

# Lecture 17 Other Solution Concepts and Game Models

CS580

Ruta Mehta

Some slides are borrowed from V. Conitzer's presentations.



#### So far

- Normal-form games
  - ☐ Multiple rational players, single shot, simultaneous move
- Bayesian Games (Incomplete Information)

- Nash equilibrium
  - □ Existence
  - □ Computation in two-player games.

#### Today:

- Issues with NE
  - □ Multiplicity
  - ☐ Selection: How players decide/reach any particular NE
- Possible Solutions
  - ☐ Dominance: Dominant Strategy equilibria
  - ☐ Arbitrator/Mediator: Correlated equilibria, Coarse-correlated equilibria
  - Communication/Contract: Stackelberg equilibria, Nash bargaining
- Other Games
  - □ Extensive-form Games

#### Dominance

- Strict dominance: For a player, move s strictly dominates t if no matter what others play, s gives her better payoff than t
  - $\square$  for all  $s_{-i}$ ,  $u_i(s, s_{-i}) > u_i(t, s_{-i})$

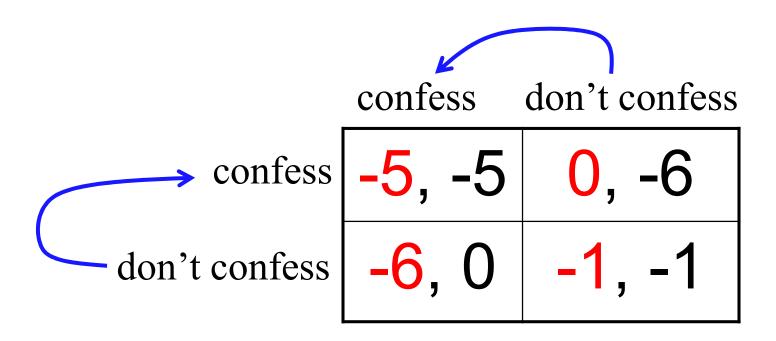
-i = "the player(s)
other than i"

- $\blacksquare$  s weakly dominates t if
  - $\square$  for all  $s_{-i}$ ,  $u_i(s, s_{-i}) \ge u_i(t, s_{-i})$ ; and
  - $\square$  for some  $s_{-i}$ ,  $u_i(s, s_{-i}) > u_i(t, s_{-i})$

|                  | L     | M                   | R     |
|------------------|-------|---------------------|-------|
| strict dominance | 0, 0  | <mark>1</mark> , -1 | 1, -1 |
| weak dominance   | -1, 1 | 0, 0                | -1, 1 |
| B                | -1, 1 | 1, -1               | 0, 0  |

#### b/A

#### Dominant Strategy Equilibrium


Playing move  $s_i$  is best for agent i, no matter what others play.

- For each player i, there is a (strategy) move  $s_i$  that (weakly) dominates all other moves.
  - $\square$  for all i,  $s'_i$ ,  $s_{-i}$ ,  $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ ;

Example?

#### Prisoner's Dilemma

- Pair of criminals has been caught
- They have two choices: {confess, don't confess}



