# Lecture 16 NE Computation, PPAD and other TFNP classes

CS580

Ruta Mehta

Most slides are borrowed from Prof. C. Daskalakis's presentation.

### Menu

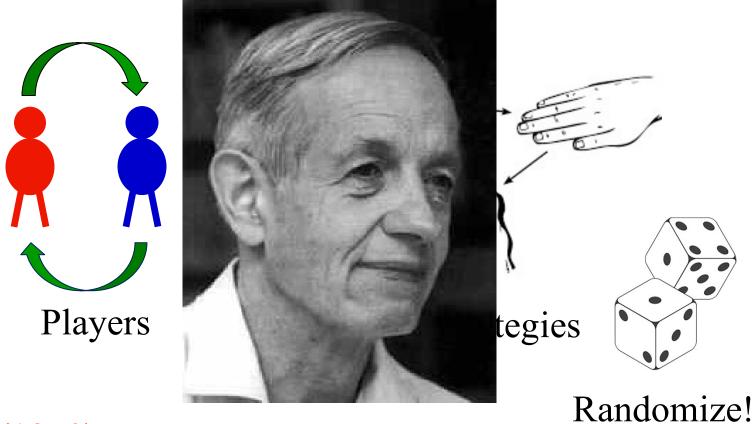
Existence Theorems: Nash, Brouwer, Sperner

# Games



Randomize!

# Equilibria



## Nash (1950):

There exists a (stable) state where no player gains by unilateral deviation.

Nash equilibrium (NE)

## Games and Equilibria

|     |              | 2/5  | 3/5   |
|-----|--------------|------|-------|
|     | Kick<br>Dive | Left | Right |
| 1/2 | Left         | 2,-1 | -1,1  |
| 1/2 | Right        | -1,1 | 1, -1 |

#### **Equilibrium:**

A pair of randomized strategies so that no player has incentive to deviate if the other stays put.

[Nash '50]: An equilibrium exists in every game.

no poly-time algorithm known, despite intense effort

#### Menu

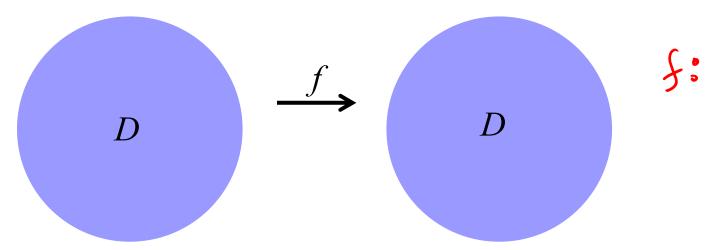
Existence Theorems: Nash, **Brouwer**, Sperner

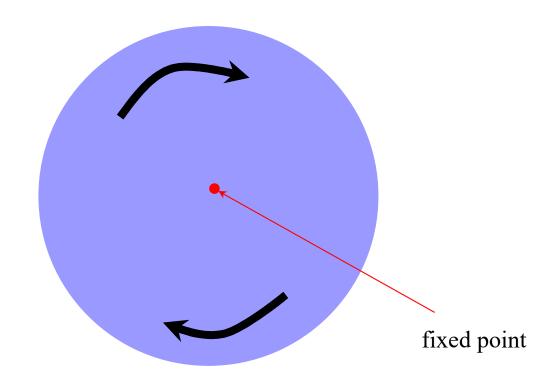
[Brouwer 1910]: Let  $f: D \to D$  be a continuous function from a convex and compact subset D of the Euclidean space to itself.

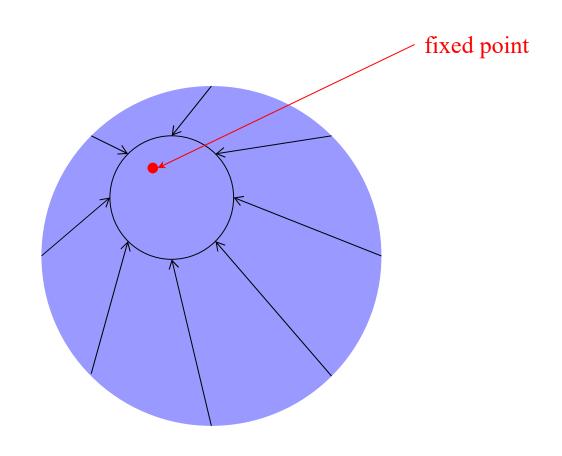
Then there exists an  $x \in D$  s.t. x = f(x).

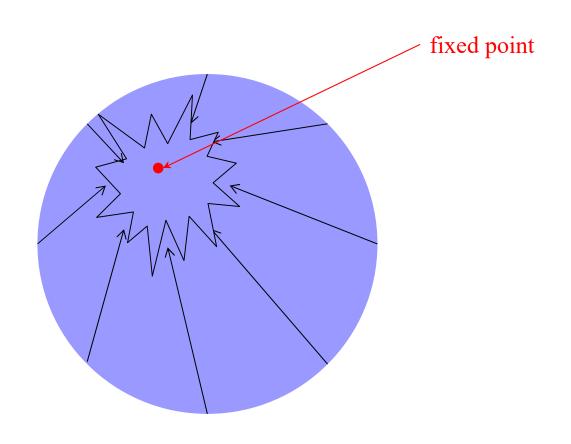
closed and bounded

A few examples, when D is the 2-dimensional disk.









