```
cs579: Computational Complexity
Assigned: Mon., Mar. 26, 2018
Problem Set #5
Prof. Michael A. Forbes
Due: Mon., Apr. 9, 2018 (3:30pm)
```

1. Let \mathbb{F} be a field (such as the real or complex numbers), and let $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of n-variate polynomials. A monomial $\bar{x}^{\bar{a}}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ has (total) degree $a_{1}+\cdots+a_{n}$ (denoted deg) and individual degree $\max _{i} a_{i}$ (denoted ideg). The (total) degree and individual degree of a polynomial $f(\bar{x})=\sum_{\bar{a}} \alpha_{\bar{a}} \bar{x}^{\bar{a}}$ (with $\alpha_{\bar{a}} \in \mathbb{F}$) are the maximum of the respective degrees over all monomials $\bar{x}^{\bar{a}}$ where $\alpha_{\bar{a}} \neq 0$.
It is a basic fact in algebra that a non-zero univariate polynomial $f(x)$ of degree $\leq d$ has at most d roots, that is, points α in \mathbb{F} where $f(\alpha)=0$. The Schwartz-Zippel Lemma is a generalization to non-zero multivariate polynomials $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, showing that for any set $S \subseteq \mathbb{F}$, the number of roots in $S^{n}=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right): \alpha_{i} \in S\right\}$ is small. One can phrase this result about the probability that a uniformly random point in S^{n} is a root of f.
(a) (Schwartz version) Show that for non-zero $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

$$
\operatorname{Pr}_{\bar{\alpha} \leftarrow S^{n}}[f(\bar{\alpha})=0] \leq \frac{\operatorname{deg} f}{|S|} .
$$

Find a polynomial where this bound is tight.
(b) (Zippel version) Show that for non-zero $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\operatorname{Pr}_{\bar{\alpha} \leftarrow S^{n}}[f(\bar{\alpha})=0] \leq 1-\left(1-\frac{\operatorname{ideg} f}{|S|}\right)^{n} .
$$

Find a polynomial where this bound is tight.
2. (Arora-Barak 12.7) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function. The degree of f over a field $\mathbb{F}\left(\operatorname{denoted} \operatorname{deg}_{\mathbb{F}} f\right)$ is the minimum degree of a polynomial $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that $f(\bar{x})=p(\bar{x})$ for all $\bar{x} \in\{0,1\}^{n}$. Show that for any field \mathbb{F}, $\operatorname{deg}_{\mathbb{F}} f \leq D(f)$, where $D(f)$ is the deterministic decision-tree complexity of f. Conclude that $\operatorname{deg}_{\mathbb{F}} f \leq n$ for any n-variate boolean function.
3. (Arora-Barak 12.5) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function. For any field \mathbb{F}, show that there is a unique polynomial $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with ideg $p \leq 1$, such that $f(\bar{x})=p(\bar{x})$ for all $\bar{x} \in\{0,1\}^{n}$.
4. (Arora-Barak 13.13) Let $G=(V, E)$ be an undirected graph. Consider the following communication problem. Alice receives a clique $C \subseteq V$ in G, while Bob receives an independent set $I \subseteq V$. They must then communicate to compute $|C \cap I|$ (note that this is either 0 or 1). Prove a $O\left(\log ^{2}|V|\right)$ upper bound on the deterministic communication complexity of this problem.

Some hints.

1. Induction on the number of variables. Split $\bar{x}=(y, \bar{z})$, and decompose $f(y, \bar{z})=\sum_{i=0}^{d} f_{i}(\bar{z}) y^{i}$, where $f_{d}(\bar{z})$ is a non-zero polynomial. When picking $\bar{\alpha}=(\beta, \bar{\gamma})$ at random, condition on whether $f_{d}(\bar{\gamma})$ is zero or non-zero.
2. Use the solutions and ideas of problems 1 and 2 .
3. Proceed in $O(\log |V|)$ rounds of $O(\log |V|)$ communication. Suppose $v \in C \cap I$, condition on the degree of this vertex (large vs small).