#### "Should I buy an SUV?"

purchasing cost

accident cost



cost: 5

cost: 5



cost: 5



cost: 3

cost: 8



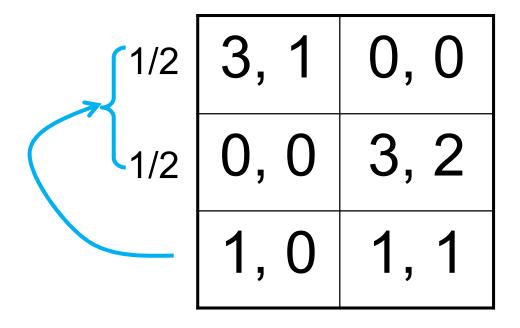
cost: 2

cost: 5



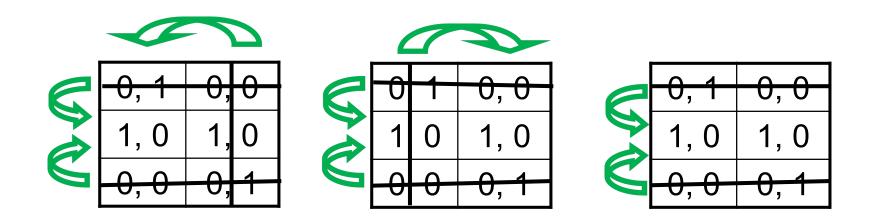
cost: 5



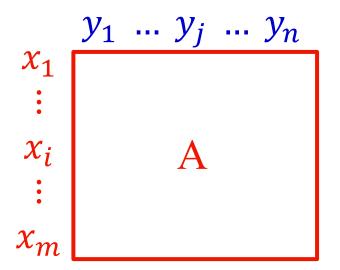





| -10, -10 | -7, -11 |
|----------|---------|
| -11, -7  | -8, -8  |


#### Dominance by Mixed strategies

■ Example of dominance by a mixed strategy:



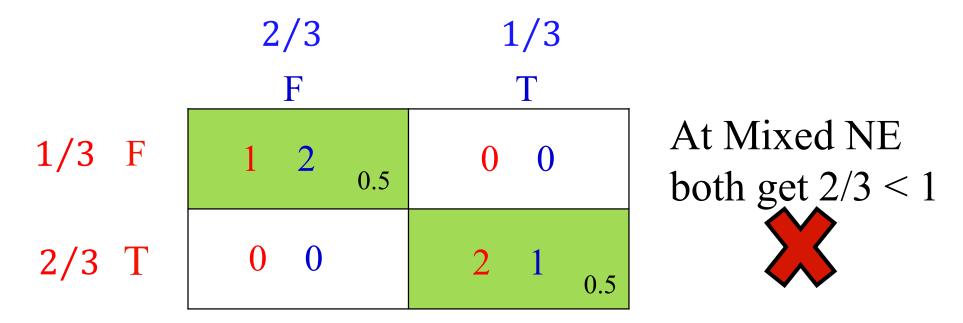

#### Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed)



Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)




$$x_1$$
 $\vdots$ 
 $x_i$ 
 $\vdots$ 
 $x_m$ 

NE: 
$$x^T A y \ge x'^T A y$$
,  $\forall x'$   $x^T B y \ge x^T B y'$ ,  $\forall y'$ 

No one plays Why? dominated strategies. What if they can discuss beforehand?

Players: {Alice, Bob}

Two options: {Football, Tennis}



Instead they agree on  $\frac{1}{2}(F, T)$ ,  $\frac{1}{2}(T, F)$ Payoffs are (1.5, 1.5) Fair!

Needs a common coin toss!

## Correlated Equilibrium – (CE) (Aumann'74)

- Mediator declares a joint distribution P over  $S=\times_i S_i$
- Tosses a coin, chooses  $s = (s_1, ..., s_n) \sim P$ .
- $\blacksquare$  Suggests  $s_i$  to player i in private
- *P* is at equilibrium if each player wants to follow the suggestion when others do.
  - $\square U_i(s_i, P_{(s_i, .)}) \ge U_i(s_i', P_{(s_i, .)}), \ \forall s_i' \in S_1$

#### CE for 2-Player Case

- Mediator declares a joint distribution  $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$
- Tosses a coin, chooses  $(i,j) \sim P$ .
- Suggests *i* to Alice, *j* to Bob, in private.
- P is a CE if each player wants to follow the suggestion, when the other does.

Given Alice is suggested i, she knows Bob is suggested  $j \sim P(i, .)$ 

$$\langle A(i,.), P(i,.) \rangle \ge \langle A(i',.), P(i,.) \rangle : \forall i' \in S_1$$

$$\langle B(.,j), P(.,j) \rangle \ge \langle B(.,j'), P(.,j) \rangle : \forall j' \in S_2$$

Players: {Alice, Bob}

Two options: {Football, Shopping}

|   | F       | S       |
|---|---------|---------|
| F | 1 2 0.5 | 0 0     |
| S | 0 0     | 2 1 0.5 |

Instead they agree on  $\frac{1}{2}(F, S)$ ,  $\frac{1}{2}(S, F)$  CE! Payoffs are (1.5, 1.5) Fair!

