EF1.

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \square Allocate *i* her most valuable item among the unallocated ones

Observation 1: First agent does not envy anyone!

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \square Allocate *i* her most valuable item among the unallocated ones

Observation 2: For the *i*th agent, if we remove first (i-1) items allocated to first (i-1) agents respectively, then the allocation is envy-free for agent *i*.

re.

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \square Allocate *i* her most valuable item among the unallocated ones

Observation 1: First agent does not envy anyone!

Observation 2: For the *i*th agent, if we remove first (i-1) items allocated to first (i-1) agents respectively, then the allocation is envy-free for agent *i*.

Theorem. Round Robin Algorithm gives an EF1 allocation when v_i s are additive.

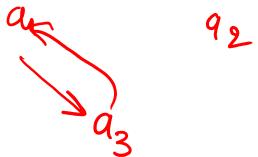
General Monotone Valuations: Envy-Cycle Procedure [LMMS04]

■ General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$ (M: Set of all items)

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$
- Partial allocation: $(A_1, ..., A_n)$ where $\cup_i A_i \subseteq M$
- **Envy-graph** of a partial allocation $(A_1, ..., A_n)$
 - \square Vertices = Agents
 - □ Directed edge (i, i') if i envies i' $(i.e., v_i(A_i) < v_i(A_{i'}))$

	g_1	g_2	g_3	94	g_{5}
a_1	10	15	9	8	3
a_2	10	8	15	9	4
a_3	10 (9	8	15	5



Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$
- Envy-graph of a partial allocation $(A_1, ..., A_n)$ where $\cup_i A_i \subseteq M$
 - \square Vertices = Agents
 - \square Directed edge (i, i') if i envies i' $(i.e., v_i(A_i) < v_i(A_{i'}))$

■ Main Observation:

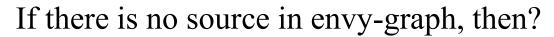
Agent *i* is a *source* in the envy-graph \Rightarrow No one envies agent *i*

- Idea! Allocate one item at a time, maintaining EF1 property.
 - □ Given a partial EF1 allocation, construct its envy-graph and assign one unallocated item, say j, to a source agent, say i, and the resulting allocation is still EF1!
 - \square No agent envies i if we remove item j from her bundle

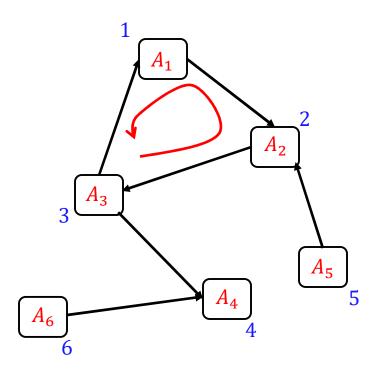
If there is no source in envy-graph, then?

- □ there must be cycles
- □ How to eliminate them?

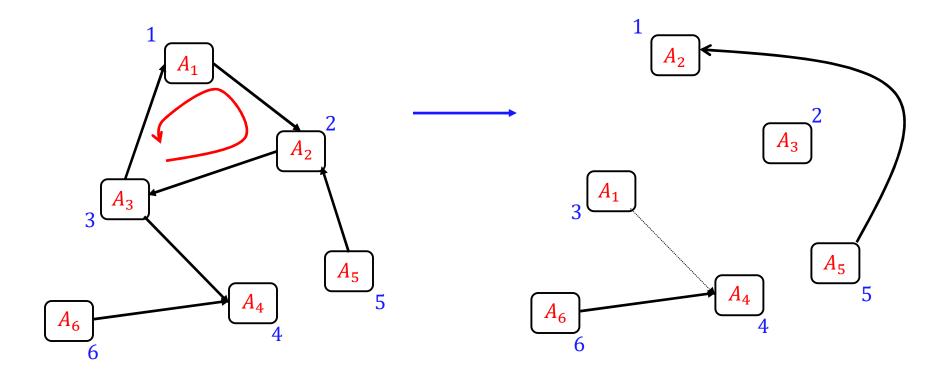
	g_1	g_2	g_3	94	g_{5}
a_1	10	15	9	8	3
a ₂ (10	8	15	9	4
a_3	10	9	8	15 (5



- □ there must be cycles
- ☐ How to eliminate them?



- If there is no source in envy-graph, then
 - □ there must be cycles
 - ☐ How to eliminate them?
- Cycle elimination: rotate bundles along the cycle.



- 190
 - If there is no source in envy-graph, then
 - □ there must be cycles

Cycle elimination: rotate bundles along the cycle.

- EF1?
 - □ Can valuation of any agent decrease?

