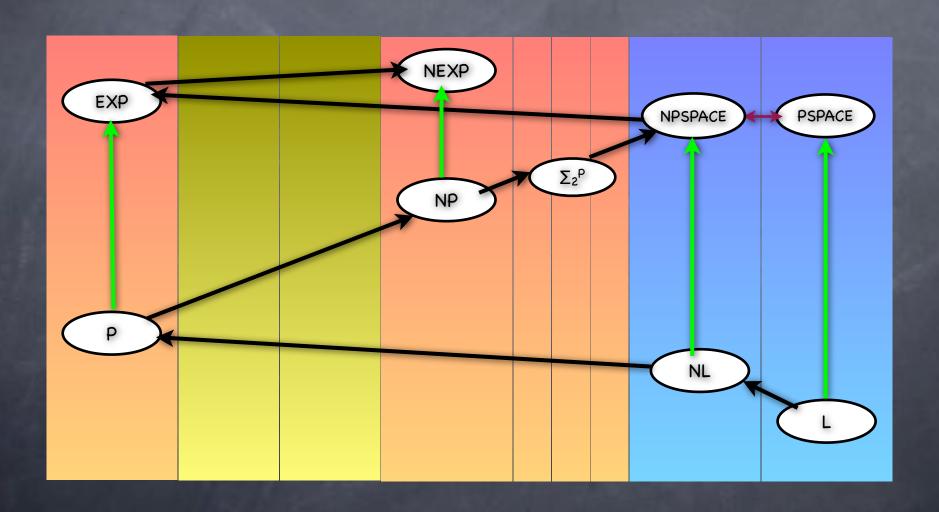
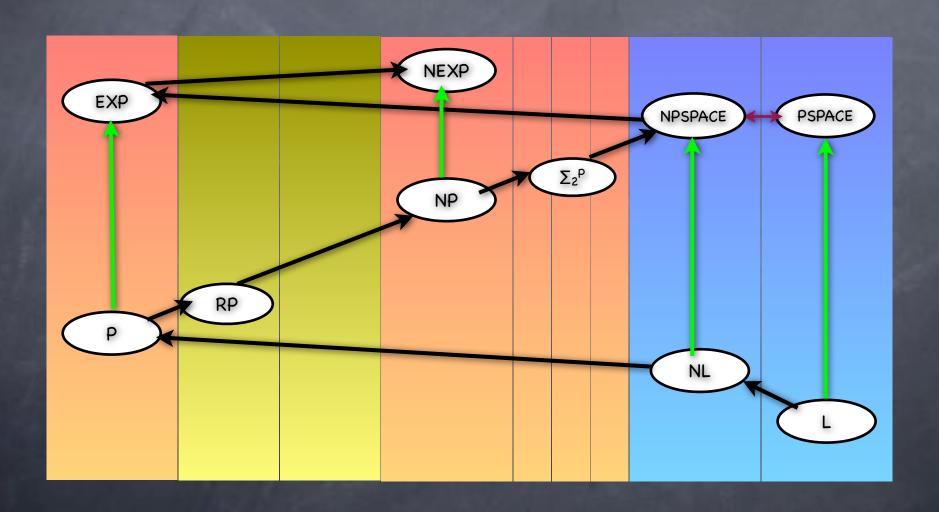
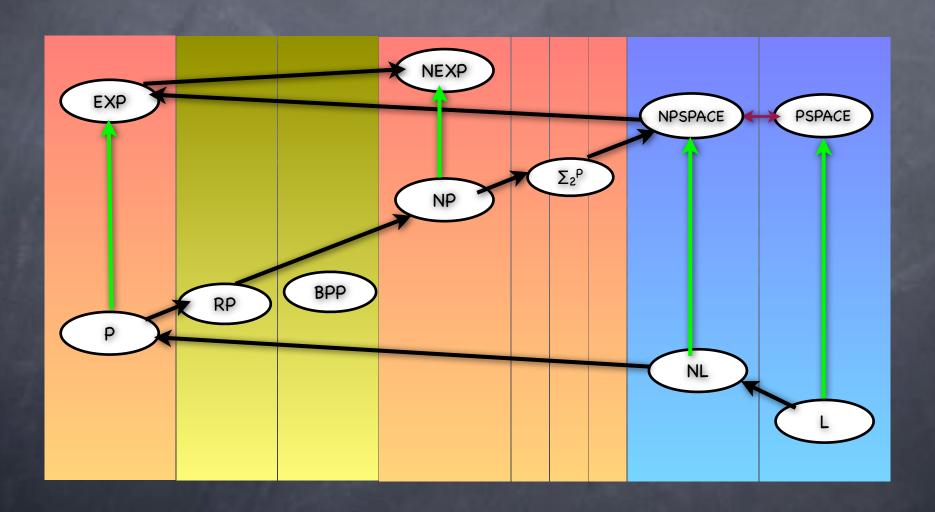
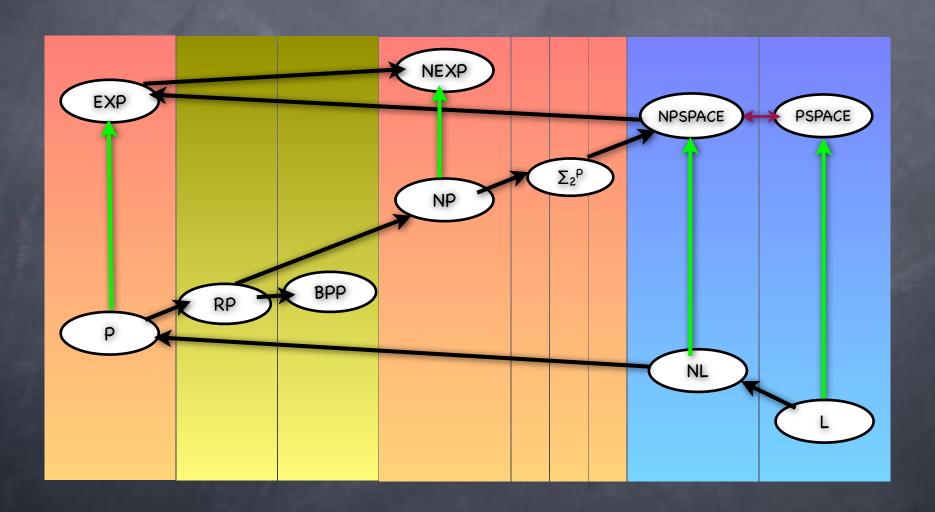
Probabilistic Computation

