Lecture 14 Games and Nash Equilibrium

CS 580

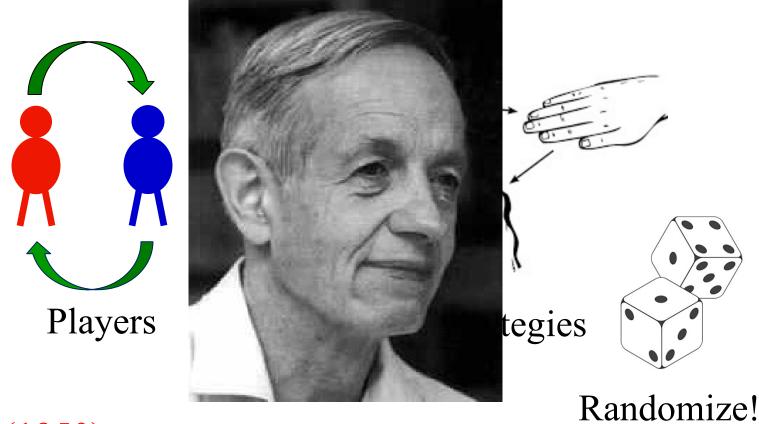
6th October 2022

Instructor: Ruta Mehta

Games

Randomize!

Games

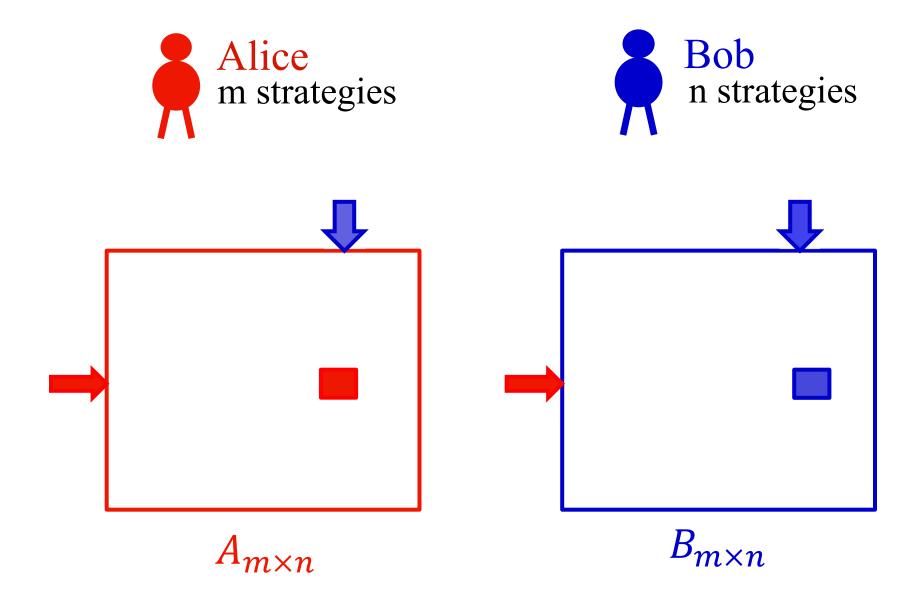


Nash (1950):

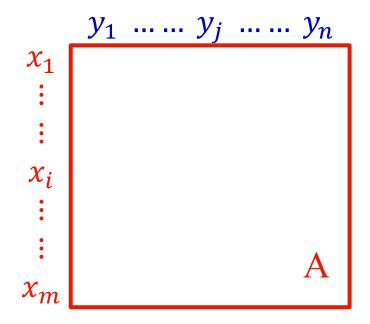
There exists a (stable) state where no player gains by unilateral deviation.

Nash equilibrium (NE)

Our focus: Two-player games



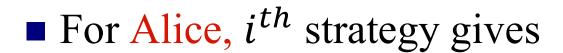
Randomize

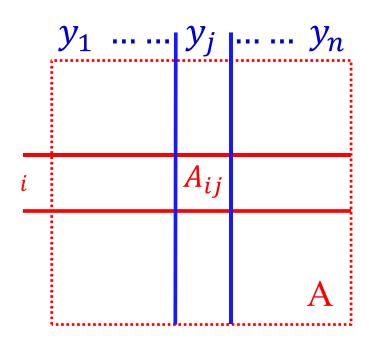


$$y_1 \dots y_j \dots y_n$$
 x_1
 \vdots
 x_i
 \vdots
 x_m
 B

$$y_1, \ldots, y_m \geq 0$$

$$y_1, \ldots, y_m \geq 0$$

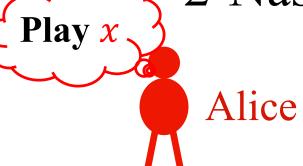




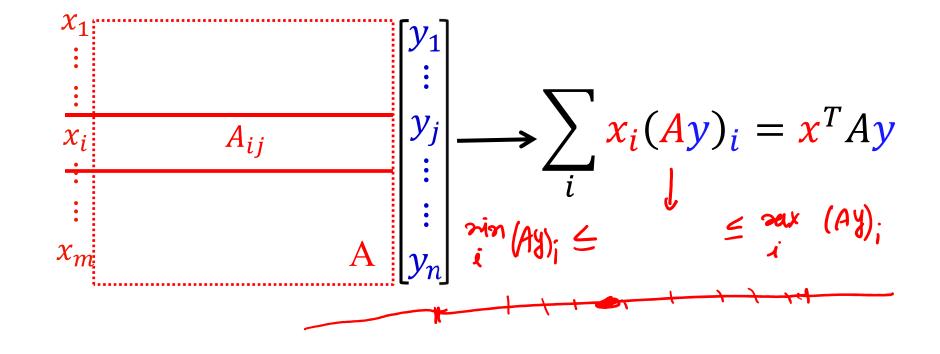
$$\longrightarrow \sum_{j} A_{ij} y_{j}$$

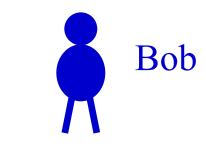
 \blacksquare For Alice, i^{th} strategy gives

$$\begin{bmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ \vdots \\ y_n \end{bmatrix} \rightarrow \sum_{j} A_{ij} y_j = (Ay)_{i}$$

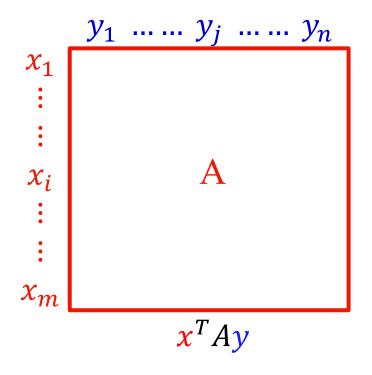


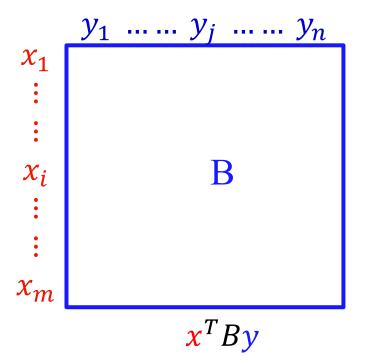
Alice's expected payoff is





Randomize

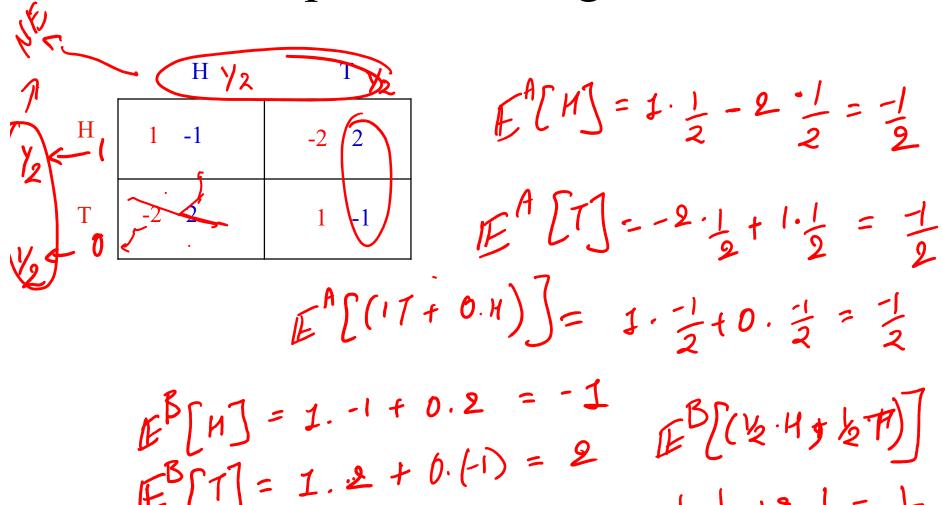


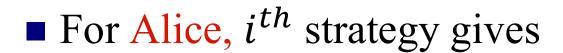


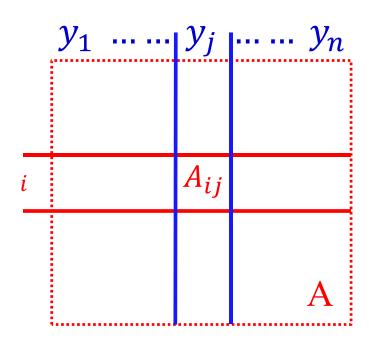
NE: No unilateral deviation is beneficial

$$x^{T}Ay \ge z^{T}Ay$$
, $\forall z \in \Delta_{m}$
 $x^{T}By \ge x^{T}Bz$, $\forall z \in \Delta_{n}$

Example: Matching Pennies





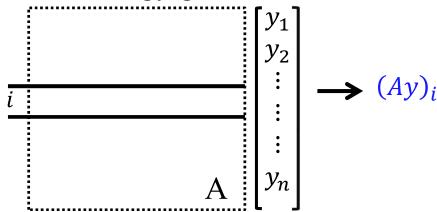


$$\longrightarrow \sum_{j} A_{ij} y_{j}$$

 \blacksquare For Alice, i^{th} strategy gives

$$\begin{bmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ \vdots \\ y_n \end{bmatrix} \rightarrow \sum_{j} A_{ij} y_j = (Ay)_i$$

• *i*th strategy gives Alice



- Max possible payoff: $\max_{i} e_{i}Ay$
- x achieves max payoff iff

$$x^{T}Ay \ge (Ay)_{i}, \quad \forall i$$

$$\equiv$$

$$\forall k, \quad x_{k} > 0 \Rightarrow k \in \underset{i}{\operatorname{argmax}} (Ay)_{i}$$

Complementarity

- Max possible payoff: $\max_{i} e_{i}Ay$
- x achieves max payoff iff

$$\forall i, \quad x^{T}Ay \ge (Ay)_{i}$$

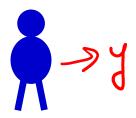
$$\equiv$$

$$\forall k, \quad x_{k} > 0 \Rightarrow (Ay)_{k} = \max_{i} (Ay)_{i}$$
Complementarity

H T

H 1 -1 -2 2
T -2 2 1 -1

Polyhedra



$$\max$$
-payoff $\leq (\pi_A)$

$$P \begin{cases} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{cases}$$

$$\max$$
-payoff $\leq \pi_B$

$$Q \quad \forall j, \left(\underbrace{x}^T B \right)_j \leq \pi_B$$

$$x \in \Delta_m$$

$$z^{T}Ay = TA$$
 $z^{T}Ay = TA$
 $z^{T}Ay - TA = 0$
 $z^{T}Ay - TA = 0$

$$\forall i, (Ay)_i \leq \pi_A$$

$$P \quad y \in \Delta_n$$

$$(y, \pi_A) \in P, \qquad (x, \pi_B) \in Q$$

Sum of payoffs

At least the sum of max payoffs $x^{T}(A + B)y - (\pi_{A} + \pi_{B}) \leq 0$

$$P \begin{vmatrix} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{vmatrix}$$

$$Q \begin{vmatrix} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{vmatrix}$$

$$(y, \pi_A) \in P, \qquad (x, \pi_B) \in Q$$

Sum of payoffs

At least the sum of

max payoffs

$$(x^T(A+B)y - (\pi_A + \pi_B)) = 0$$

 \downarrow

Complementarity

- 1. (x, y) is a NE
- 2. π_A and π_B are the max payoffs

$$P \quad \forall i, (Ay)_i \leq \pi_A$$

$$y \in \Delta_n$$

$$Q \quad \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m$$

Claim. For $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$ (i) $x^T (A + B)y - (\pi_A + \pi_B) \le 0$. (ii) $x^T (A + B)y - (\pi_A + \pi_B) = 0$ if and only if (x, y) is a NE.

$$(1) \times (1 + 2) \times (1) \times$$

$$P \quad \begin{cases} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{cases}$$

$$Q \quad \begin{cases} \forall j, \left(x^T B\right)_j \leq \pi_B \\ x \in \Delta_m \end{cases}$$

Claim. For $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$ $Ay - \pi_A \leq 0$, $Ay - \pi_B \leq 0$ (i) $x^T(A+B)y - (\pi_A + \pi_B) \leq 0$.

(ii) $x^T(A+B)y - (\pi_A + \pi_B) = 0$ if and only if (x, y) is a NE.

$$(\Rightarrow)^{\text{Let}}(\vec{y},\vec{\eta}_{n}) \in \mathcal{F}, (\vec{x},\vec{\eta}_{g}) \notin \mathcal{F}, (\vec{x},\vec{\eta}_{g})$$

$$P | \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n$$

$$Q \begin{vmatrix} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{vmatrix}$$

$$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$$

2-Nash payoffs_

max payoffs

$$\max : x^T (A + B) y - (\pi_A + \pi_B) = \mathbf{0}$$

s.t.
$$(y, \pi_A) \in P$$
, $(x, \pi_B) \in Q$ Complementarity

- 1. (x, y) is a NE
- 2. π_A and π_B are the max payoffs

$$P \mid \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n$$

$$Q \begin{vmatrix} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{vmatrix}$$

$$(y, \pi_A) \in P, \qquad (x, \pi_B) \in Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

$$\max: x^{T}(A+B)y - (\pi_{A}+\pi_{B})$$
s.t. $(y, \pi_{A}) \in P$, $(x, \pi_{B}) \in Q$

$$P \mid \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n$$

$$Q \begin{array}{c} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

$$(y,\pi_A)\in P, \qquad (x,\pi_B)\in Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

$$\max: -(\pi_A + \pi_B)$$

s.t. $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

Theorem. [von Neumann'28] (max-min = min-max) Game (A) Wrt A, Alice is a maximizer and Bob minimizer $\max_{x} \min_{y} x^{T} A y = \min_{x} \max_{x} x^{T} A y & \text{the max-min is NE.}$ Let $z' = angain sion x^TAY, ken (x', y') is a NE.$ Let $y' = angain siax x^TAY$ rak rin day = rin day = x Ay = rax x Ay >0 z y = rin rax day
= rin rax day
= rin rax Let $(\widehat{\alpha}, \widehat{\gamma})$ be a NE.

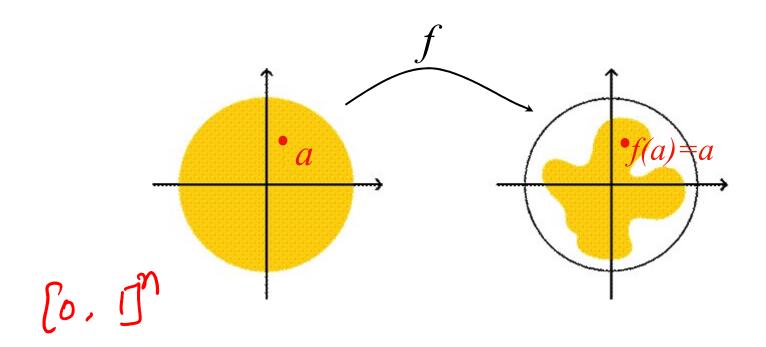
win $x^{\mu}Ay \ge x^{\mu}\widehat{x}Ay = \widehat{x}A\widehat{y} = xax \times xA\widehat{y} \ge xax \times xA\widehat{y} > xax \times xA\widehat{$ $\operatorname{rex}_{\mathcal{X}} \times \operatorname{Ay}^{*} = \operatorname{x}_{\mathcal{A}} \operatorname{y}^{*} = \operatorname{rex}_{\mathcal{A}} \operatorname{min}_{\mathcal{A}} \operatorname{x}_{\mathcal{A}} \operatorname{y}^{*}$ $\operatorname{xin}_{\mathcal{A}} \operatorname{xin}_{\mathcal{A}} \operatorname{xin}_{\mathcal{$

3) Comex set & NE

3) Some payoff at all NE.

Computation in general?

NE existence via fixed-point theorem.



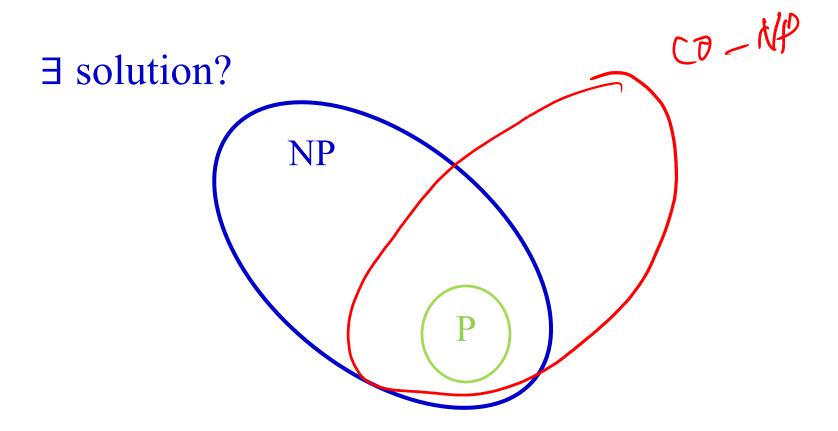
Computation? (in Econ)

- Special cases: Dantzig'51, Lemke-Howson'64, Elzen-Talman'88, Govindan-Wilson'03, ...
- Scarf'67: Approximate fixed-point.
 - □ Numerical instability
 - □ Not efficient!

...

Computation? (in CS)

Not easy!



What if solution always exists, like Nash Eq.?

Computation? (in CS)

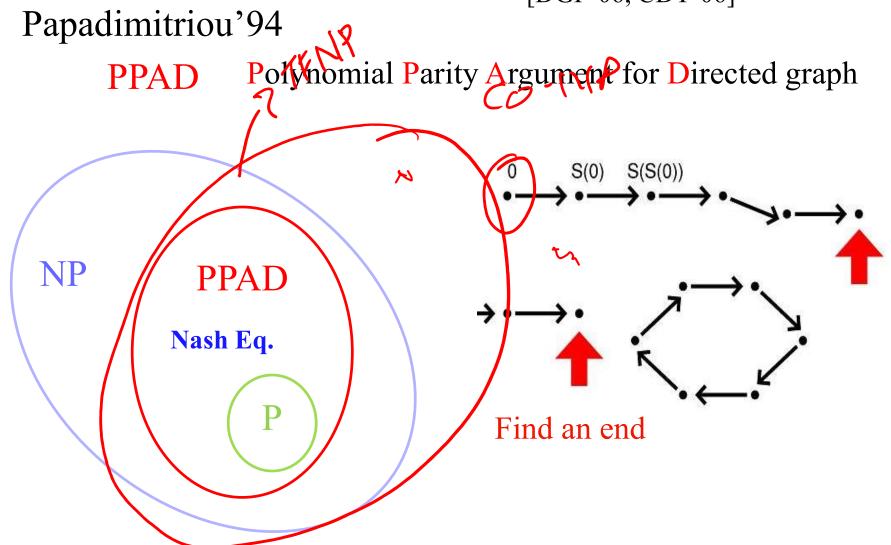
Megiddo and Papadimitriou'91:

Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Complexity Classes

2-Nash is PPAD-complete! [DGP'06, CDT'06]



Brute-force Algorithm?

$$P \quad \begin{cases} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{cases}$$

$$Q \quad \forall j, \left(\mathbf{x}^T B \right)_j \leq \mathbf{\pi}_B$$
$$\mathbf{x} \in \Delta_m$$

Let (x, y) be a NE. Suppose we know supp(x) and supp(y). Now can we find a NE?

Can we do better?

Not so far. And may be never!

It is one of the hardest problems in PPAD.

What about special cases/approximation?

■ Rank(A) or rank(B) is constant

■ O(1)-approximate NE: quasi-polynomial time algorithm

■ Constant rank games: rank(A+B) is a constant □FPTAS

$$P \mid \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n$$

$$Q \begin{vmatrix} \forall j, (x^T B)_j \leq \pi_B \\ x \in \Delta_m \end{vmatrix}$$

$$(y, \pi_A, x, \pi_B) \in P \times Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

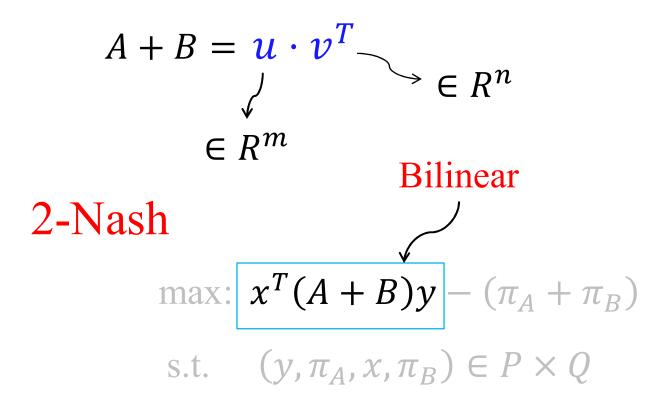
$$\max: -(\pi_A + \pi_B)$$

s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank of a game: rank(A+B)Zero-sum \equiv Rank-0 games

300

Rank 1 Game



r,e

Rank 1 Game [AGM.S'11]

$$A + B = u \cdot v^T$$

Product of two linear terms

2-Nash

$$\max: \left(x^T u\right)(v^T y) - (\pi_A + \pi_B)$$
s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank 1 QP is NP-hard in general

300

Rank 1 Game [AGM.S'11]

$$A + B = u \cdot v^T \longrightarrow (A, u, v)$$

2-Nash

max:
$$(x^T u)(v^T y) - (\pi_A + \pi_B)$$

s.t. $P \times Q$
 $(x^T u)v^T - x^T A$

100

Think Big!

Consider game space S = (A, *, v)

2-Nash

max:
$$(x^T *)(v^T y) - (\pi_A + \pi_B)$$

s.t. $P \times Q$
 $(x^T *)v^T - x^T A$

Ŋ.

Think Big!

Consider game space S = (A, *, v) All NE of S

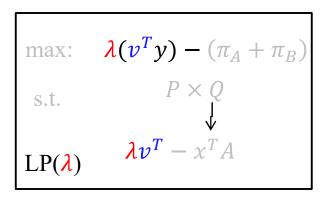
Captures

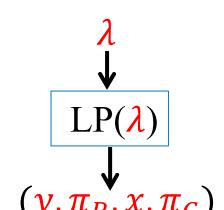
 $LP(\lambda)$

max:
$$\lambda(v^T y) - (\pi_A + \pi_B)$$

s.t. $P \times Q$
 $\lambda v^T - x^T A$

Solutions of $LP(\lambda)$ $\forall \lambda \in \mathbb{R}$ Claim. For any $\lambda \in \mathbb{R}$, optimal value of $LP(\lambda)$ is zero.





Goal: NE of $(R, \mathbf{u}, \mathbf{v})$

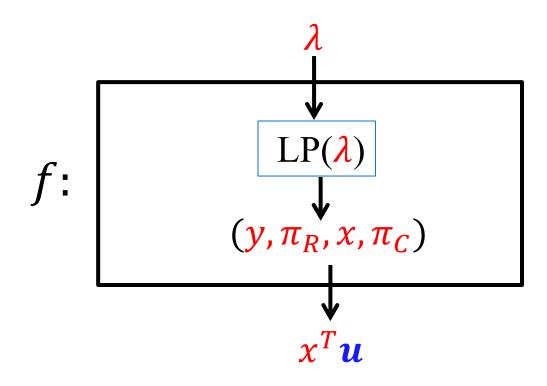
(m-1)-dimensional space in S

Claim: $\forall c \text{ s.t. } x^{\mathsf{T}}c = \lambda$,

If **u** one of them then done!

(x, y) is a NE of game (R, c, v)

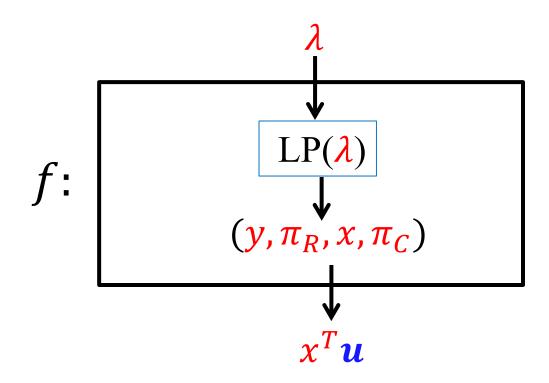
Goal: NE of game $(R, \mathbf{u}, \mathbf{v})$



If $x^T u = \lambda$ then done!

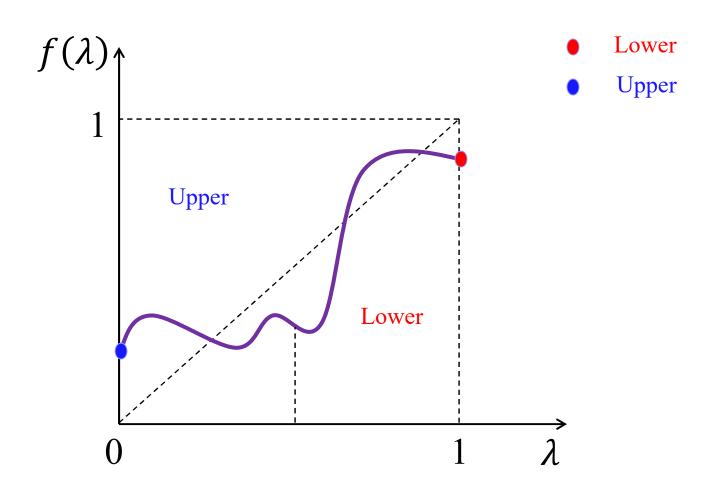
MA.

Goal: NE of game (R, \mathbf{u}, v)



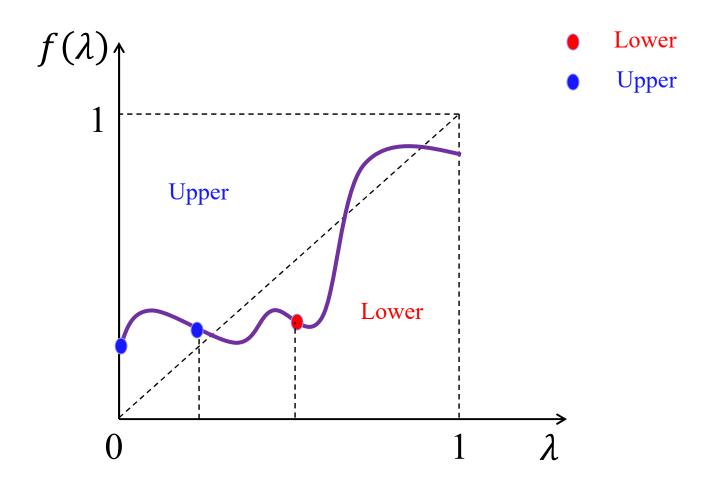
NE of game I $fR_k = 1$ their elopeints of f

1-D Fixed Point



DA.

1-D Fixed Point



And so on until the difference becomes small enough

What about rank-2 or more?

Rank-0 (zero-sum)
games rank(A+B)=0

Von Neumann
(1928)

Rank-1 games
rank(A+B)=1

$$\underline{x} = LP(\lambda)$$

$$\underline{c^T \underline{x}}$$

Rank-2 games
$$\underline{x} = LP(\lambda_1, \lambda_2)$$

