cs579: Computational Complexity

Assigned: Tue., Apr. 9, 2019

Problem Set #6

Prof. Michael A. Forbes

Due: Tue., Apr. 23, 2019 (3:30pm)

- 1. Let $\ell: \{0,1\}^* \to \mathbb{N}$ be a *length* function, meaning that $\ell(x)$ is computable in $\mathsf{poly}(|x|)$ time and $\ell(x) \le \mathsf{poly}(|x|)$. A function $f: \{0,1\}^* \to \{0,1\}^*$ is downward self-reducible with respect to ℓ if
 - If $\ell(x) = 0$ then f(x) is computable in poly(|x|) time.
 - In general, x can be computed in poly(|x|) time given oracle access to f on inputs $\{y: \ell(y) < \ell(x)\}.$

Prove that

- (a) Prove that SAT is downward self-reducible with respect to $\ell(\varphi)$ being the number of variables in φ .
- (b) Show that computing the number of perfect matchings of a graph is downward self-reducible with respect to some natural length function.
- (c) (Arora-Barak Problem 8.9) Any downward self-reducible function is computable in poly(|x|) space (ie, PSPACE when f is a language).
- 2. Consider the complexity class $\mathsf{IP}_{\frac{1}{2},0}$, which contains languages with interactive proofs that have *perfect* soundness. That is, $L \in \mathsf{IP}_{\frac{1}{2},0}$ has a randomized polynomial-time verifier V such that (a) if for $x \in L$, there is a prover P where $\Pr[(V \leftrightarrow P)(x) = 1] \ge \frac{1}{2}$, and (b) if $x \notin L$ then for any prover \widetilde{P} we have that $\Pr[(V \leftrightarrow \widetilde{P})(x) = 1] = 0$. Show that $\mathsf{IP}_{\frac{1}{2},0} = \mathsf{NP}$.
- 3. (Arora-Barak 12.7) Let $f: \{0,1\}^n \to \{0,1\}$ be a boolean function. Recall that the *degree* of f over a field \mathbb{F} (denoted $\deg_{\mathbb{F}} f$) is the minimum degree of a polynomial $p \in \mathbb{F}[x_1, \ldots, x_n]$ such that f(x) = p(x) for all $x \in \{0,1\}^n$. Show that for any field \mathbb{F} , $\deg_{\mathbb{F}} f \leq D(f)$, where D(f) is the deterministic decision-tree complexity of f.
- 4. (Normal Form for Formulas) Given an unbounded fan-in {AND, OR, NOT}-formula of size-s, where size here is the number of {AND, OR}-gates, show that there is an equivalent formula of size $s' \leq s$ where all negations occur at the bottom of the formula, and all {AND, OR}-gates have fan-in ≥ 2 . Show that s' is bounded by the number of leaves of the resulting formula.