- Ŋ.
 - If there is no source in envy-graph, then
 - □ there must be cycles

Cycle elimination: rotate bundles along the cycle.

- EF1?
 - ☐ Can valuation of any agent decrease?
 - **NO!** Agents on an eliminated cycle gets better off, others remain same.
 - □ Can there be new envy edges?
 - **NO!** The bundles remain the same We are only changing their owners! Hence, no new envies are formed.

Claim 1. After every cycle elimination, the allocation remains EF1.

- Ŋ.
 - If there is no source in envy-graph, then
 - □ there must be cycles

Cycle elimination: rotate bundles along the cycle.

Claim 1. After every cycle elimination, the allocation remains EF1.

Keep eliminating cycles by exchanging bundles along a cycle until there is a source.

- Termination?
 - □ Number of edges decrease after each cycle elimination.

Claim 2. The process terminates in at most O(#edges) many cycle eliminations.

Ŋė.

Envy-Cycle Procedure [LMMS04]

$$A \leftarrow (\emptyset, ..., \emptyset)$$

 $R \leftarrow M$ // unallocated items

While $R \neq \emptyset$

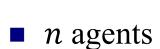
- ☐ If envy-graph has no source, then there must be cycles
- ☐ Keep removing cycles by exchanging bundles along a cycle, until there is a source
- □ Pick a source, say i, and allocate one item g from R to i $(A_i \leftarrow A_i \cup g; R \leftarrow R \setminus g)$

Output *A*

Running Time?

EXERCISE

Proportional (average)



- \blacksquare M: set of m indivisible items (like cell phone, painting, etc.)
- Agent i has a valuation function $v_i: 2^m \to \mathbb{R}$ over subsets of items

Fairness:

Envy-free (EF)

Proportional (Prop):

Get value at least average of the grand-bundle

$$v_i(A_i) \ge \frac{1}{n} v_i(M)$$

	g_1	g_{2}	g_3	g_4
a_1	100	100	10	90
a_2	100	100	90	10

100

Sub-additive Valuations

Sub-additive:

$$v_i(A \cup B) \le v_i(A) + v_i(B), \quad \forall A, B \in M$$

Claim: $EF \Rightarrow Prop$

Proof:

Ŋ.

Prop: May not always exist!

- \blacksquare *n* agents
- *M*: set of *m* indivisible items (like cell phone, painting, etc.)
- Agent i has a valuation function $v_i: 2^m \to \mathbb{R}$ over subsets of items

Fairness:

Envy-free (EF)

Proportional (Prop):

Get value at least average of the grand-bundle

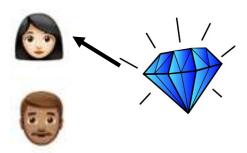
$$v_i(A_i) \ge \frac{1}{n} v_i(M)$$

100

Proportionality up to One Item (Prop1)

■ Prop1: A is proportional up to one item if each agent gets at least 1/n share of all items after adding one more item from outside:

$$\forall i \in \mathbb{N} \quad v_i(A_i \cup \{g\}) \geq \frac{1}{n} v_i(M), \qquad \exists g \in M \setminus A_i, \forall i \in \mathbb{N}$$



Prop1

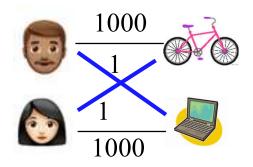
Claim: EF1 implies Prop1 for additive valuations

Hence
$$\forall i$$
, $n \vee_i(Ai) \geq \frac{n}{2} \vee_i(A_K) - n$ $\max_{g \in M \setminus Ai} \vee_i(g)$

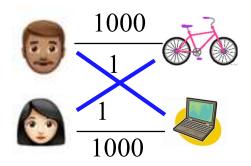
$$\Rightarrow \vee_i(Ai) + \max_{g \in M \setminus Ai} \vee_i(g) \geq \frac{\vee_i(M)}{n} \quad (: \forall_i \text{ additive})$$

$$\Rightarrow \vee_i(Ai \cup \{g\}) \geq \vee_i(M) \quad , \exists g \in M \setminus Ai$$

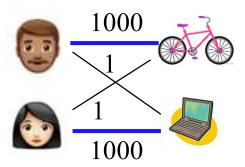
How Good is an EF1 or Prop1 Allocation?



How Good is an EF1 or Prop1 Allocation?



