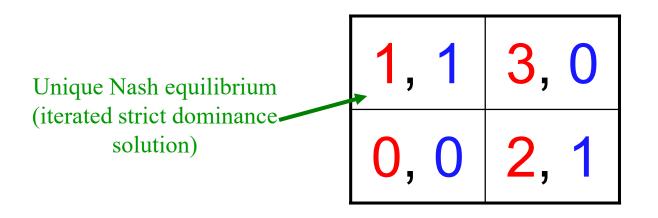
Commitment (Stackelberg strategies)

Commitment

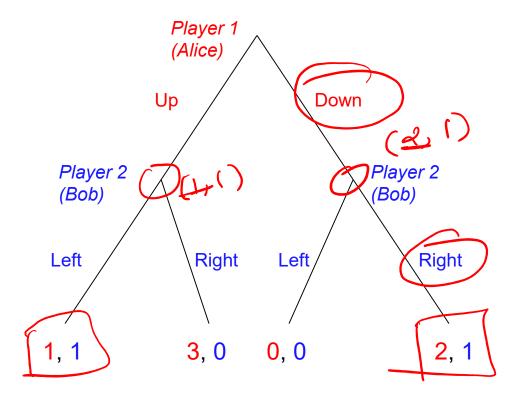


von Stackelberg

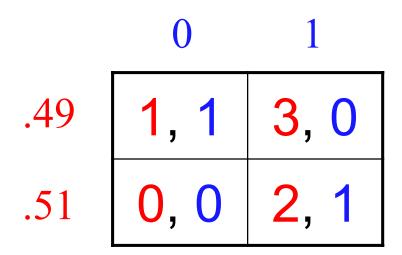
- Suppose the game is played as follows:
 - Alice commits to playing one of the rows,
 - Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down

Commitment: an extensive-form game

For the case of committing to a pure strategy:



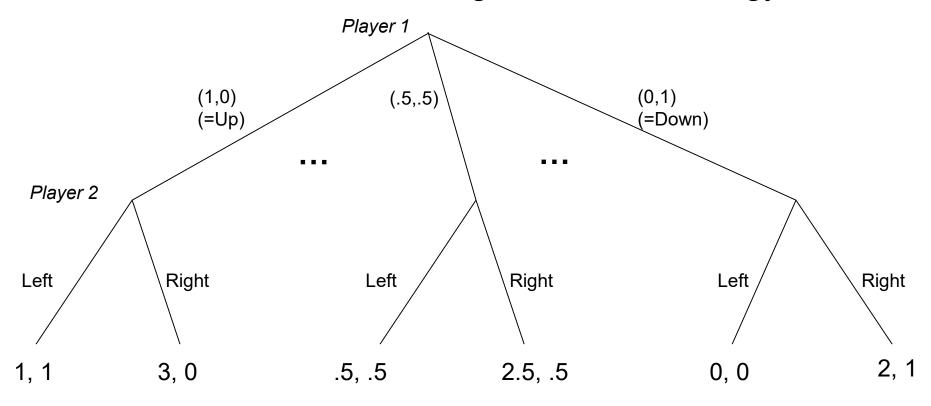
Commitment to mixed strategies



Also called a Stackelberg (mixed) strategy

Commitment: an extensive-form game

... for the case of committing to a mixed strategy:



- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to

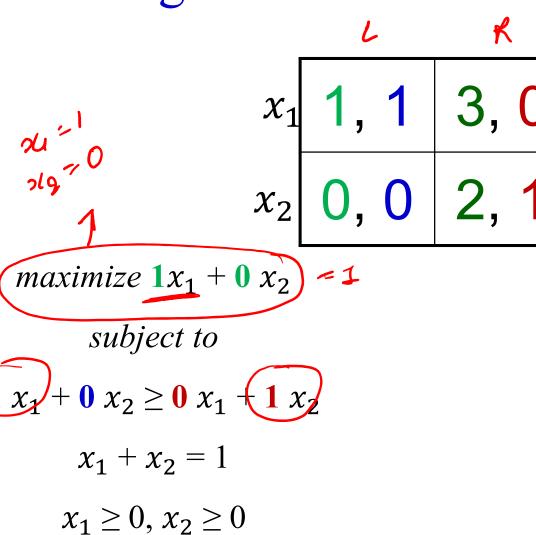
[Conitzer & Sandholm EC'06]

