

Lecture 17 Other Solution Concepts and Game Models

CS580

Ruta Mehta

Some slides are borrowed from V. Conitzer's presentations.

So far

- Normal-form games
 - ☐ Multiple rational players, single shot, simultaneous move
- Bayesian Games (Incomplete Information)

- Nash equilibrium
 - □ Existence
 - □ Computation in two-player games.

Today:

- Issues with NE
 - □ Multiplicity
 - ☐ Selection: How players decide/reach any particular NE
- Possible Solutions
 - ☐ Dominance: Dominant Strategy equilibria
 - ☐ Arbitrator/Mediator: Correlated equilibria, Coarse-correlated equilibria
 - Communication/Contract: Stackelberg equilibria, Nash bargaining
- Other Games
 - □ Extensive-form Games

Dominance

- Strict dominance: For a player, move s strictly dominates t if no matter what others play, s gives her better payoff than t
 - \square for all s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$

-i = "the player(s)
other than i"

- \blacksquare s weakly dominates t if
 - \square for all s_{-i} , $u_i(s, s_{-i}) \ge u_i(t, s_{-i})$; and
 - \square for some s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$

	L	M	R
strict dominance	0, 0	<mark>1</mark> , -1	1, -1
weak dominance	-1, 1	0, 0	-1, 1
B	-1, 1	1, -1	0, 0

b/A

Dominant Strategy Equilibrium

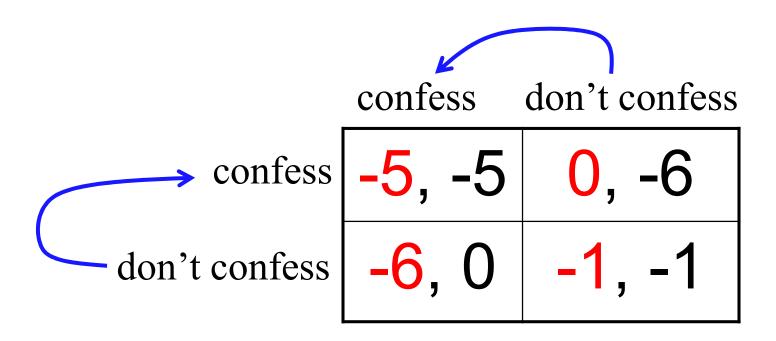
Playing move s_i is best for agent i, no matter what others play.

- For each player i, there is a (strategy) move s_i that (weakly) dominates all other moves.
 - \square for all i, s'_i , s_{-i} , $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$;

Example?

Prisoner's Dilemma

- Pair of criminals has been caught
- They have two choices: {confess, don't confess}



"Should I buy an SUV?"

purchasing cost

accident cost

cost: 5

cost: 5

cost: 5

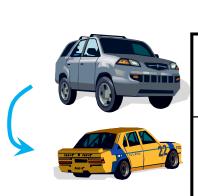
cost: 3

cost: 8

cost: 2

cost: 5

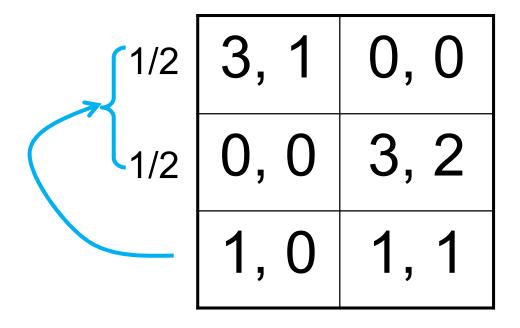
cost: 5



-10, -10	-7, -11
-11, -7	-8, -8

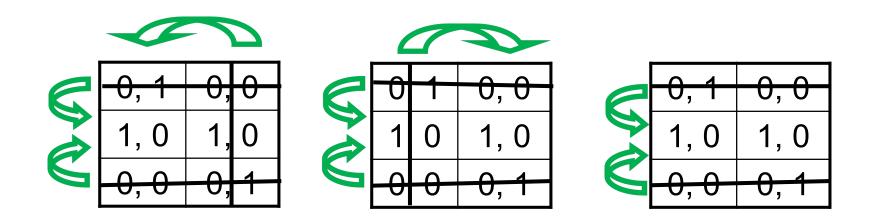
Dominance by Mixed strategies

■ Example of dominance by a mixed strategy:

