cs579: Computational Complexity	Assigned: Mon., Mar. 5, 2018	
	Problem Set $\# 4$	
Prof. Michael A. Forbes	Due: Mon., Mar. 26, 2018 (3:30pm)	

1. Let $\ell:\{0,1\}^{\star} \rightarrow \mathbb{N}$ be a length function, meaning that $\ell(x)$ is computable in poly $(|x|)$ time and $\ell(x) \leq \operatorname{poly}(|x|)$. A function $f:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ is downward self-reducible with respect to ℓ if

- If $\ell(x)=0$ then $f(x)$ is computable in poly $(|x|)$ time.
- In general, x can be computed in poly $(|x|)$ time given oracle access to f on inputs $\{y: \ell(y)<\ell(x)\}$.

Prove that
(a) Prove that SAT is downward self-reducible with respect to $\ell(\varphi)$ being the number of variables in φ.
(b) Show that computing the number of perfect matchings of a graph is downward selfreducible with respect to some natural length function.
(c) (Arora-Barak Problem 8.9) Any downward self-reducible function is computable in poly $(|x|)$ space (ie, PSPACE when f is a language).
2. Let $\mathbb{F}_{2}=\{0,1\}$ be the field of two elements. A matrix $A \in \mathbb{F}_{2}^{k \times n}$ is Toeplitz if it is constant on diagonals, that is, $A_{i+1, j+1}=A_{i, j}$ for all $0 \leq i<k$ and $0 \leq j<n$. Let $\operatorname{Toep}\left(\mathbb{F}_{2}^{k \times n}\right)$ be the set of all such Toeplitz matrices. Define the hash function $h: \mathbb{F}_{2}^{n} \times\left(\operatorname{Toep}\left(\mathbb{F}_{2}^{k \times n}\right) \times \mathbb{F}^{k}\right) \rightarrow \mathbb{F}_{2}^{k}$ by $h(x,(A, b))=A x+b$. Show that h is a pairwise independent hash family. That is, when A and b are chosen uniformly at random, for any $x \neq y \in \mathbb{F}_{2}^{n}$ and $c, d \in \mathbb{F}_{2}^{k}$,

$$
\operatorname{Pr}_{\mathrm{A} \in \operatorname{Toep}\left(\mathbb{F}_{2}^{k \times n}\right), \mathbf{b} \in \mathbb{F}_{2}^{k}}[h(x,(\mathrm{~A}, \mathrm{~b}))=c \wedge h(y,(\mathrm{~A}, \mathrm{~b}))=d]=\frac{1}{2^{2 k}} .
$$

3. A language $L \subseteq\{0,1\}^{\star}$ is in AM if there is a poly $(|x|)$-time machine $M(x, y, z)$ such that for $x \in L$

$$
\operatorname{Pr}_{y \in\{0,1\}^{p(|x|)}}\left[\exists z \in\{0,1\}^{q(|x|)} M(x, y, z)=1\right] \geq \frac{2}{3}
$$

for some polynomials $p(|x|)$ and $q(|x|)$. For $x \notin L$, this probability is at most $\frac{1}{3}$. A language $L \subseteq\{0,1\}^{\star}$ is in MA if for $x \in L$

$$
\exists y \in\{0,1\}^{p(|x|)} \operatorname{Pr}_{z \in\{0,1\}^{q(|x|)}}[M(x, y, z)=1] \geq \frac{2}{3}
$$

while for $x \notin L$ this probability is at most $\frac{1}{3}$ for all y.
Show that MA $\subseteq A M$.
4. Say that a language $L \subseteq\{0,1\}^{\star}$ is in AM_{δ} if there is a poly $(|x|)$-time machine $M(x, y, z)$ such that for $x \in L$

$$
\operatorname{Pr}_{y \in\{0,1\}^{p(|x|)}}\left[\exists z \in\{0,1\}^{q(|x|)} M(x, y, z)=1\right] \geq \frac{1}{2}+\delta
$$

for some polynomials $p(|x|)$ and $q(|x|)$. For $x \notin L$, this probability is at most $\frac{1}{2}-\delta$. Thus, $A M_{\frac{1}{6}}$ is the usual definition of AM.
Show that $A M_{\frac{1}{\operatorname{poly}(n)}}=A M_{\frac{1}{2}-\frac{1}{2}}$.

Some hints.
4. Repeat the AM protocol in parallel k times. Note that the prover can respond in a way which depends on all k challenges. However, argue that an optimal prover can respond to each challenge individually. Then use a standard error-reduction argument.