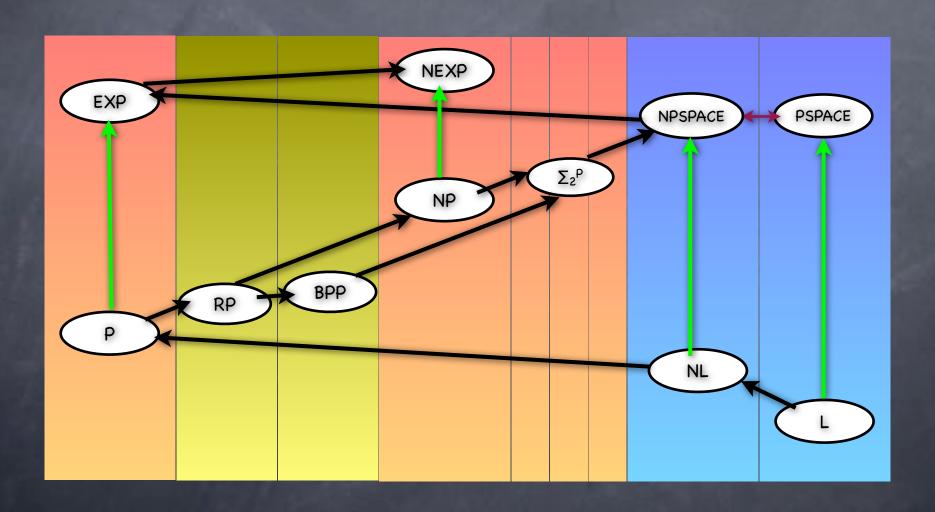
Lecture 14 BPP, ZPP











Not known!

Not known!

- Not known!

 - Is indeed BPP-Hard

- Not known!

 - Is indeed BPP-Hard
 - But in BPP?

- Not known!

 - Is indeed BPP-Hard
 - But in BPP?
 - Just run M(x) for t steps and accept if it accepts?

- Not known!

 - Is indeed BPP-Hard
 - But in BPP?
 - Just run M(x) for t steps and accept if it accepts?
 - If $(M,x,1^{\dagger})$ in L, we will indeed accept with prob. > 2/3

- Not known!

 - Is indeed BPP-Hard
 - But in BPP?
 - Just run M(x) for t steps and accept if it accepts?
 - If (M,x,1[†]) in L, we will indeed accept with prob. > 2/3
 - But M may not have a bounded gap. Then, if (M,x,1[†]) not in L, we may accept with prob. very close to 2/3.