 $Brouwer \Rightarrow Nash$  (Nash'51)

Nash's Proof:

Nash's Proof:

Rindomized Strategies A player I  $f: \Delta_m \times \Delta_n \to \Delta_m \times \Delta_n$ , (x', y') = f(x, y)

 $\forall i$ ,  $\delta_i = \max\{(Ay)_i - x^T Ay, 0\},$ 

$$\forall i, \qquad x_i' = \frac{x_i + \delta_i}{\sum_k (x_k + \delta_k)}$$

Lemma. If x' = x then x is best for Alice against  $y \equiv \text{If } x^T A y < z^T A y$  for some  $z \in \Delta_m$  then  $x' \neq x$ .

$$\forall i, \qquad \delta_i = \max\{(Ay)_i - x^T Ay, 0\},$$

$$\forall i, \qquad x_i' = \frac{x_i + \delta_i}{\sum_k x_k + \delta_k} \qquad \text{and} \qquad X$$

Lemma. If  $x^T A y < z^T A y$  for some  $z \in \Delta_m$  then  $x' \neq x$ .

Pf:  

$$k'= M \frac{\pi x}{\pi x} \left( (Ay); -x^T Ay \right)$$

$$K = M \frac{\pi x}{x} \left( (Ay); -x^T Ay \right)$$

$$S_k > 0$$

$$S_k = \left( (Ay); -x^T Ay \right)$$

claim: 
$$x_k^1 + x_k^2$$

$$x_k^2 = \frac{x_k^2 + 0}{(2x_i + 5\delta_i)} > 1$$

## Nash's Proof

$$f: \Delta_m \times \Delta_n \to \Delta_m \times \Delta_n$$
,  $(x', y') = f(x, y)$ 

$$\forall j$$
,  $\tau_j = \max\left\{\left(x^T B\right)_j - x^T B y, 0\right\}$ ,

$$\forall j, \qquad y_j' = \frac{y_j + \tau_j}{\sum_k y_k + \tau_k}$$

Lemma. If y' = y then y is best for Bob against x $\equiv \text{If } x^T B y < x^T B z \text{ for some } z \in \Delta_n \text{ then } y' \neq y.$ 

| Kick<br>Dive | Left | Right |
|--------------|------|-------|
| Left         | 1,-1 | -1,1  |
| Right        | -1,1 | 1, -1 |

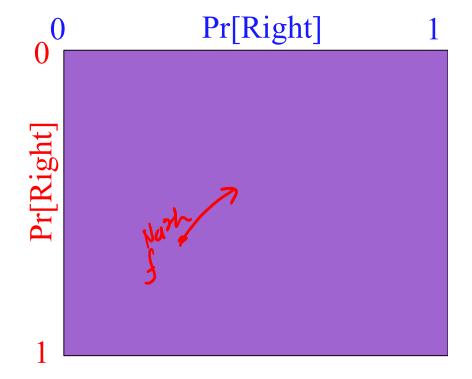


 $f: [0,1]^2 \rightarrow [0,1]^2$ , continuous such that fixed points  $\equiv$  Nash eq.

Penalty Shot Game

| Kick<br>Dive | Left | Right |
|--------------|------|-------|
| Left         | 1,-1 | -1,1  |
| Right        | -1,1 | 1, -1 |

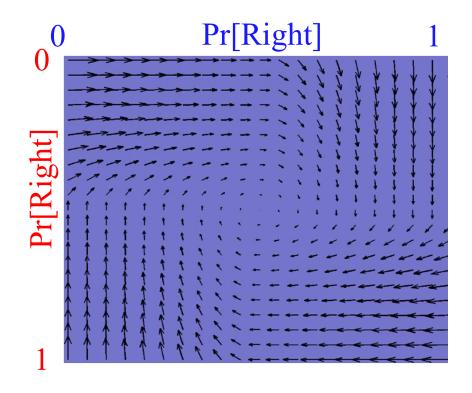
Penalty Shot Game



| Kick<br>Dive   | (Fy)<br>Left | Right |
|----------------|--------------|-------|
| (Internal      | 1,-1         | -1,1  |
| <b>≈</b> Right | -1,1         | 1, -1 |

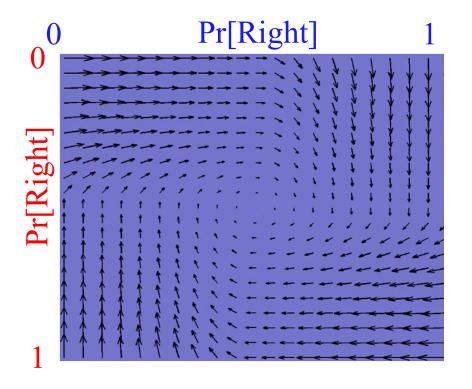
Penalty Shot Game

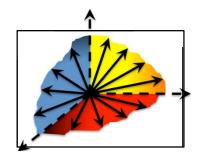




| Kick<br>Dive | Left | Right |
|--------------|------|-------|
| Left         | 1,-1 | -1,1  |
| Right        | -1,1 | 1, -1 |