#### Prisoner's Dilemma

NC is dominated

### Rock-Paper-Scissors (Aumann)

|    | R    | P    | S    |
|----|------|------|------|
| R  | 0, 0 | 0, 1 | 1, 0 |
|    | 0    | 1/6  | 1/6  |
| P  | 1, 0 | 0, 0 | 0, 1 |
|    | 1/6  | 0    | 1/6  |
| S  | 0, 1 | 1, 0 | 0, 0 |
| .) | 1/6  | 1/6  | 0    |

When Alice is suggested R
Bob must be following  $P_{(R,.)} \sim (0,1/6,1/6)$ Following the suggestion gives her 1/6
While P gives 0, and S gives 1/6.

#### Computation: Linear Feasibility Problem

Game (A, B). Find, joint distribution 
$$P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$$

s.t. 
$$\sum_{j} A_{ij} p_{ij} \ge \sum_{j} A_{i'j} p_{ij} \quad \forall i, i' \in S_1$$
$$\sum_{i} B_{ij} p_{ij} \ge \sum_{i} B_{ij'} p_{ij} \quad \forall j, j' \in S_2$$
$$\sum_{ij} p_{ij} = 1; \quad p_{ij} \ge 0, \quad \forall (i, j)$$

#### Computation: Linear Feasibility Problem

N-player game: Find distribution P over  $S = \times_{i=1}^{N} S_i$ s.t.  $U_i(s_i, P_{(i,.)}) \ge U_i(s_i', P_{(s_i,.)}), \forall s_i, s_i' \in S_i$  $\uparrow \sum_{s \in S} P(s) = 1$  $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$  Linear in P variables!

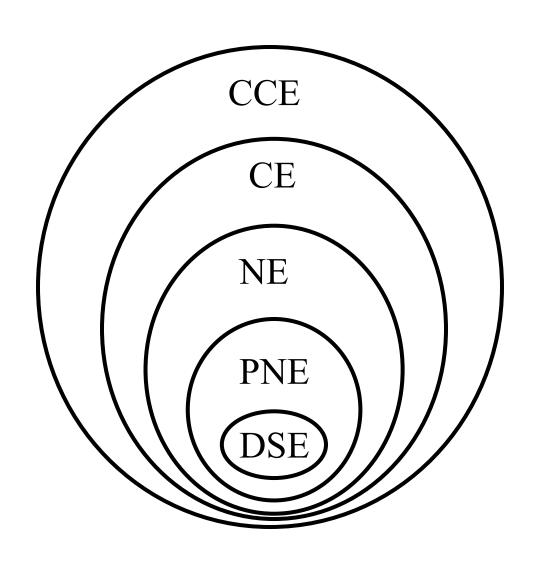
Can optimize any convex function as well!

#### Coarse-Correlated Equilibrium

- After mediator declares P, each player opts in or out.
- $\blacksquare$  Mediator tosses a coin, and chooses s  $\sim$  P.
- If player i opted in, then the mediator suggests her  $s_i$  in private, and she has to obey.
- If she opted out, then (knowing nothing about s) plays a fixed strategy  $t \in S_i$
- At equilibrium, each player wants to opt in, if others are.

$$U_i(P) \ge U_i(t, P_{-i}), \ \forall t \in S_i$$

Where  $P_{-i}$  is joint distribution of all players except i.

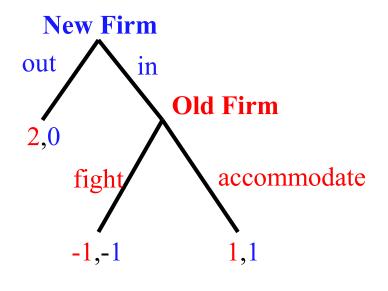



#### Importance of (Coarse) CE

- Natural dynamics quickly arrive at approximation of such equilibria.
  - □ No-regret, Multiplicative Weight Update (MWU)

- Poly-time computable in the size of the game.
  - □ Can optimize a convex function too.