BPTIME(n)
 □ BPTIME(n^{100})?

- BPTIME(n)
 □ BPTIME(n^{100})?
- Not known!

- BPTIME(n) \subseteq BPTIME(n¹⁰⁰)?
- Not known!
 - But is true for BPTIME(T)/1

Sampling to determine some probability

- Sampling to determine some probability
 - Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time

- Sampling to determine some probability
 - Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time
 - Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.

- Sampling to determine some probability
 - Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time
 - Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.
- Random Walks (for sampling)

- Sampling to determine some probability
 - Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time
 - Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.
- Random Walks (for sampling)
 - Monte Carlo algorithms for calculations

- Sampling to determine some probability
 - Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time
 - Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.
- Random Walks (for sampling)
 - Monte Carlo algorithms for calculations
 - Reachability tests

Which nodes does the walk touch and with what probability?

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps
- Analyzing a random walk

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps
- Analyzing a random walk
 - Probability Vector: p

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps
- Analyzing a random walk
 - Probability Vector: p
 - Transition probability matrix: M

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps
- Analyzing a random walk
 - Probability Vector: p
 - Transition probability matrix: M
 - One step of the walk: p' = Mp

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps
- Analyzing a random walk
 - Probability Vector: p
 - Transition probability matrix: M
 - One step of the walk: p' = Mp
 - After t steps: $p^{(t)} = M^t p$

Space-Bounded Probabilistic Computation

Space-Bounded Probabilistic Computation

PL, RL, BPL

Space-Bounded Probabilistic Computation

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
 - Recall NL P (because PATH P)

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
 - Recall NL ⊆ P (because PATH ∈ P)
 - So RL ⊆ P

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
 - Recall NL P (because PATH P)
 - So RL ⊆ P
 - In fact BPL ⊆ P

BPL ⊆ P

Consider the BPL algorithm, on input x, as a random walk over configurations

BPL ⊆ P

- Consider the BPL algorithm, on input x, as a random walk over configurations
 - Construct the transition matrix M

BPL P

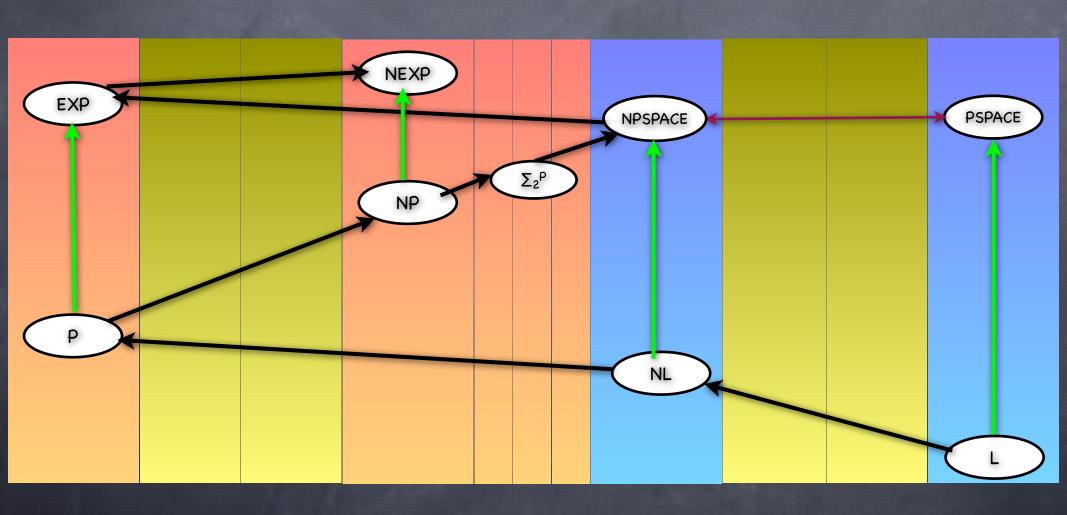
- Consider the BPL algorithm, on input x, as a random walk over configurations
 - Construct the transition matrix M
 - Size of graph is poly(n), probability values are 0, 0.5 and 1