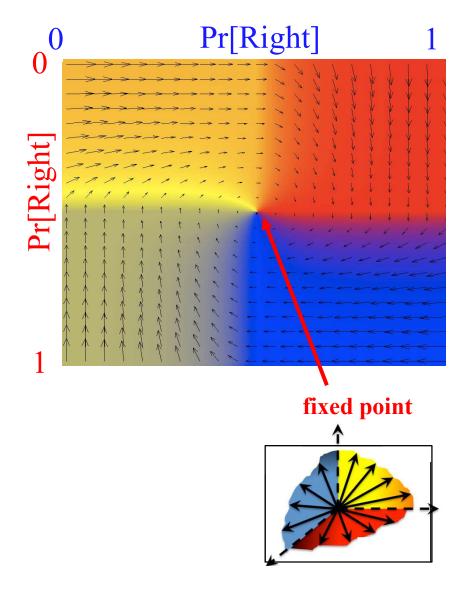
Penalty Shot Game





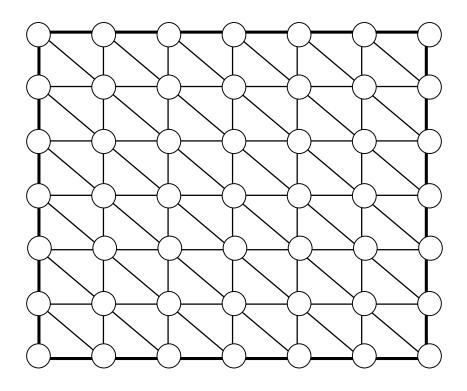
|     |              | 1/2  | 1/2   |
|-----|--------------|------|-------|
|     | Kick<br>Dive | Left | Right |
| 1/2 | Left         | 1,-1 | -1,1  |
| 1/2 | Right        | -1,1 | 1, -1 |

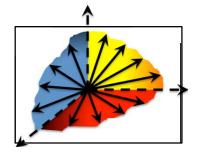
Penalty Shot Game

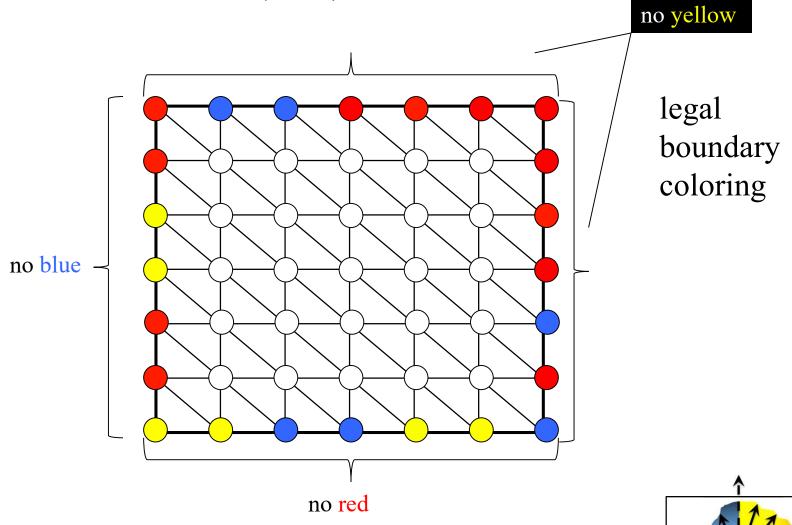


#### Menu

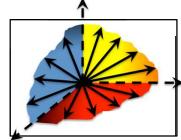
Existence Theorems: Nash, Brouwer, **Sperner** 

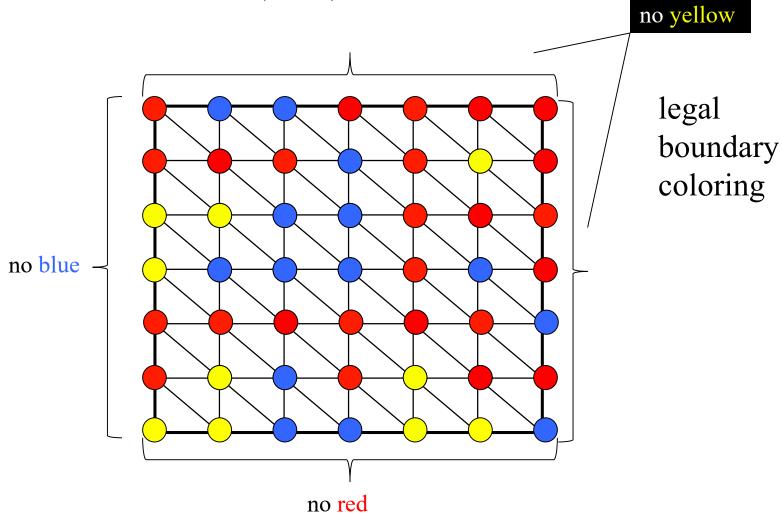


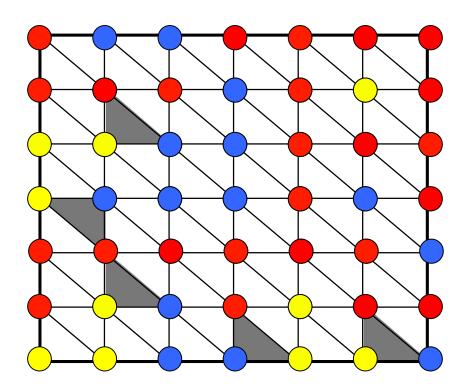




[Sperner 1928]: Color the boundary using three colors in a legal way.