Certainly not desirable!



r,e

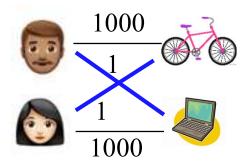
"Good" EF1/Prop1 Allocation: Pareto Optimality

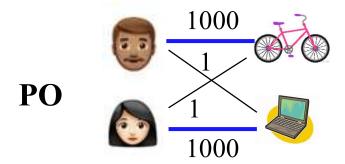
- Issue: Many EF1/Prop1 allocations!
- We want an algorithm that outputs a good EF1/Prop1 allocation

Pareto optimal (PO): No other allocation is better for all

- An allocation $Y = (y_1, y_2, ..., y_n)$ Pareto dominates another allocation $X = (x_1, x_2, ..., x_n)$ if
 - $v_i(y_i) \ge v_i(x_i)$, for all buyers i and
 - $\square v_k(y_k) > v_k(x_k)$ for some buyer k
- X is said to be Pareto optimal (PO) if there is no Y that Pareto dominates it

How Good is an EF1 or Prop1 Allocation?



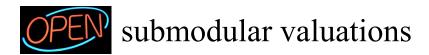


"Good" EF1 Allocation: EF1+PO

- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation
 - ☐ Pareto optimal (PO)
- Goal: EF1 + PO allocation
- **Existence?**
 - □ NO [CKMPS14] for general (subadditive) valuations
 - ☐ YES for additive valuations [CKMPS14]

"Good" EF1 Allocation: EF1+PO

- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation
 - ☐ Pareto optimal (PO)
- Goal: EF1 + PO allocation
- **Existence?**
 - □ NO [CKMPS14] for general (subadditive) valuations
 - ☐ YES for additive valuations [CKMPS14] Computation?



EF1+PO (Additive)

■ Computation: pseudo-polynomial time algorithm [BKV18]

■ Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

EF1+PO (Additive)

■ Computation: pseudo-polynomial time algorithm [BKV18]

- Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]
- Approach: Achieve EF1 while maintaining PO
 - □ PO certificate: competitive equilibrium!

Prop1 + PO

- EF1 implies Prop1 for additive valuations
 - ⇒ Round Robin outputs a Prop1 allocation. But need not be PO!
- Prop1+PO: Additive Valuations
 - \square EF1 + PO allocation exists \Rightarrow Prop1 + PO exists.
 - but no polynomial-time algorithm is known!
 - □ Prop1 + PO Computation?
 - Algorithm based on competitive equilibrium (HW).

EFX: Envy-free up to any item

Envy-Freeness up to One Item (EF1)

■ An allocation $(A_1, ..., A_n)$ is EF1 if for every agent i

$$\forall k \in N$$
, $v_i(A_i) \ge v_i(A_k \setminus g)$, $\exists g \in A_k$.

That is, agent i may envy agent k, but the envy can be eliminated if we remove a single item from k's bundle

Envy-Freeness up to Any Item (EFX) [CKMPS14]

■ An allocation $(A_1, ..., A_n)$ is EFX if for every agent i

$$\forall k \in N$$
, $v_i(A_i) \ge v_i(A_k \setminus g)$, $\forall g \in A_k$.

That is, agent i may envy agent k, but the envy can be eliminated if we remove any single item from k's bundle

EFX: Existence

- General Valuations [PR18]
 - $\square n = 2$
 - ☐ Identical Agents

- Additive Valuations
 - \square n = 3 [CGM20]

OPEN Additive
$$(n > 3)$$
, General $(n > 2)$

"Fair division's biggest problem" [P20]

ķΑ

Summary

Covered

- EF1 (existence/polynomial-time algorithm)
- EF1 + PO (partially)
- EFX (partially)
- Prop1

Not Covered

- EFX for 3 (additive) agents
- Partial EFX allocations
 - □ Little Charity [CKMS20, CGMMM21]
 - ☐ High Nash welfare [CGH19]
- Chores
 - ☐ EF1 (existence/ polynomial-time algorithm) EXERCISE

Major Open Questions (additive valuations)

- EF1+PO: Polynomial-time algorithm
- EF1+PO: Existence for chores
- EFX : Existence / Non-existence

References (Indivisible Case).

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: *EC 2018* [B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: *J. Political Economy* 119.6 (2011)

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016

[CGH20] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high Nash welfare: The virtue of donating items. In: EC 2019

[CGM20] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn: EFX Exists for Three Agents. In: EC 2020

[CGMMM21] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, Pranabendu Misra: Improving EFX Guarantees through Rainbow Cycle Number. In: EC 2021.

[CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity guarantees almost envy-freeness. In: SODA 2020

[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009

[LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. "On approximately fair allocations of indivisible goods". In: EC 2004

[PR18] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In: SODA 2018

[P20] Ariel Procaccia: An answer to fair division's most enigmatic question: technical perspective. In: Commun. ACM 63(4): 118 (2020)