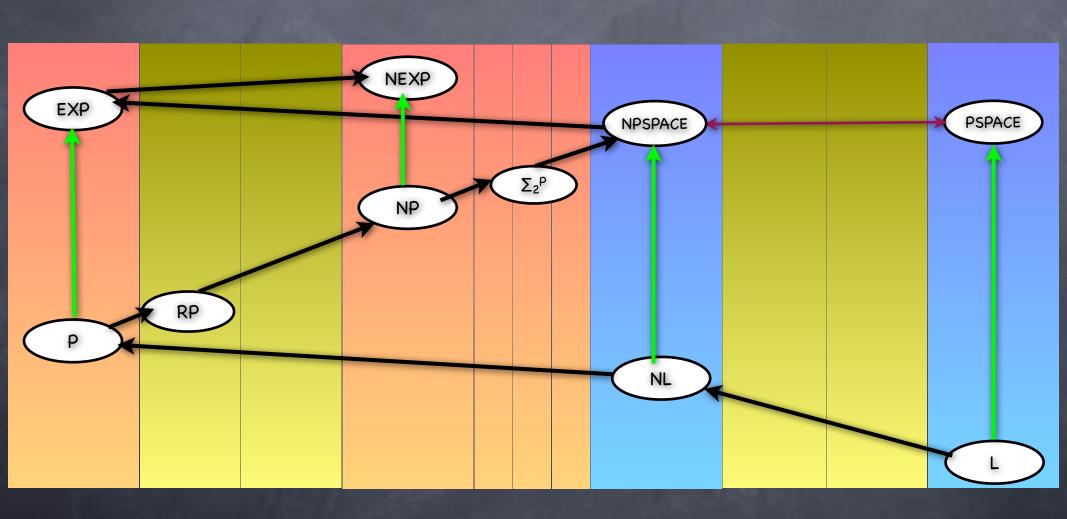
BPL P

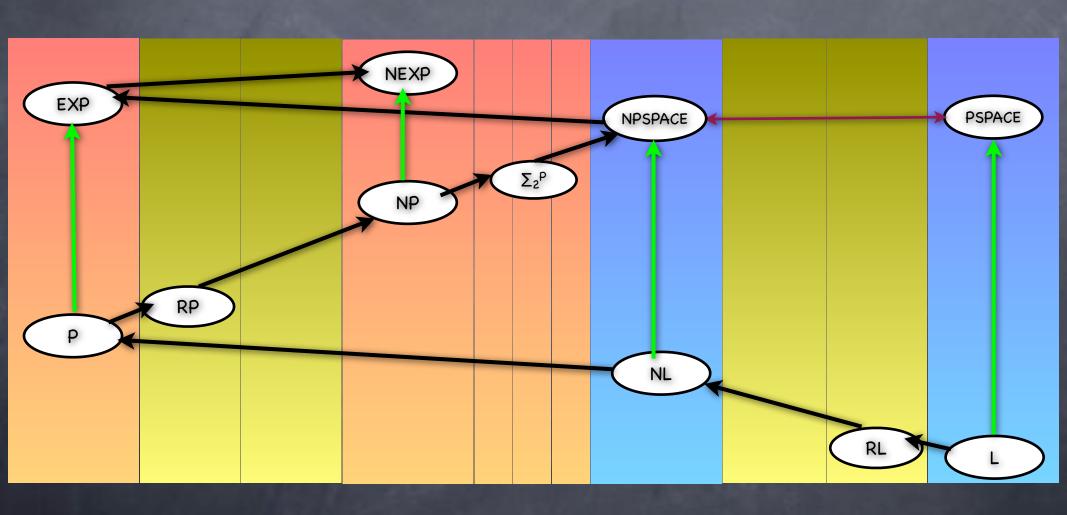
- Consider the BPL algorithm, on input x, as a random walk over configurations
 - Construct the transition matrix M
 - Size of graph is poly(n), probability values are 0, 0.5 and 1
 - \odot Calculate M[†] for $t = \max \text{ running time } = \text{poly(n)}$