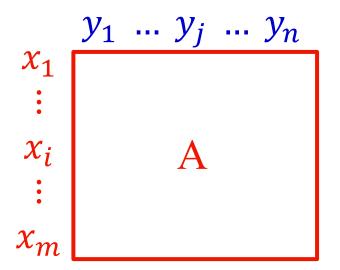


Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed)



Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)



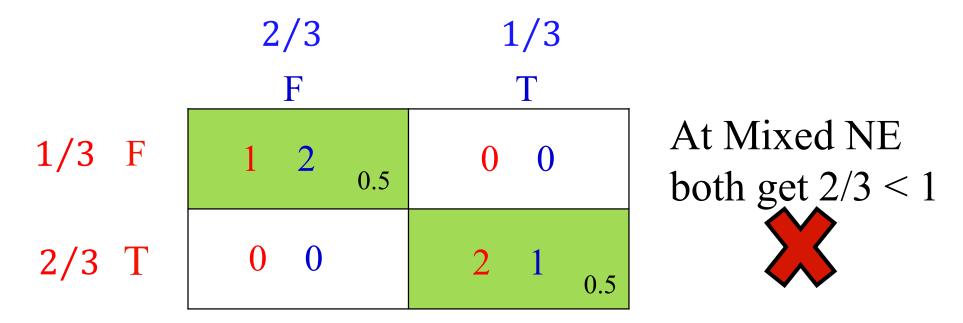
$$x_1$$
 \vdots
 x_i
 \vdots
 x_m

NE:
$$x^T A y \ge x'^T A y$$
, $\forall x'$ $x^T B y \ge x^T B y'$, $\forall y'$

No one plays Why? dominated strategies. What if they can discuss beforehand?

Players: {Alice, Bob}

Two options: {Football, Tennis}



Instead they agree on $\frac{1}{2}(F, T)$, $\frac{1}{2}(T, F)$ Payoffs are (1.5, 1.5) Fair!

Needs a common coin toss!

Correlated Equilibrium – (CE) (Aumann'74)

- Mediator declares a joint distribution P over $S=\times_i S_i$
- Tosses a coin, chooses $s = (s_1, ..., s_n) \sim P$.
- \blacksquare Suggests s_i to player i in private
- *P* is at equilibrium if each player wants to follow the suggestion when others do.
 - $\square U_i(s_i, P_{(s_i, .)}) \ge U_i(s_i', P_{(s_i, .)}), \ \forall s_i' \in S_1$

CE for 2-Player Case

- Mediator declares a joint distribution $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$
- Tosses a coin, chooses $(i,j) \sim P$.
- Suggests *i* to Alice, *j* to Bob, in private.
- P is a CE if each player wants to follow the suggestion, when the other does.

Given Alice is suggested i, she knows Bob is suggested $j \sim P(i, .)$

$$\langle A(i,.), P(i,.) \rangle \ge \langle A(i',.), P(i,.) \rangle : \forall i' \in S_1$$

$$\langle B(.,j), P(.,j) \rangle \ge \langle B(.,j'), P(.,j) \rangle : \forall j' \in S_2$$

Players: {Alice, Bob}

Two options: {Football, Shopping}

	F	S
F	1 2 0.5	0 0
S	0 0	2 1 0.5

Instead they agree on $\frac{1}{2}(F, S)$, $\frac{1}{2}(S, F)$ CE! Payoffs are (1.5, 1.5) Fair!

Prisoner's Dilemma

NC is dominated

Rock-Paper-Scissors (Aumann)

	R	P	S
R	0, 0	0, 1	1, 0
	0	1/6	1/6
P	1, 0	0, 0	0, 1
	1/6	0	1/6
S	0, 1	1, 0	0, 0
.)	1/6	1/6	0

When Alice is suggested R
Bob must be following $P_{(R,.)} \sim (0,1/6,1/6)$ Following the suggestion gives her 1/6
While P gives 0, and S gives 1/6.

Computation: Linear Feasibility Problem

Game (A, B). Find, joint distribution
$$P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$$

s.t.
$$\sum_{j} A_{ij} p_{ij} \ge \sum_{j} A_{i'j} p_{ij} \quad \forall i, i' \in S_1$$
$$\sum_{i} B_{ij} p_{ij} \ge \sum_{i} B_{ij'} p_{ij} \quad \forall j, j' \in S_2$$
$$\sum_{ij} p_{ij} = 1; \quad p_{ij} \ge 0, \quad \forall (i, j)$$

Computation: Linear Feasibility Problem

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(i,.)}) \ge U_i(s_i', P_{(s_i,.)}), \forall s_i, s_i' \in S_i$ $\uparrow \sum_{s \in S} P(s) = 1$ $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$ Linear in P variables!

