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Proportional (average)



m 71 agents
m M: set of m indivisible items (like cell phone, painting, etc.)
m Agent i has a valuation function v; : 2™ — R over subsets of items

Fairness: Proportional (Prop):
Envy-free (EF) Get value at least average of the grand-bundle

v;(4;) = %W(M)
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Sub-additive VValuations

Sub-additive:
v;(AUB) <v;(A) + v;(B), VA, B EM
= (super-ooldihive)
Claim: EF = Prop (‘Q%OJJA-I’{VQ’>
Progfy, ... . Ao) 15 £f =

. . YKk, =
Voo A = Vi (Ax)
(4 ) '?/Vl‘{/f)'KB = Vi(ﬂ/D =
<l Vi) = (M) g
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Prop: May not always exist!
m n agents

m M: set of m indivisible items (like cell phone, painting, etc.)
m Agent i has a valuation function v; : 2™ — R over subsets of items

Fairness:

Envy-free (EF) @ \;g\?/

Proportional (Prop):
Get value at least average of the grand-bundle

v;(4;) = %Vi(M)
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Proportionality up to One Item (Prop1l)

m Propl: A is proportional up to one item if each agent gets at least
1/n share of all items after adding one more item from outside:

1
Ui(AiU{g}) ngi(M), HgEM\Ai,ViEN



" J
Propl

Claim: EF1 implies Propl for subadditive valuations

— Envy-cycle procedure outputs a Propl allocation
Proof:



" J
Propl

m EF1 implies Propl for subadditive valuations
— Envy-cycle procedure outputs a Propl allocation

m +PO: Additive Valuations
EF1 + PO allocation exists but no polynomial-time algorithm is known!
Propl + PO? Algorithm based on competitive equilibrium.
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Proportionality
m Aset N of nagents, aset M of m indivisible items

m Proportionality: Allocation A = (44, ..., A;,) Is proportional if
each agent gets at least 1/n share of all items:

v;(M
v;:(4;) = ‘; ), Vi €N

Cut-and-choose?



"
Maximin Share (MMS) [B11]

Cut-and-choose.

m Suppose we allow agent i to propose a partition of items into n
bundles with the condition that i will choose at the end

m Clearly, i partitions items in a way that maximizes the value of
her least preferred bundle

m ,; := Maximum value of i’s least preferred bundle



"
Maximin Share (MMS) [B11]
Cut-and-choose.

m [I := Set of all partitions of items into n bundles
" g = max min vi(Ay)

m MMS Allocation: A is called MMS if v;(4;) = u; , Vi
m Additive valuations: v;(4;) = X e, Vij
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MMS value/partition/allocation

Agent\Items é
3 1
© 4 4
(7
Value 3 3 Value
MMS Value 3 MMS Value 5
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MMS value/partition/allocation

Agent\Items D 3
3 1 2
® 4 4 5
(7 <'7 r l
Value 3 3 Value 8 5
MMS Value 3 MMS Value

Finding MMS value is NP-hard!
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What i1s Known?

m PTAS for finding MMS value [w97]

Existence (MMS allocation)?

B n=2:yes| bersE )
= A PTAS to find (1 — €)-MMS allocation forany e > 0

B 1= 3:NO[PW14]
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What i1s Known?

m PTAS for finding MMS value [w97]

Existence (MMS allocation)?

B n=2:yes| bersE )
= A PTAS to find (1 — €)-MMS allocation forany e > 0

B 1= 3:NO[PW14]

m a-MMS allocation: v;(4;) = a. y; < ¢ (0, ))
2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
3/4-MMS exists [GHSSY 18]

(3/4 + 1/(12n))-MMS exists [GT20]
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Properties

m Normalized valuations
(1 Scale free: v;; « c.v;;,VjEM

1
' [J (/} = Am) Lﬂ,
supprsé ot He ,:/ms pankhion 08
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Properties

m Normalized valuations
Scale free: v;; « c.v;;,VjEM
Zj Vi =n = N <1

m Ordered Instance: We can assume that agents’ order of
preferences for items Is same: v;; = v;, = -+ vy, Vi €N



m Normalized valuations
Scale free: v;; « c.v;;,VjEM

2jvij =n >

Properties

<1

m Ordered Instance: We can assume that agents’ order of

preferences for items Is same: v;; = v, = -
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Challenge

m Allocation of high-value items!
m Ifforallie N
JvM)=n=>u <1
v <€V,

¢z M \I;J
L;J



Vij S €,V1,j /w% %’,,- im

. . . 1
Claim: After round K, if i remains then v;(remaining goods) > n — k. (\,O @

$90.%5 9.3 = A »
o hoset Stk oot A
Vcn[ﬁb £ 1€

0.W- \L/)[A\\?f) < /’(’swﬂ(@sé

SV (b)) < 14621
Bag Filling Algorithm:

@9,
O
©

©m

Repeat until every agent is assigned a bag

m Start with an empty bag B

m Keep adding items to B until some agent i values it > (1 — ¢€)
m Assign B to i and remove them




Vi < €Vi,j 4. %9} o gw

Claim: After round k, if i remains then v;(remaining goods) = n — k. l
K= | ‘ '
- 4
\/ \ (14 l)

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

m Start with an empty bag B

m Keep adding items to B until some agent i values it > (1 — ¢€)
m Assign B to i and remove them




Vi <€Vi,j

Thm: Every agent gets at least (1 — €).
5 V(4 )2 [ () l’”’fhw,j

Bag Filling Algorithm: K

Repeat until every agent is assigned a bag

m Start with an empty bag B

m Keep adding items to B until some agent i values it > (1 — ¢€)
m Assign B to i and remove the

© 0 0 6 O
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Warm Up: 1/2-MMS Allocation

m [fall Vij < 1/2 then?
Done, using bag filling.

. 1
m What if some v;; > >?
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Valid Reductions

m Valid Reduction (a-MMS): If thereexists S € M and i* € N
0 vi(S) = a. p»(M) L*,, "N

= pp T M\ S) = uf (M), Vi # i
= \We can reduce the instance size!

Clion = (B, ., lm.q) iS oM SMMS allehn)

SIS to D1 oomB agk e (B, )
1S 2 -mms dlpeikin 1 e N.W:"J imslmee -

. jem, o) = A UH\S) ="M
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