Stable Matching

Applications: Assigning doctors to hospitals, students to schools

Problem:

Agents

\(V_1, V_2, V_3, \ldots \) and \(W_1, W_2, W_3, \ldots \)

\(\forall w \in W \) \((V_3 \geq V_5 \geq \ldots) \)

\(\forall v \in V \) \((V_3 \geq V_5 \geq \ldots) \)

\(\forall v, w \) \((V_3 \geq V_5 \geq \ldots) \)

\(\forall v, w \) \((V_3 \geq V_5 \geq \ldots) \)

Goal: Find a "stable" perfect matching

- Blocking pair

\((V_2 > V_1) \) \(u_1 \) \(\rightarrow \) \(v_1 \) \((u_1 > v_1) \)

\((V_2 > V_1) \) \(u_2 \) \(\rightarrow \) \(v_2 \) \((u_1 > v_2) \)

A matching is stable if no blocking pair

Gale-Shapley Alg (Differed Acceptance Alg)

\((V_1, V_2, V_3) \) \(u_1 \)

\((V_1, V_2, V_3) \) \(u_2 \)

\((V_1, V_2, V_3) \) \(u_3 \)
Running time: $O(n^2)$
why is it perfect matching?

Thm: 65 are stable perfect matching.

Pr: $M: 65 op$

$(u,v) \in M$, $u \in U$, $v \in V$

Case I: u never proposed to v.

Suppose $(u,v) \in M$

Then $v' \sim v$

Case II: u proposed to v but was rejected in favour of v'

Then $v' \sim v$

Finally, if $(u',v) \in M$ then $u'' > u' > u$

Either $(u > v)$ or $(u'' > v)$

Then: It is an optimal stable matching.

It meant stable matching for women.

"Men opt stable matching":

$$best-sm(u) = \arg\max \{v \mid (u,v) \in \text{some stable}\}$$

$$MOSM = \{u, best-sm(u)\} \forall u$$

House Allocation

A = set of agents, each with a house. Agent i owns house i.

ICA has a complete preference over h_i, \ldots, h_n

$(h_2 > h_3 > h_4 > h_5)$

$(h_4 > h_1 > h_3 > h_2)$
A Top Trading Cycle (TTC):

1. $A = n_1 \ldots n_n$, $H = h_1 \ldots h_n$

2. While $A \neq \emptyset$

 2.1 Each $i \in A$ points to her most preferred house in H, $\rightarrow G$

 2.2 C: All cycles in the graph G. (No sink in G \Rightarrow Not a DAG \Rightarrow A cycle)

 2.3 Exchange houses along every cycle in C. $A = A \setminus$ agents in C, $H = H \setminus$ houses $\in C$

OBS1: A node can be part of at most one cycle in G.

Claim 1. Every agent only improves.

G:

A Stronger Notion of Truthful News: Dominant Strategy Incentive Compatibility (DSIC)

An agent has "no" incentive to lie, no matter what others do.

Thm. TTC is DSIC.

Pf. $N_j = \{ i \}$ agent i gets assigned in Round i.

OBS2. No agent in N_1 has any incentive to lie.

OBS3. By lying an agent can only change her outgoing edges in G in any round, not the incoming edges.

OBS4: Let $i \in N_k \& h_i^1 > h_i^2 > \ldots > h_i^k$. Suppose $h_i^1 \ldots h_i^k$ are taken in Round 1 by agents $a_1 \ldots a_k \in N_i$, e_i gets h_i^k.

$\Rightarrow a_1$ to a_k are not pointing to i in Round 1.
And no matter what preference order agent \(i \) reports she cannot change this fact.

\[\Rightarrow i \text{ has no way to get any of } h_1, \ldots, h_k. \]

\[\Rightarrow \text{Since, Out as } H \setminus \{ \text{Houses & N_i} \}, i \text{ is getting the most preferred house, she can not be & get better.} \]

OBS 5: let \(i \in N_j \) & \(h_1 \succ_i h_2 \succ_i \ldots \succ_i h_n \)

If the first available house in his order after \(1, \ldots, (j-1) \) rounds is \(h_{(k+1)} \) then no matter what \(i \) reports she cannot get any of \(h_1, \ldots, h_k \).

The argument is the same as above. \(h_1, \ldots, h_k \) are assigned to some agents in \(N_1 \cup \ldots \cup N_{j-1} \Rightarrow \) None of them point to \(i \) in first \((j-1)\) rounds \(\Rightarrow \) No matter what \(i \) reports she can not get any of \(h_1, \ldots, h_k \).