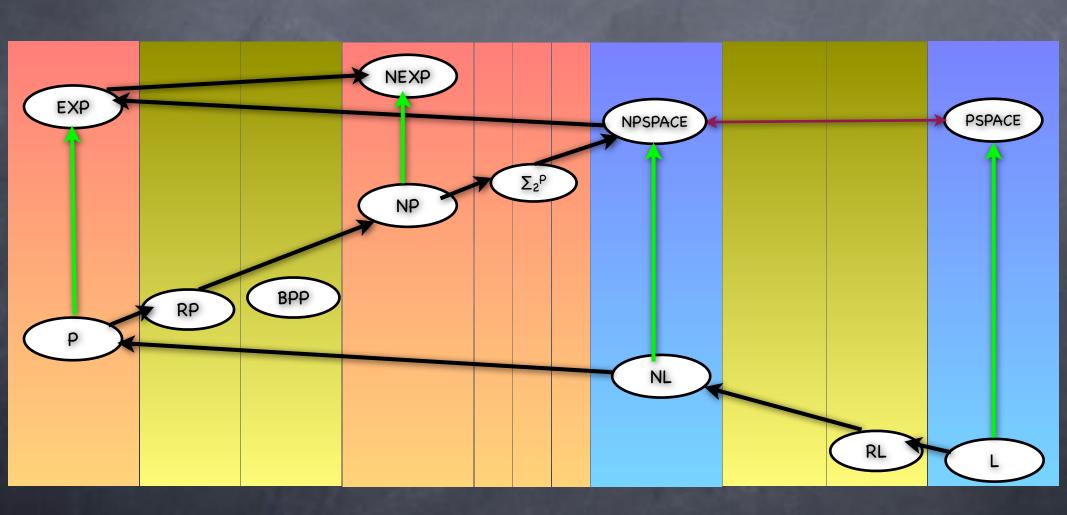
BPL P

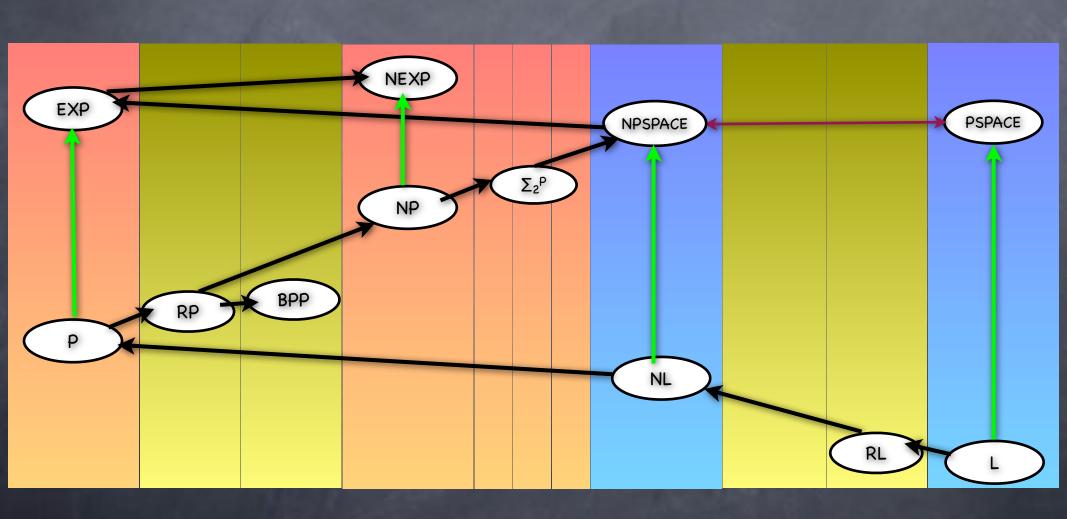
- Consider the BPL algorithm, on input x, as a random walk over configurations
 - Construct the transition matrix M
 - Size of graph is poly(n), probability values are 0, 0.5 and 1
 - © Calculate M^{\dagger} for $t = \max \text{ running time} = \text{poly(n)}$
 - Accept if (M^t p^{start})_{accept} > 2/3 where p^{start} is the probability distribution with all the weight on the start configuration