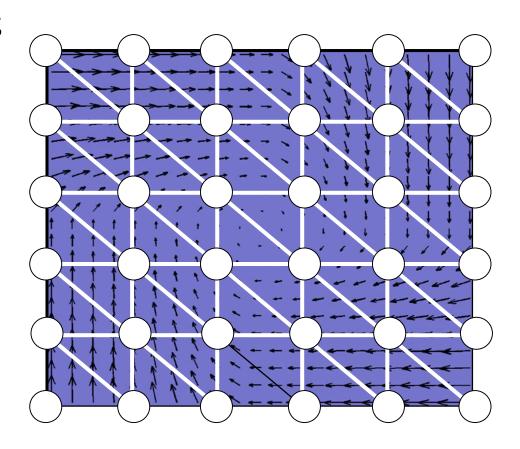
 $Sperner \Rightarrow Brouwer$ 

## **Sperner** ⇒ **Brouwer** (**High-Level**)

Given  $f: [0,1]^2 \to [0,1]^2$ 

- 1) For all  $\epsilon > 0$ , existence of approximate fixed point  $|f(x)-x| < \epsilon$ , can be shown via Sperner's lemma.
- 2) Then let  $\epsilon \to 0$

For 1): Triangulate  $[0,1]^2$ ;



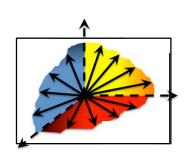
## Sperner $\Rightarrow$ Brouwer (High-Level)

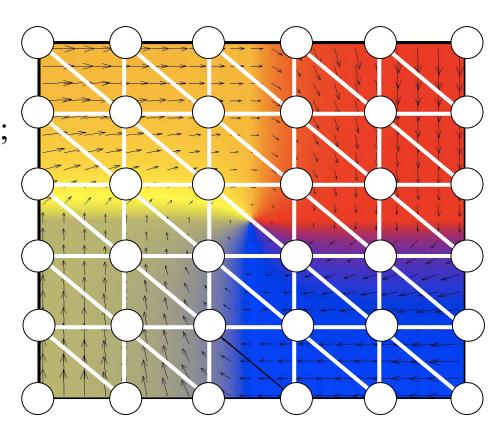
Given  $f: [0,1]^2 \to [0,1]^2$ 

- 1) For all  $\epsilon > 0$ , existence of approximate fixed point  $|f(x)-x| < \epsilon$ , can be shown via Sperner's lemma.
- 2) Then let  $\epsilon \to 0$

For 1): Triangulate  $[0,1]^2$ ;

Color points according to the direction of (f(x)-x);





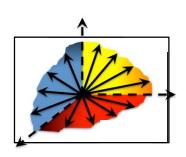
## Sperner $\Rightarrow$ Brouwer (High-Level)

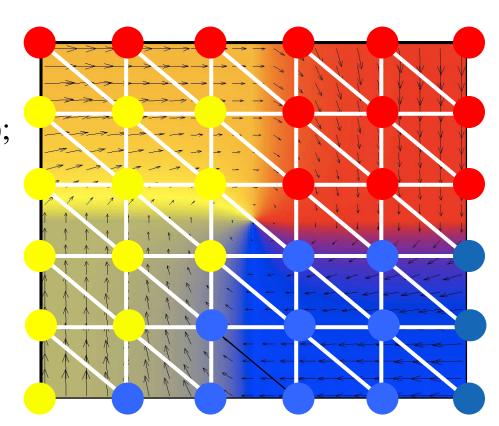
Given  $f: [0,1]^2 \to [0,1]^2$ 

- 1) For all  $\epsilon > 0$ , existence of approximate fixed point  $|f(x)-x| < \epsilon$ , can be shown via Sperner's lemma.
- 2) Then let  $\epsilon \to 0$

For 1): Triangulate  $[0,1]^2$ ;

Color points according to the direction of (f(x)-x);





## Sperner $\Rightarrow$ Brouwer (High-Level)

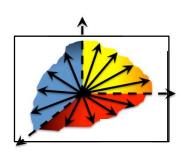
Given  $f: [0,1]^2 \to [0,1]^2$ 

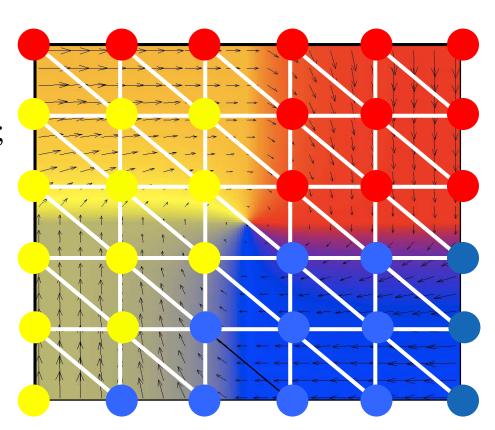
- 1) For all  $\epsilon > 0$ , existence of approximate fixed point  $|f(x)-x| < \epsilon$ , can be shown via Sperner's lemma.
- 2) Then let  $\epsilon \to 0$

For 1): Triangulate  $[0,1]^2$ ;

Color points according to the direction of (f(x)-x);

Apply Sperner.





## 2D-Brouwer on the Square

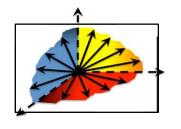
d be  $l_{\infty}$  norm

Suppose  $f: [0,1]^2 \rightarrow [0,1]^2$ , continuous

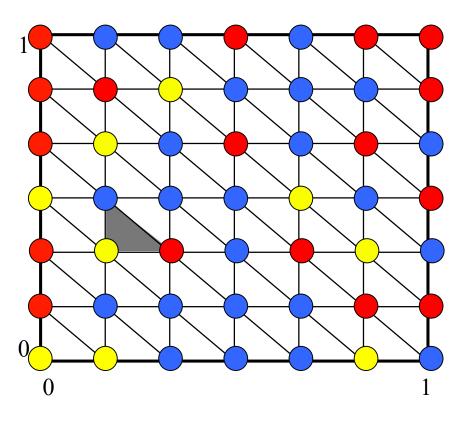
$$\forall \epsilon, \exists \delta(\epsilon) > 0, s.t.$$

(by the <u>Heine-Cantor theorem</u>)

$$d(x, y) < \delta(\epsilon) \Rightarrow d(f(x), f(y)) < \epsilon$$



Choose small enough grid size so that...



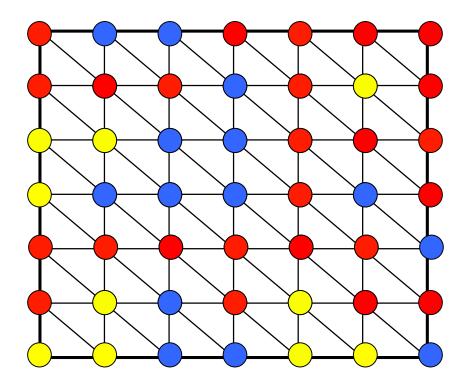
**Claim:** If z a corner of a trichromatic triangle, then

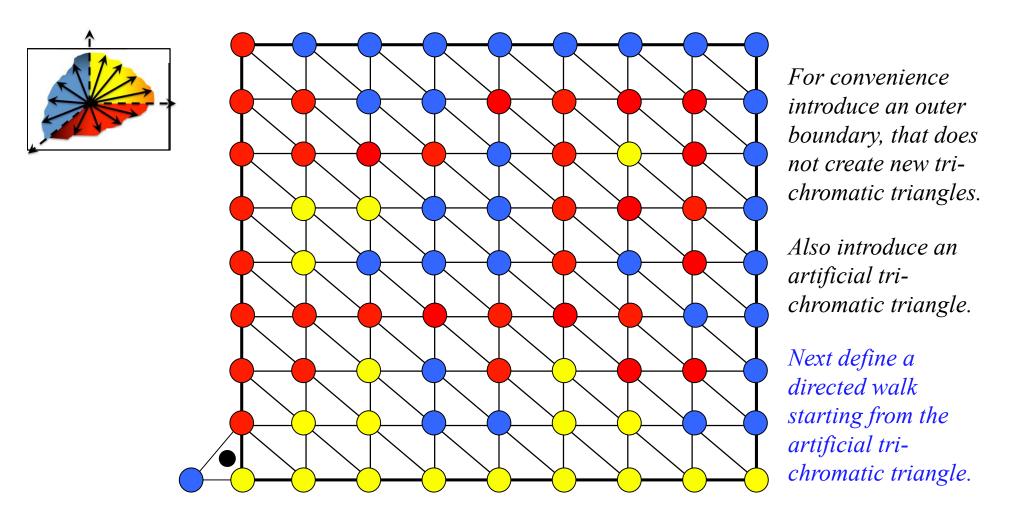
Choosing  $\delta = \min\{\delta(\epsilon), \epsilon\}$ 

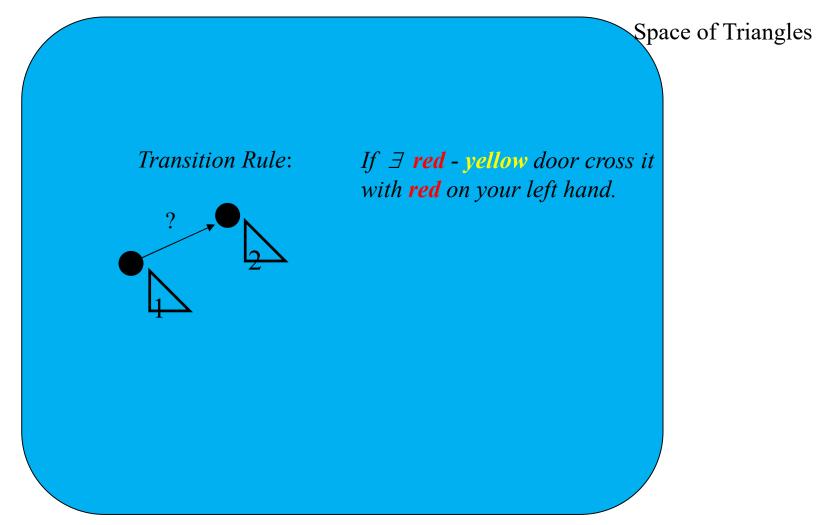
$$|f(z) - z|_{\infty} < c\delta, \qquad c > 0$$

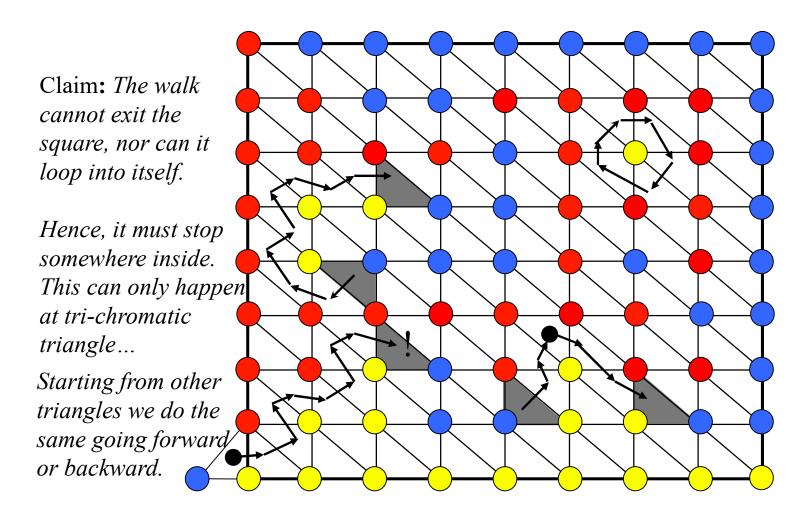
#### Menu

→ Existence Theorems: Nash, Brouwer, Sperner
 → (Constructive) proof of Sperner → PPAD.

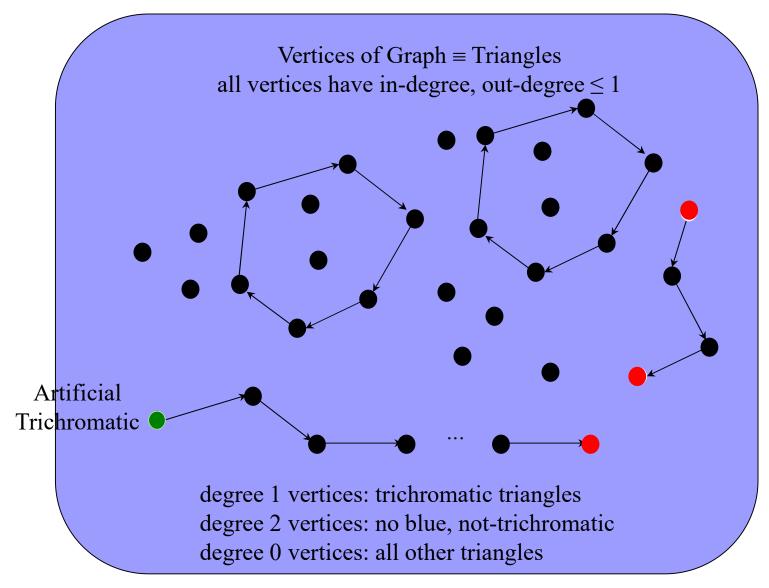






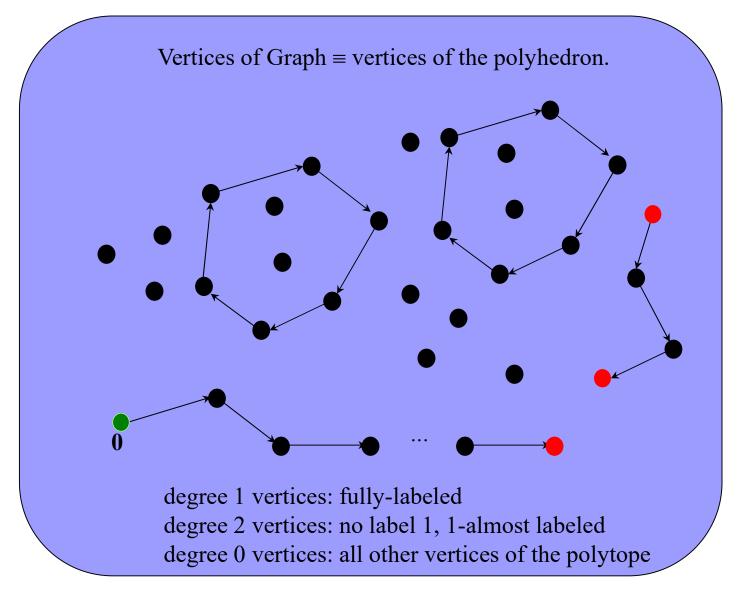


## Proof Structure: A directed parity argument



**Proof:**  $\exists$  at least one trichromatic (artificial one)  $\Rightarrow$   $\exists$  another trichromatic

#### **Recall: Lemke-Howson Structure for 2-Nash**

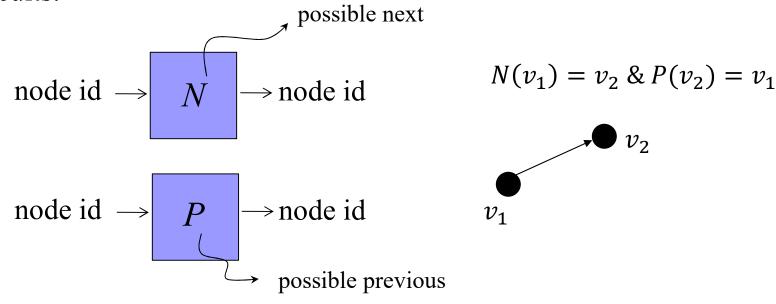


**Proof:** 0 fully-labeled  $\rightarrow$   $\exists$  another fully-labeled

## The PPAD Class [Papadimitriou '94]

(Polynomial Parity Argument for Directed Graph)

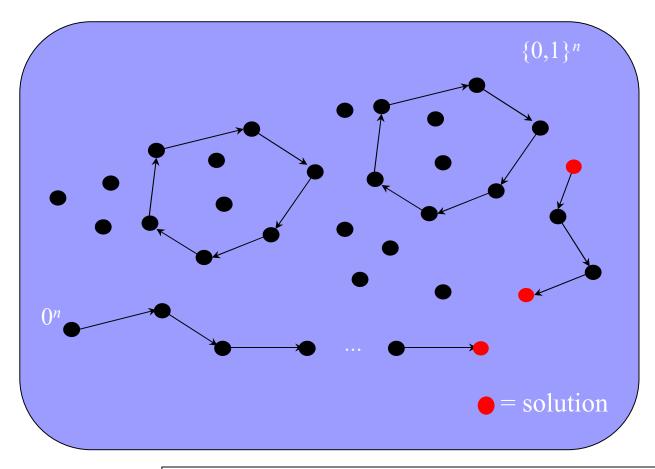
Suppose that an exponentially large graph with vertex set  $\{0,1\}^n$  is defined by two circuits:

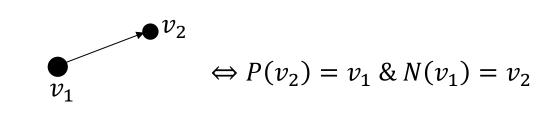


**END OF THE LINE**: P and N are given. If  $0^n$  is an unbalanced node, find another unbalanced node. Otherwise output  $0^n$ .

**PPAD** = { Problems reducible to END OF A LINE }

## END OF A LINE

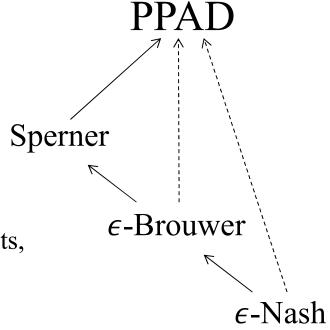




# [Papadimitriou '94]

#### PPAD-complete:

Nash eq. (even 2-player games), Market eq., Sperner, Brouwer, win-lose games, sparse games, competitive eq. with equal income, clearing payments in financial markets, Fractional hypergraph matching, Fractional stable path problem, ...



 $\epsilon$ -Brower: Given  $f: D \to D$ , find  $x \in D$ ,  $s.t. |f(x) - x| < \epsilon$  $\epsilon$ -Nash: Profile from which no player can deviate and gains by more than  $\epsilon$ .

:Exact could be irrational

#### Menu

→ Existence Theorems: Nash, Brouwer, Sperner

→ (Constructive) proof of Sperner, and PPAD

→ Why not use NP?

Total Search problems.

## NP, co-NP vs PPAD

Can they be NP-hard? NO!

# $NP \cap co-NP$ Poly-time verifier PPAD Sperner $\epsilon$ -Brouwer $\epsilon$ -Nash

#### If there exists a solution?

- NP: poly-time verifier for YES answer
- co-NP: poly-time verifier for NO answer

- Here the answer is always YES!
  - $\Box$  The problem is to find a solution.

## Function NP (FNP): Search problems

#### Either find a solution or say there is none!

Problem  $L \in FNP$  has a poly-time verifier  $A_L$  s.t.  $A_L(x, y) = 1$  if y is a soln. of  $x \in L$ 

It is *poly-time (Karp) reducible* to another problem  $L' \in FNP$ , associated with  $A_{L'}$ , iff there exist poly-time functions f, g such that

(i)  $f: \{0,1\}^* \to \{0,1\}^*$  maps inputs x to L into inputs f(x) to L'

(ii)  $\forall$  x,y:  $A_L$ ,  $(f(x), y)=1 \Rightarrow A_L(x, g(y))=1$  SPERNER, NASH or BROUWER

A search problem *L* ' is *FNP-complete* iff

 $L' \in FNP$ 

e.g. SAT

can't reduce SAT to

 $\forall L \in \text{FNP}, L \text{ is poly-time reducible to } L'.$ 

SPERNER, NASH, BROUWER  $\in$  FNP.

#### **Total Function NP**

Function NP (FNP): Search problems

Either find a solution or say there is none!

Total FNP: A search problem is called *total* iff a solution is guaranteed

 $PPAD \subseteq TFNP \subseteq (NP \cap co-NP)$ 

## Complexity Theory of TFNP:

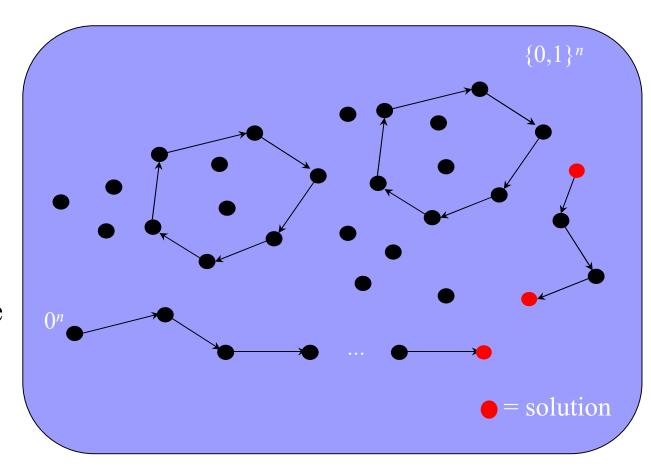
- 1. identify the combinatorial argument of existence, responsible for making these problems total;
- 2. define a complexity class inspired by the argument of existence;
- 3. make sure that the complexity of the problem was captured as tightly as possible (via completeness results).

## **PPAD:**

In & out degree≤ 1

 $0^n$  with in=0, out=1

∃ another such node



# Other arguments of existence, and resulting complexity classes

"If an undirected graph has a node of odd degree, then it must have another."

PPA

"Every directed acyclic graph must have a sink."

**PLS** 

"If a function maps n elements to n-1 elements, then there is a collision."

**PPP** 

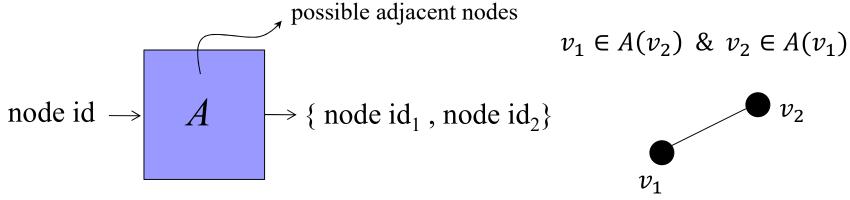
Formally?

## PPA: Polynomial Parity Argument

[Papadimitriou '94]

"If a graph has a node of odd degree, then it must have another."

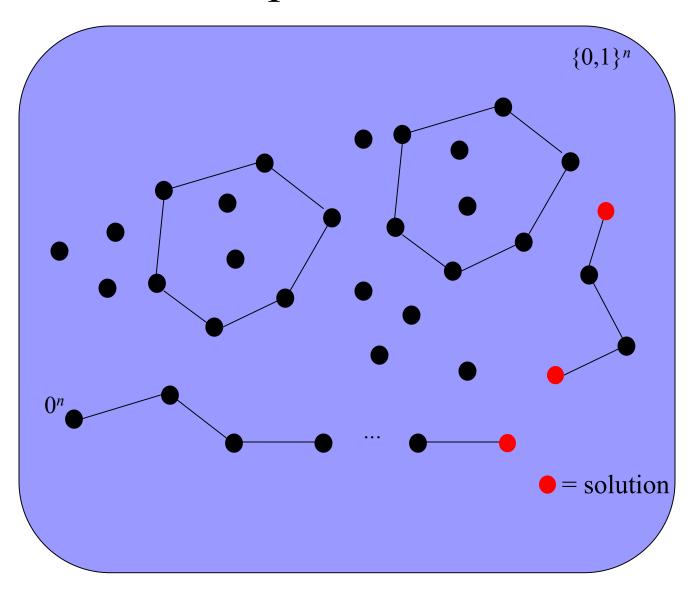
Suppose that an exponentially large graph with vertex set  $\{0,1\}^n$  is defined by one circuit:



**ODD DEGREE NODE**: Given C, if  $0^n$  has odd degree, find another node with odd degree. Otherwise say "yes".

**PPA** = { Search problems in FNP reducible to ODD DEGREE NODE}

# The Undirected Graph

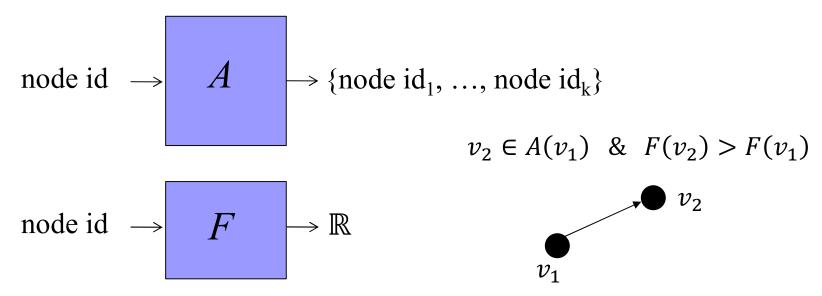


## PLS: Polynomial Local Search

[Johnson, Papadimitriou, Yannakakis '89]

"Every DAG has a sink."

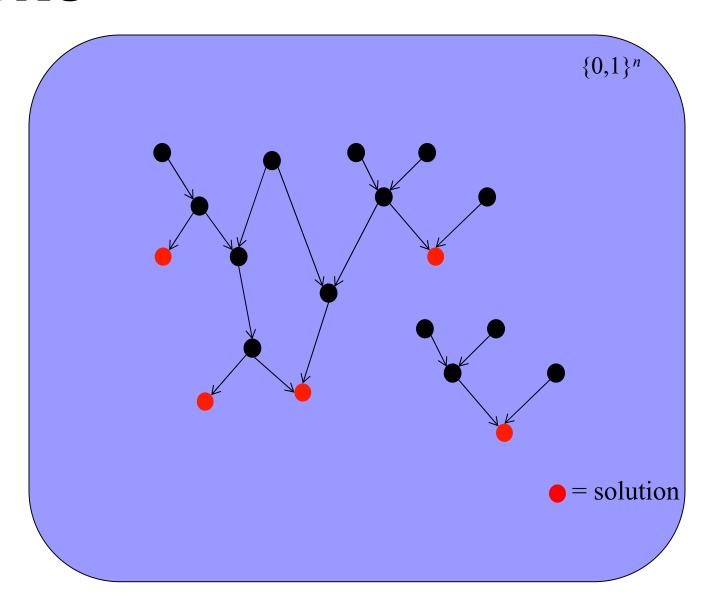
Suppose that a DAG with vertex set  $\{0,1\}^n$  is defined by two circuits:



**FIND SINK**. Given C, F: Find x s.t.  $F(x) \ge F(y)$ , for all  $y \in C(x)$ .

**PLS** = { Search problems in FNP reducible to FIND SINK}

## The DAG

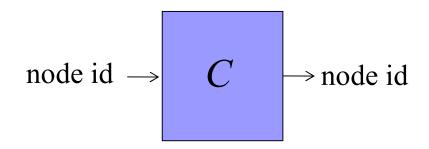


## PPP: Polynomial Pigeonhole Principle

[Papadimitriou '94]

"If a function maps n elements to n-1 elements, then there is a collision."

Suppose that an exponentially large graph with vertex set  $\{0,1\}^n$  is defined by one circuit:



**COLLISION**. Given C: Find x s.t.  $C(x) = 0^n$ ; or find  $x \neq y$  s.t. C(x) = C(y).

**PPP** = { Search problems in FNP reducible to COLLISION }

