Prophet Inequality

Simple us Openhal Audions. Tuesday, September 27, 2022 10:53 AM

V, ..., Vn ind D petithod duction = Vicurey.

1) V, Vz,..., Vn id D, but D is ununown.

Theorem: (Bulow- Klemperer 186)

Let D be a regular distribution () is sirily increasing), and n be d posistive number. Then:

[[Rev (VA n+1)] > [[Per (OPTD, n)]. V1, Vuti ~ D

Dead third duction on not bidders.

1) Simulate OPTD, n on the first n billers.

2) If step 1 does not allocate the item, give it to bidder uti for free.

· IT Ray (A mai) = IET Ray (OPTD,n)]

· A dluxys allocates the item.

In amongs allocates the item.
(NTS that VA is optimal almong all exertons) which always allocate the item
which durdys allocase the item
By Myersmis Opt duction OPTont allocates the item to the bidder w/ highest virtual welfare.
the bidder w/ highest virtual welfare.
VAnn allocates the stehn to the bidder w/ highest welfare
When) is regular => \$\phi\$ is increasing.
Bilder w/ highest welfare = Bilder w/ highest virtual welfare
F[Rav (VARA)] = F [Rev (OPTg,n+1 har to allhane)]>
= EI Rev (Ans.)] = EI Rev (OPTD,n)]
Coollary: JAn w/ no reserve price is a (1-1/n)-approximation
to OPT.
VI,, Vn ind. Di,, Dn dub Di,, Dn known distributions.

· Grocer's Auction

- -> Ser a price p for itch.
- -> Buyer's drvine, one defear the othern and if Vi > P, buyer i bys the item. * in adversarial order.

 (nover-coase)

mperties

- · Trivially truth fol.
 - · We don't have to collect bids.
 - · After price is set, duction runs itself.

Theorem: [Hajaghayi eral '07, Chaula ex al '10]

The grocer's duction is equivalent to the prophet inequality.

· Prophet Inequality

 $X_1, X_2, ..., X_n \stackrel{ind}{\sim} D_1, D_2, ..., D_n$

Ax step i, we see realization Zi of Xi. We decide inhediately and irrevocably, whether to darept or reject Zi.

-> If we eccept Zi, gathe ends.

-) Flor, we proceed to Ziti.

Objective: Select hox Zi Cohodine dation and ...

Objective: Select high Zi. Composite dogdinst prophet. Who always

gets high Zi

Propher's value: [[high Xi]

Theorem: [Kvengel, Sucheston & Garling '76, Salmuel-Ghn '84]

For the propher inequality setting, let T be the heading value of the distribution of houx Xi, i.e. Pr[hax Xi = = 1/2. Then, the distribution ALG that selects the first realization where Xi > T.

Obtains value:

[[ALG] > 1/2 [[hax X:]]

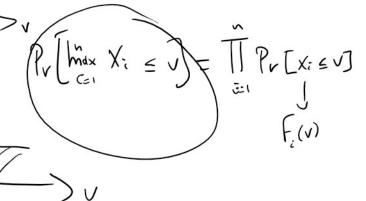
Post Lex X*= lndx Xi.

(x; - t) = hax{x; - t, 0]

 $\begin{aligned}
& \left[\left[ALG \right] = \tau \cdot R \left[x^* > \tau \right] + \sum_{i=1}^{n} Pr[We "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \\
&= \frac{1}{2} \tau + \sum_{i=1}^{n} Pr[Me "reach" x_i] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}] \cdot \mathbb{E}[(x_i - \tau)^{\dagger}]$

$$\geqslant \frac{4}{2}\tau + \frac{1}{2} \mathbb{E}[(x^* - \tau)^*]$$

$$=\frac{1}{2}\left(z+\mathbb{E}\left[x^{*}-z\right]\right)=\frac{1}{2}\mathbb{E}\left[x^{*}\right]=\frac{1}{2}\mathbb{E}\left[x^{*}\right].$$



$$f_1(v) \cdot f_2(v) \cdot \dots \cdot f_n(v)$$
.

[Kleinberg-Weinberg 12]: Just set
$$7 = \frac{1}{2} \mathbb{E} \left[\lim_{i = 1}^{n} X_{i} \right]$$