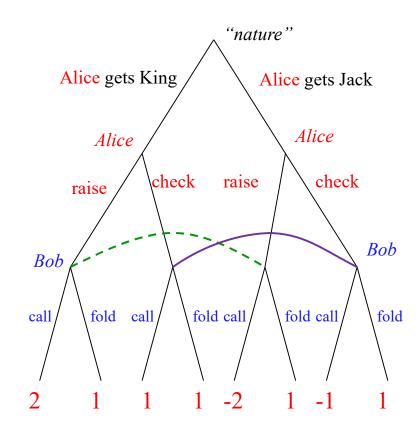
#### Show the following



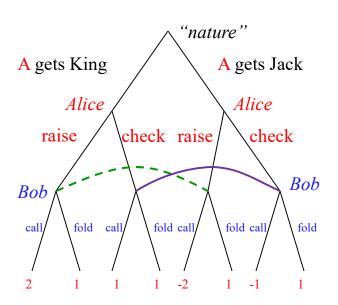

#### Extensive-form Game

- Players move one after another
  - □ Chess, Poker, etc.
  - ☐ Tree representation.

Strategy of a player: What to play at each of its node.


|   | I      | O    |
|---|--------|------|
| F | -1, -1 | 2, 0 |
| A | 1, 1   | 2, 0 |



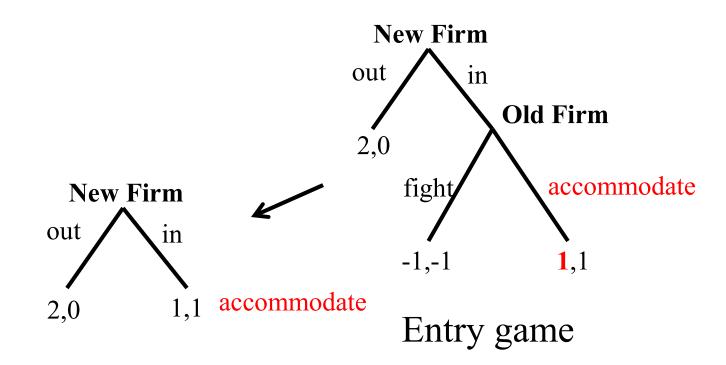

Entry game

#### A poker-like game

- Both players put 1 chip in the pot
- Alice gets a card (King is a winning card, Jack a losing card)
- Alice decides to raise (add one to the pot) or check
- Bob decides to call (match) or fold (Alice wins)
- If Bob called, he adds one to the pot. Alice's card determines pot winner.

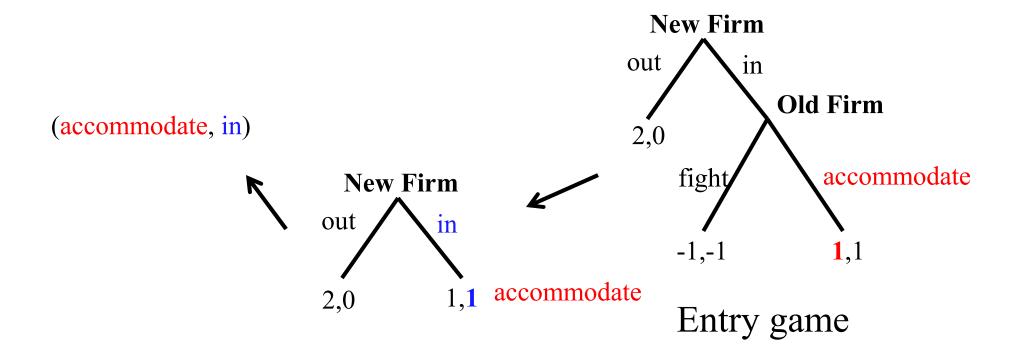


#### Poker-like game in normal form




|    | cc    | cf        | fc    | ff    |
|----|-------|-----------|-------|-------|
| rr | 0, 0  | 0, 0      | 1, -1 | 1, -1 |
| rc | .5,5  | 1.5, -1.5 | 0, 0  | 1, -1 |
| cr | 5, .5 | 5, .5     | 1, -1 | 1, -1 |
| cc | 0, 0  | 1, -1     | 0, 0  | 1, -1 |

Can be exponentially big!


#### Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

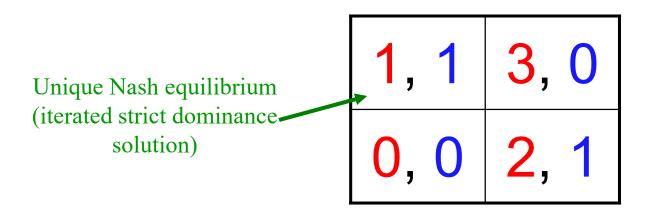


#### Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction






#### Corr. Eq. in Extensive form Game

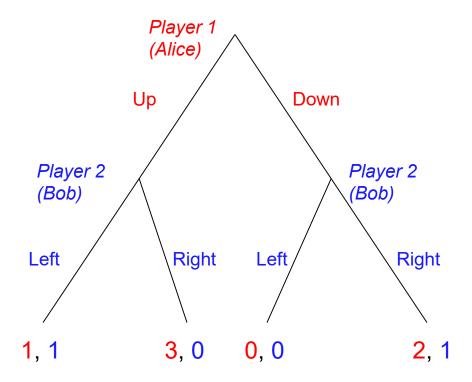
- How to define?
  - □ CE in its normal-form representation.
- Is it computable?
  - □ Recall: exponential blow up in size.
- Can there be other notions?

See "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity" by von Stengel and Forges, 2008.

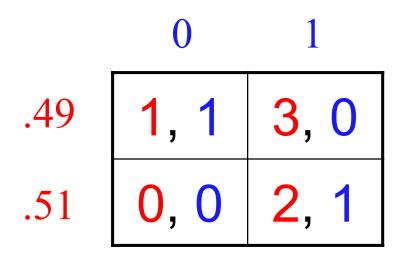
# Commitment (Stackelberg strategies)

#### Commitment





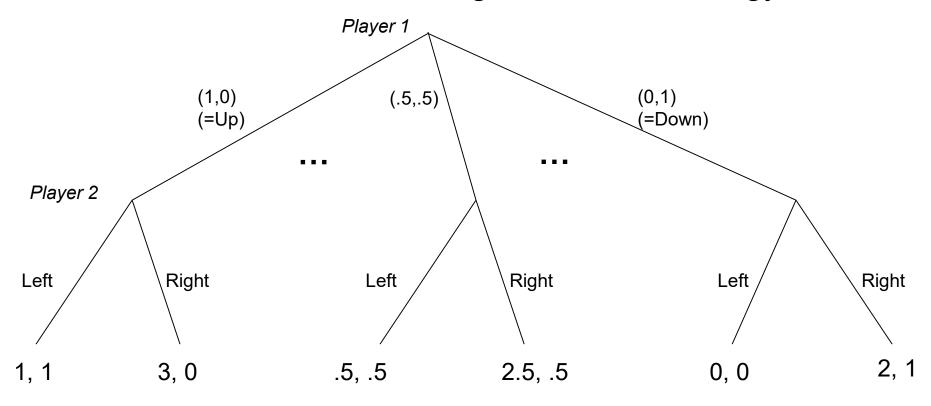

von Stackelberg


- Suppose the game is played as follows:
  - Alice commits to playing one of the rows,
  - Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down

#### Commitment: an extensive-form game

For the case of committing to a pure strategy:




#### Commitment to mixed strategies



Also called a Stackelberg (mixed) strategy

#### Commitment: an extensive-form game

... for the case of committing to a mixed strategy:



- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

### Computing the optimal mixed strategy to commit to

[Conitzer & Sandholm EC'06]

- Player 1 (Alice) is a leader.
- Separate LP for Bob's move (column)  $j^* \in S_2$ :

```
maximize \sum_{i} x_{i} A_{ij^{*}} Alice's utility when Bob plays j^{*} subject to \forall j, (x^{T}B)_{j^{*}} \geq (x^{T}B)_{j} Playing j^{*} is best for Bob x \geq 0, \sum_{i} x_{i} = 1 x is a probability distribution
```

Among soln. of all the LPs, pick the one that gives max utility.