Can optimize any convex function as well!

Coarse-Correlated Equilibrium

- After mediator declares P, each player opts in or out.
- \blacksquare Mediator tosses a coin, and chooses s \sim P.
- If player i opted in, then the mediator suggests her s_i in private, and she has to obey.
- If she opted out, then (knowing nothing about s) plays a fixed strategy $t \in S_i$
- At equilibrium, each player wants to opt in, if others are.

$$U_i(P) \ge U_i(t, P_{-i}), \ \forall t \in S_i$$

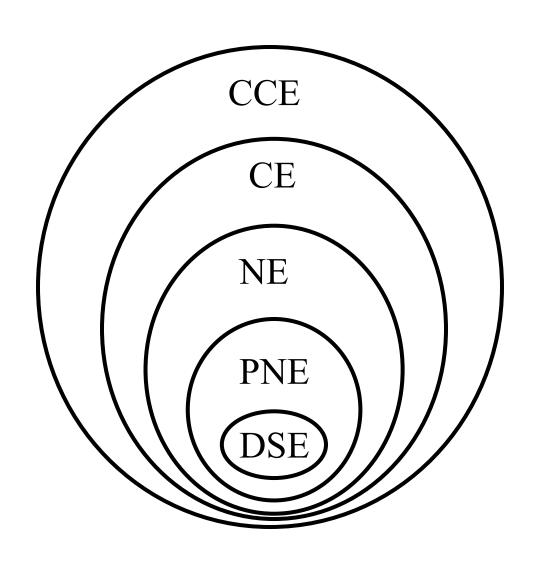
Where P_{-i} is joint distribution of all players except i.

Importance of (Coarse) CE

- Natural dynamics quickly arrive at approximation of such equilibria.
 - □ No-regret, Multiplicative Weight Update (MWU)

- Poly-time computable in the size of the game.
 - □ Can optimize a convex function too.

Show the following

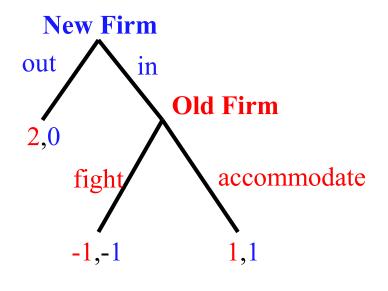


Extensive-form Game

- Players move one after another
 - □ Chess, Poker, etc.
 - ☐ Tree representation.

Strategy of a player: What to play at each of its node.

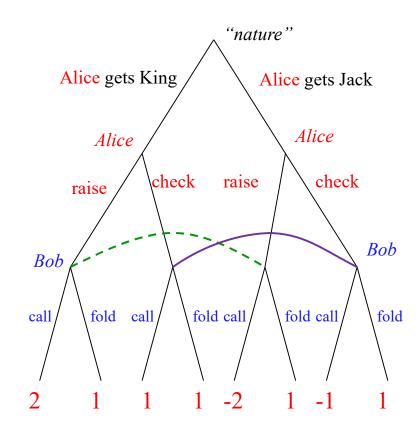
	I	O
F	-1, -1	2, 0
A	1, 1	2, 0



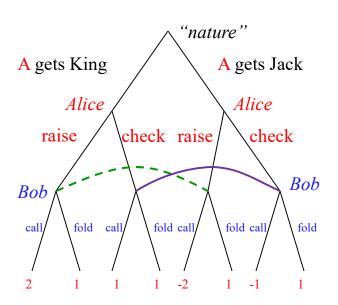
Entry game

A poker-like game

- Both players put 1 chip in the pot
- Alice gets a card (King is a winning card, Jack a losing card)
- Alice decides to raise (add one to the pot) or check
- Bob decides to call (match) or fold (Alice wins)
- If Bob called, he adds one to the pot. Alice's card determines pot winner.



Poker-like game in normal form

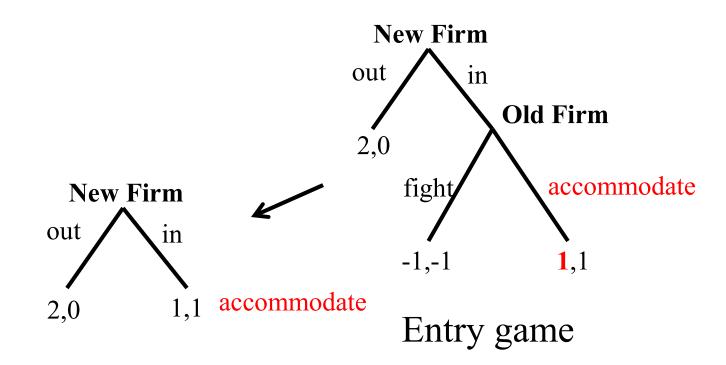


	cc	cf	fc	ff
rr	0, 0	0, 0	1, -1	1, -1
rc	.5,5	1.5, -1.5	0, 0	1, -1
cr	5, .5	5, .5	1, -1	1, -1
cc	0, 0	1, -1	0, 0	1, -1

Can be exponentially big!

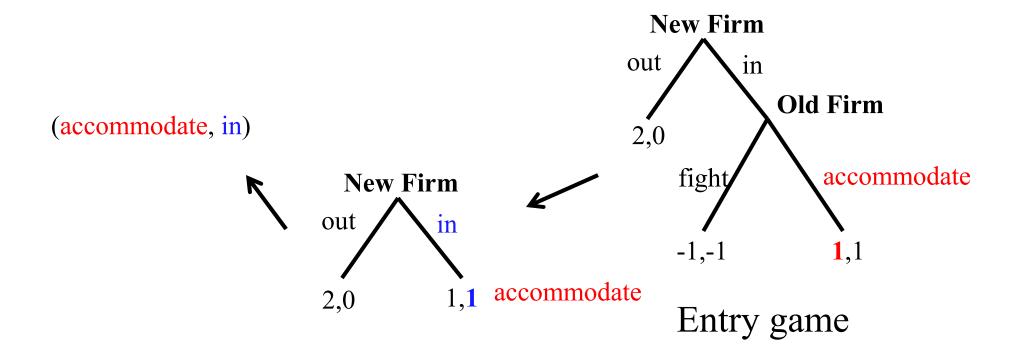
Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



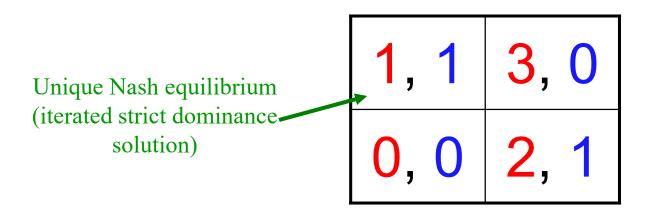
Corr. Eq. in Extensive form Game

- How to define?
 - □ CE in its normal-form representation.
- Is it computable?
 - □ Recall: exponential blow up in size.
- Can there be other notions?

See "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity" by von Stengel and Forges, 2008.

Commitment (Stackelberg strategies)

Commitment

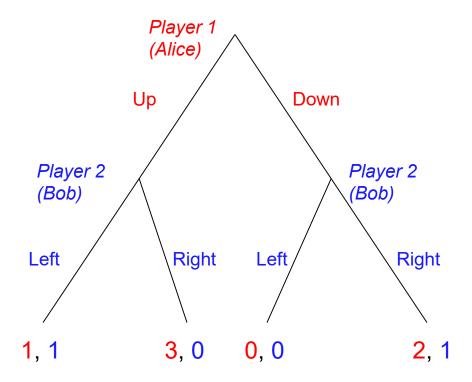


von Stackelberg

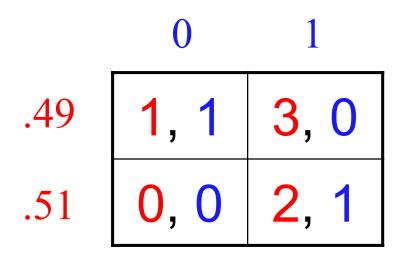
- Suppose the game is played as follows:
 - Alice commits to playing one of the rows,
 - Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down

Commitment: an extensive-form game

For the case of committing to a pure strategy:



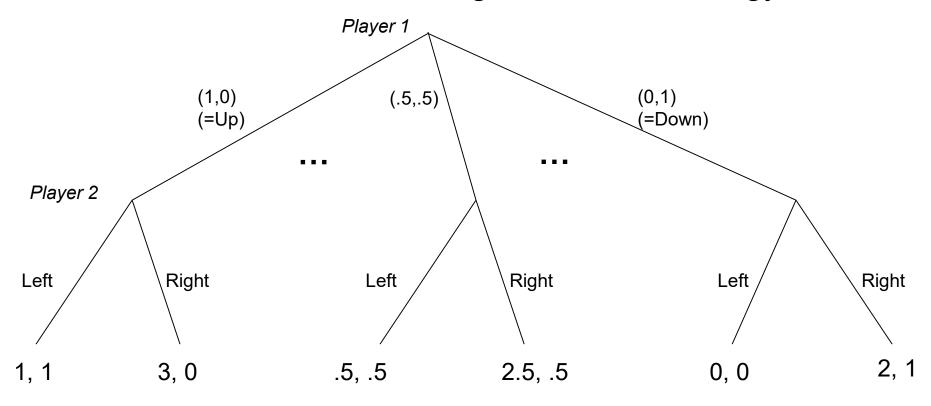
Commitment to mixed strategies



Also called a Stackelberg (mixed) strategy

Commitment: an extensive-form game

... for the case of committing to a mixed strategy:



- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to

[Conitzer & Sandholm EC'06]

- Player 1 (Alice) is a leader.
- Separate LP for Bob's move (column) $j^* \in S_2$:

```
maximize \sum_{i} x_{i} A_{ij^{*}} Alice's utility when Bob plays j^{*} subject to \forall j, (x^{T}B)_{j^{*}} \geq (x^{T}B)_{j} Playing j^{*} is best for Bob x \geq 0, \sum_{i} x_{i} = 1 x is a probability distribution
```

Among soln. of all the LPs, pick the one that gives max utility.

On the game we saw before

$$x_1$$
 1, 1 3, 0 x_2 0, 0 2, 1

maximize
$$1x_1 + 0 x_2$$

subject to

1
$$x_1 + 0$$
 $x_2 \ge 0$ $x_1 + 1$ x_2

$$x_1 + x_2 = 1$$

$$x_1 \ge 0, x_2 \ge 0$$

maximize
$$3 x_1 + 2 x_2$$

subject to

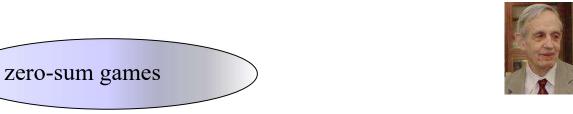
$$0 x_1 + 1 x_2 \ge 1 x_1 + 0 x_2$$
$$x_1 + x_2 = 1$$
$$x_1 \ge 0, x_2 \ge 0$$

Visualization

	L	С	R	
U	0,1	1,0	0,0	(0,1,0) = M
М	4,0	0,1	0,0	
D	0,0	1,0	1,1	
			(1,0,0) = U	(0,0,1) = D

Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games



zero-sum games

minimax strategies

general-sum games

Nash equilibrium

zero-sum games

general-sum games

Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

No equilibrium selection problem

0, 0	-1, 1
1, -1	-5, -5

 Leader's payoff at least as good as any Nash eq. or even correlated eq.

von Stengel & Zamir [GEB '10]

<u>></u>

Nash Bargaining

Nash Bargaining: Dividing Utilities

Two agents: 1, 2

Outside option utilities: c_1 , c_2

Feasible set of Utilities: $U \subseteq R^2$ (convex),

 $(c_1, c_2) \in U$

Goal: define a bargaining function $f(c_1, c_2, U) \in U$ Satisfying certain good properties

Nash Bargaining: Axioms

Two agents: 1, 2

Outside option with utilities: c_1 , c_2

Feasible set of Utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$

Goal: $f(c_1, c_2, U) \in U$ that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

Nash Bargaining: Theorem

Two agents: 1, 2

Outside option with utilities: c_1 , c_2

Feasible set of Utilities: $U \subseteq R^2$ (convex), $(c_1, c_2) \in U$

Goal: $f(c_1, c_2, U) \in U$ that is

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational

Theorem (Nash'50). f satisfies the 5 axioms if and only if, $f(c_1, c_2, U)$ is

argmax
$$(u_1 - c_1)(u_2 - c_2)$$

s.t. $(u_1, u_2) \in U$

Nash Bargaining: Theorem

Theorem (Nash'50). f satisfies the 5 axioms if and only if, $f(c_1, c_2, U)$ is

argmax
$$(u_1 - c_1)(u_2 - c_2)$$

s.t. $(u_1, u_2) \in U$

Proof. (\Leftarrow)

- 1. Scale free
- 2. Symmetric
- 3. Pareto Optimal
- 4. Independent of Irrelevant Alternatives (IIA)
- 5. Individually Rational