- Player 1 (Alice) is a leader.
- Separate LP for Bob's move (column) $j^* \in S_2$:

```
maximize \sum_{i} x_{i} A_{ij^{*}} Alice's utility when Bob plays j^{*} subject to \forall j, (x^{T}B)_{j^{*}} \geq (x^{T}B)_{j} Playing j^{*} is best for Bob x \geq 0, \sum_{i} x_{i} = 1 x is a probability distribution
```

pickythe that gives max utility.

On the game we saw before



maximize
$$3 x_1 + 2 x_2$$

subject to

$$0 x_1 + 1 x_2 \ge 1 x_1 + 0 x_2$$

$$x_1 + x_2 = 1$$

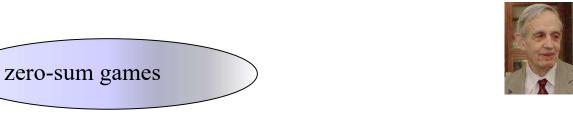
$$x_1 \ge 0, x_2 \ge 0$$

Visualization

	L	С	R	
U	0,1	1,0	0,0	(0,1,0) = M
M	4,0	0,1	0,0	
D	0,0	1,0	1,1	
			(1,0,0) = U	(0,0,1) = D

Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games



zero-sum games

minimax strategies

general-sum games

Nash equilibrium

zero-sum games

general-sum games

Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

No equilibrium selection problem

0, 0	-1, 1
1, -1	-5, -5

 Leader's payoff at least as good as any Nash eq. or even correlated eq.

von Stengel & Zamir [GEB '10]

>

Nash Bargaining

Nash Bargaining: Dividing Utilities

Two agents: 1, 2

Outside option utilities: c_1 , c_2

Feasible set of utilities: $U \subseteq \mathbb{R}^2$ (convex),

 $(c_1, c_2) \in U$

Goal: define a bargaining function $f(c_1, c_2, U) \in U$ satisfying certain good properties

Nash Bargaining: Axioms

Two agents: 1, 2 Outside option with utilities: c_1 , c_2 Feasible set of Utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$ Let (4, 4)= f(9,62,0) Goal: $f(c_1, c_2, U) \in U$ that is $a \ge 0, b \in \mathbb{R}$ 1. Scale free: $\exists b \in C_1 = a + b \in U' = \{(a + b, 4) \} \cap \{(a + b, 4) \}$ 3. Pareto Optimal: $\sharp (V_1, V_2) \in U$ S.t. $V_1 \geq V_1 \leq V_2 \geq V_2 \leq U$ at least one is strict.

- 4. Independent of Irrelevant Alternatives (IIA):

 It U'CU & (4, 2) U' Kon 5(4,(2)U') = (41, 42)
- 5. Individually Rational: $4 \ge 4$, $4 \ge 6$.

Nash Bargaining: Theorem

Two agents: 1, 2

Outside option with utilities: c_1 , c_2

Feasible set of Utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$

Goal: $f(c_1, c_2, U) \in U$ that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

Theorem (Nash'50). f satisfies the 5 axioms if and only if, $f(c_1, c_2, U)$ is

argmax
$$(u_1 - c_1)(u_2 - c_2)$$

s.t. $(u_1, u_2) \in U$
 $u_1 \ge C_1 \notin V_2 \ge C_2$

Nash Bargaining: Theorem

Theorem (Nash'50). f satisfies the 5 axioms if and only if, $f(c_1, c_2, U)$ is

argmax
$$(u_1 - c_1)(u_2 - c_2)$$

s.t. $(u_1, u_2) \in U$, $u_2 = u_1$, $u_2 = u_2$

Proof. (\Leftarrow)

- Scale free arguax: $(au+b-uq-b)(v_2-c_2)$ $= 11 \quad a(u-u)(v_2-c_2)$ Symmetric: $arguax:(a*b) \quad i5 \quad a=1, b=1$.
- Pareto Optimal
- Independent of Irrelevant Alternatives (IIA)

Individually Rational

by 474, 42262 constraint.