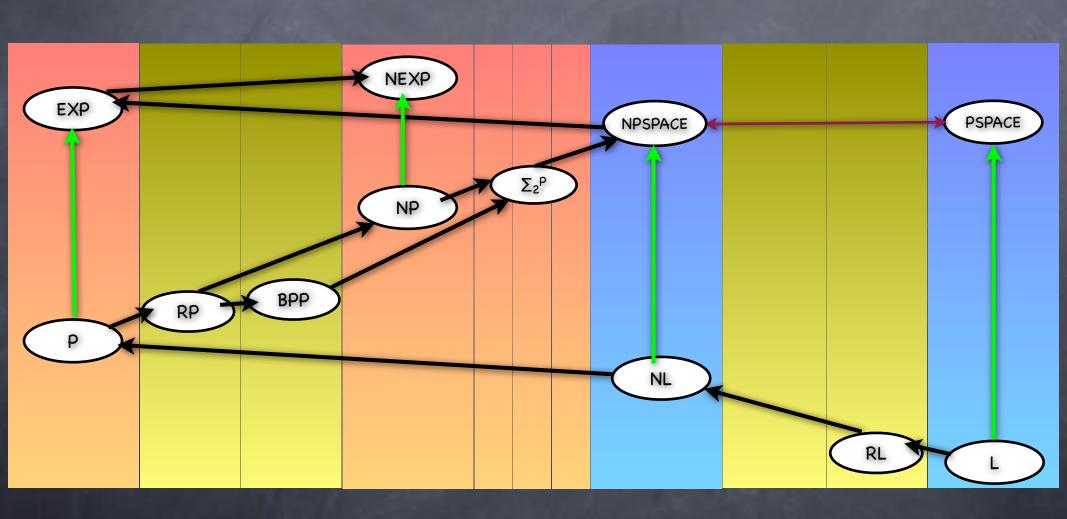


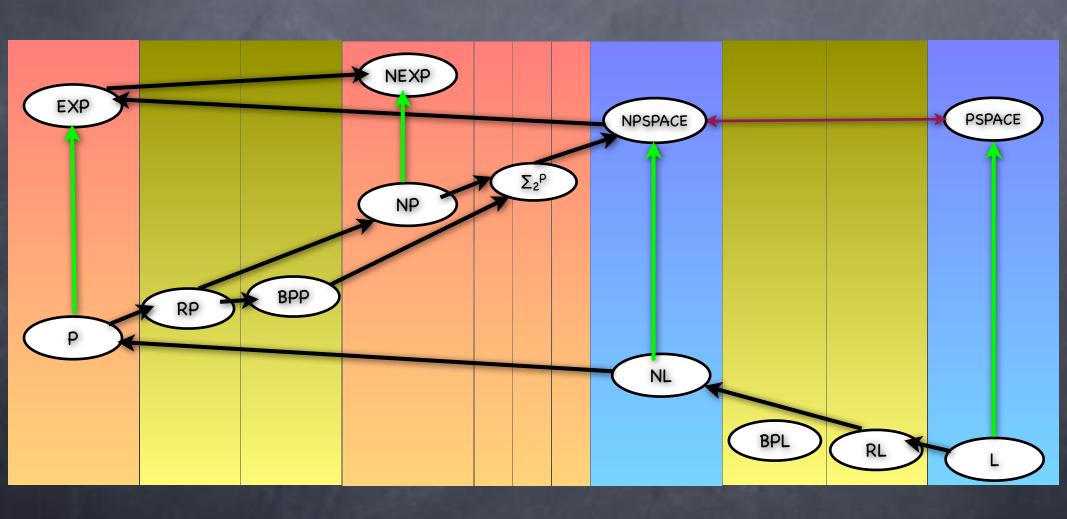


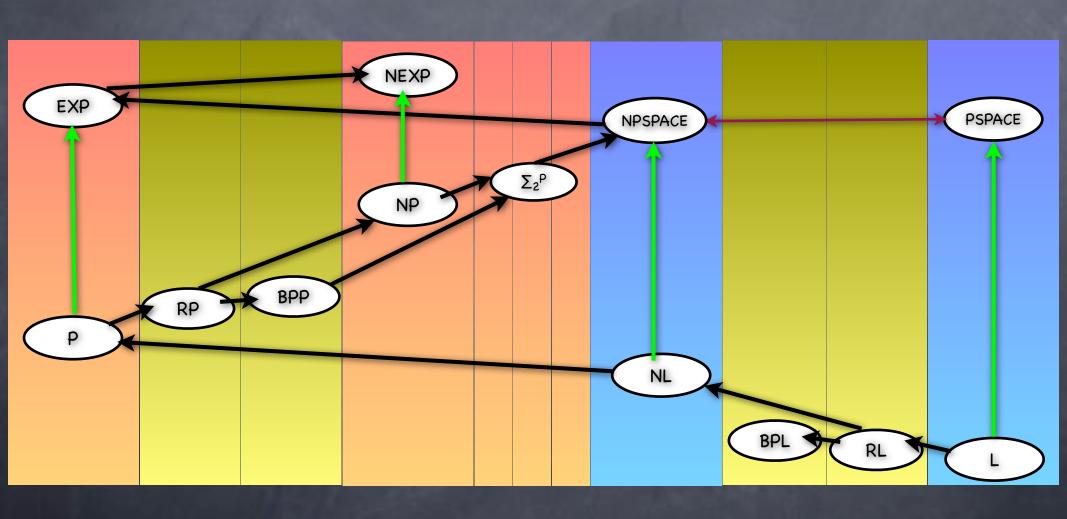


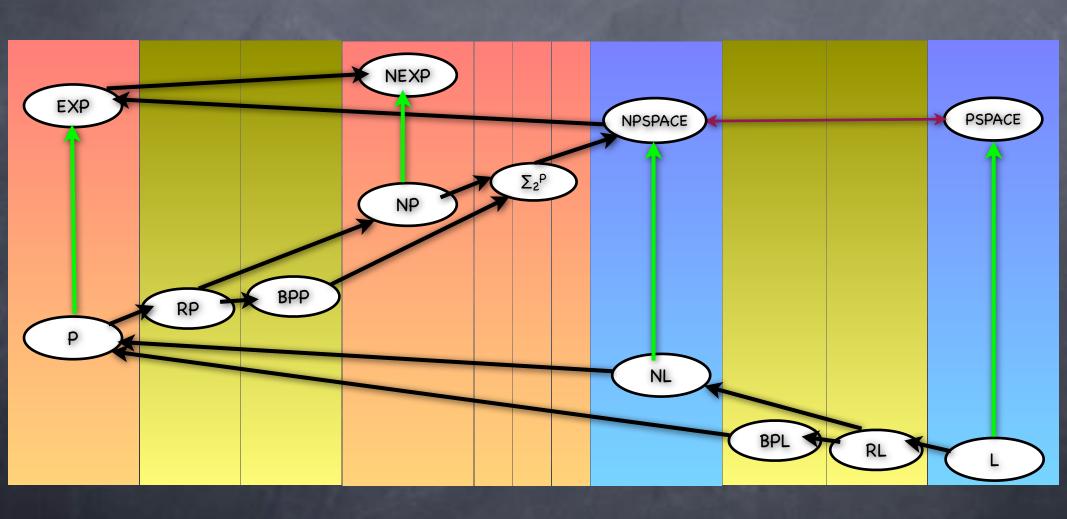












Running time is a random variable too

- Running time is a random variable too
 - As is the outcome of yes/no

- Running time is a random variable too
 - As is the outcome of yes/no
- May ask for running time to be polynomial only in expectation, or with high probability

- Running time is a random variable too
 - As is the outcome of yes/no
- May ask for running time to be polynomial only in expectation, or with high probability
- Las Vegas algorithms: only expected running time is polynomial; but when it terminates, it produces the correct answer

- Running time is a random variable too
 - As is the outcome of yes/no
- May ask for running time to be polynomial only in expectation, or with high probability
- Las Vegas algorithms: only expected running time is polynomial; but when it terminates, it produces the correct answer
 - Zero error probability

e.g. A simple algorithm for finding median in expected linear time

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes O(n log n) time.)

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes O(n log n) time.)
- Procedure Find-element(L,k) to find kth smallest element in list L

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes O(n log n) time.)
- Procedure Find-element(L,k) to find kth smallest element in list L
 - Pick random element x in L. Scan L; divide it into $L_{>x}$ (elements > x) and $L_{<x}$ (elements < x); also determine position m of x in L.

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes O(n log n) time.)
- Procedure Find-element(L,k) to find kth smallest element in list L
 - Pick random element x in L. Scan L; divide it into L_{>x} (elements > x) and L_{<x} (elements < x); also determine position m of x in L.</p>
 - If m = k, return x. If m > k, call Find-element(L_{x} ,k), else call Find-element(L_{x} ,k-m)

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes O(n log n) time.)
- Procedure Find-element(L,k) to find kth smallest element in list L
 - Pick random element x in L. Scan L; divide it into L_{>x} (elements > x) and L_{<x} (elements < x); also determine position m of x in L.</p>
 - If m = k, return x. If m > k, call Find-element(L_{⟨x},k), else call Find-element(L_{>x},k-m)
- Correctness obvious. Expected running time?

Expected running time (worst case over all lists of size n, and all k) be T(n)

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).
- T(n) ≤ cn + 1/n [Σ_{n≥j>k}T(j) + Σ_{0<j<k}T(n-j)]

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).
- T(n) ≤ cn + 1/n [Σ_{n≥j>k}T(j) + Σ_{0<j<k}T(n-j)]
- ▼ T(n) ≤ cn + 1/n.4c[Σ_{j>k} j + Σ_{j<k}(n-j)] by inductive hypothesis

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).
- T(n) \leq cn + $1/n \left[\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j) \right]$
- ▼ T(n) ≤ cn + 1/n.4c[Σ_{j>k} j + Σ_{j<k}(n-j)] by inductive hypothesis

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).
- T(n) \leq cn + $1/n \left[\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j) \right]$
- ▼ T(n) ≤ cn + 1/n.4c[Σ_{j>k} j + Σ_{j<k}(n-j)] by inductive hypothesis

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).
- T(n) \leq cn + $1/n \left[\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j) \right]$
- ▼ T(n) ≤ cn + 1/n.4c[Σ_{j>k} j + Σ_{j<k}(n-j)] by inductive hypothesis
- - T(n) ≤ cn + 3cn as required

 Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)

- Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)
- ZPTIME(T): class of languages decided by a zeroerror probabilistic TM, with expected running time at most T

- Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)
- ZPTIME(T): class of languages decided by a zeroerror probabilistic TM, with expected running time at most T
- Ø ZPP = ZPTIME(poly)

- Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)
- ZPTIME(T): class of languages decided by a zeroerror probabilistic TM, with expected running time at most T
- ZPP = ZPTIME(poly)

ZPP ⊆ RP

Truncate after "long enough," and say "no"

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short

ZPP \(RP

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
 - Pr[X > a E[X]] < 1/a (non-negative X)</p>

ZPP \(RP

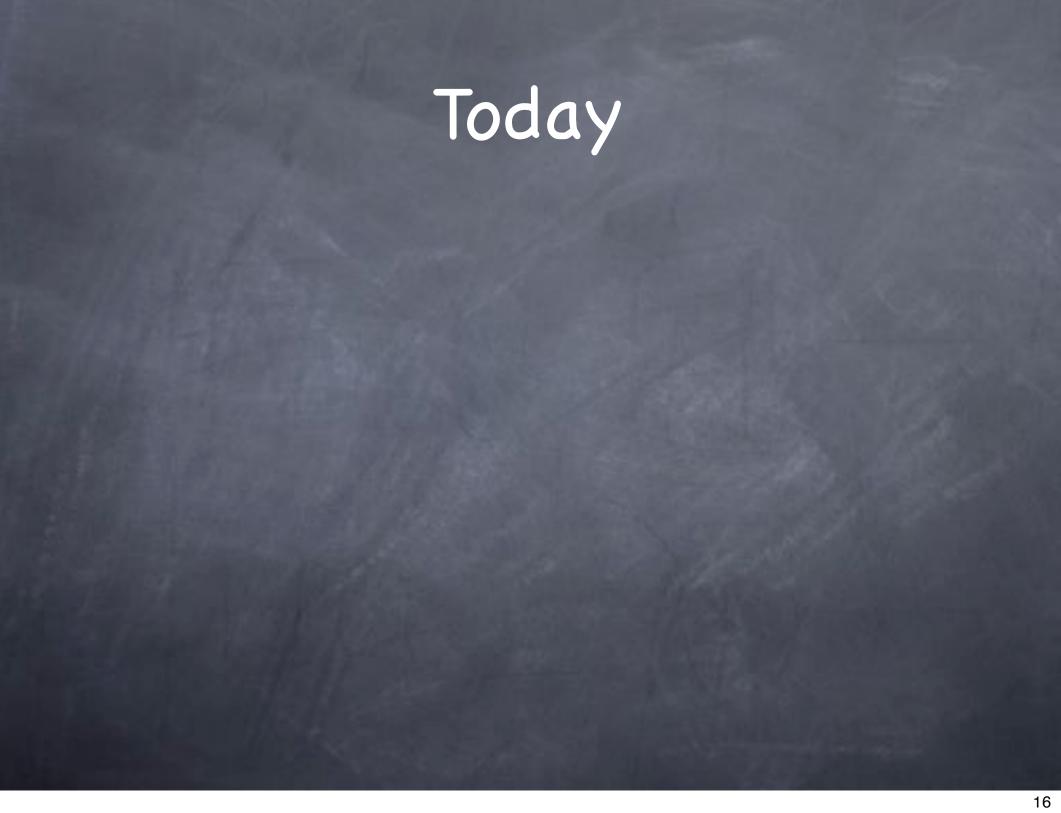
- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
 - Pr[X > a E[X]] < 1/a (non-negative X)</pre>
 - Markov's inequality

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
 - Pr[X > a E[X]] < 1/a (non-negative X)</pre>
 - Markov's inequality
 - Pr[error] at most 1/a if truncated after a times expected running time

$RP \cap co-RP \subseteq ZPP$

$RP \cap co-RP \subseteq ZPP$

- \odot If L \in RP \cap co-RP, then a ZPP algorithm for L:
 - Run both RP and coRP algorithms
 - If former says yes or latter says no, output that answer
 - Else, i.e., if former says no and latter yes, repeat
 - Expected number of repeats = O(1)



Today

- Zoo
 - BPL ⊆ P
- Expected running time
- Zero-Error probabilistic computation