#### On the game we saw before

$$x_1$$
 1, 1 3, 0  $x_2$  0, 0 2, 1

maximize 
$$1x_1 + 0 x_2$$

subject to

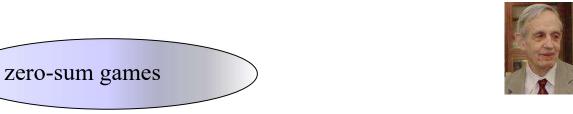
1 
$$x_1 + 0$$
  $x_2 \ge 0$   $x_1 + 1$   $x_2$ 

$$x_1 + x_2 = 1$$

$$x_1 \ge 0, x_2 \ge 0$$

maximize 
$$3 x_1 + 2 x_2$$

subject to


$$0 x_1 + 1 x_2 \ge 1 x_1 + 0 x_2$$
$$x_1 + x_2 = 1$$
$$x_1 \ge 0, x_2 \ge 0$$

#### Visualization

|   | L   | С   | R           |             |
|---|-----|-----|-------------|-------------|
| U | 0,1 | 1,0 | 0,0         | (0,1,0) = M |
| М | 4,0 | 0,1 | 0,0         |             |
| D | 0,0 | 1,0 | 1,1         |             |
|   |     |     |             |             |
|   |     |     | (1,0,0) = U | (0,0,1) = D |

#### Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games





zero-sum games

minimax strategies

general-sum games

Nash equilibrium

zero-sum games

general-sum games

Stackelberg mixed strategies

# Other nice properties of commitment to mixed strategies

No equilibrium selection problem

| 0, 0  | -1, 1  |
|-------|--------|
| 1, -1 | -5, -5 |

 Leader's payoff at least as good as any Nash eq. or even correlated eq.

von Stengel & Zamir [GEB '10]



<u>></u>





#### Nash Bargaining

#### Nash Bargaining: Dividing Utilities

Two agents: 1, 2

Outside option utilities:  $c_1$ ,  $c_2$ 

Feasible set of Utilities:  $U \subseteq R^2$  (convex),

 $(c_1, c_2) \in U$ 

Goal: define a bargaining function  $f(c_1, c_2, U) \in U$ Satisfying certain good properties

#### Nash Bargaining: Axioms

Two agents: 1, 2

Outside option with utilities:  $c_1$ ,  $c_2$ 

Feasible set of Utilities:  $U \subseteq R^2$  (convex),  $(c_1, c_2) \in U$ 

Goal:  $f(c_1, c_2, U) \in U$  that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

#### Nash Bargaining: Theorem

Two agents: 1, 2

Outside option with utilities:  $c_1$ ,  $c_2$ 

Feasible set of Utilities:  $U \subseteq R^2$  (convex),  $(c_1, c_2) \in U$ 

**Goal:**  $f(c_1, c_2, U) \in U$  that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

**Theorem (Nash'50).** f satisfies the 5 axioms if and only if,  $f(c_1, c_2, U)$  is

argmax 
$$(u_1 - c_1)(u_2 - c_2)$$
  
s.t.  $(u_1, u_2) \in U$ 

#### Nash Bargaining: Theorem

**Theorem (Nash'50).** f satisfies the 5 axioms if and only if,  $f(c_1, c_2, U)$  is

argmax 
$$(u_1 - c_1)(u_2 - c_2)$$
  
s.t.  $(u_1, u_2) \in U$ 

#### **Proof.** $(\Leftarrow)$

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational