Probabilistic Computation

Lecture 13 Understanding BPP

Probabilistic computation

- Probabilistic computation
- NTM (on "random certificates") for L:

- Probabilistic computation
- NTM (on "random certificates") for L:
 - Pr[M(x)=yes]:

- Probabilistic computation
- NTM (on "random certificates") for L:

- Probabilistic computation
- NTM (on "random certificates") for L:

 $x \not\in L$

x∉L

x∈L

x∈L

- Probabilistic computation
- NTM (on "random certificates") for L:

- PTM for L: Pr[yes]:
- BPTM for L: Pr[yes]:

x∉L

x∉L

x∉L

x∈L

x∈L

x∈L

- Probabilistic computation
- NTM (on "random certificates") for L:

- PTM for L: Pr[yes]:
- BPTM for L: Pr[yes]:
- RTM for L: Pr[yes]:

PP, RP, co-RP, BPP

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1-1/exp
 - A realistic/useful computational model

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1-1/exp
 - A realistic/useful computational model
- Today:

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1-1/exp
 - A realistic/useful computational model
- Today:
 - NP ⊈ BPP, unless PH collapses

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1-1/exp
 - A realistic/useful computational model
- Today:
 - NP ⊈ BPP, unless PH collapses
 - \bullet BPP $\subseteq \Sigma_2^P \cap \Pi_2^P$

Can randomized algorithms efficiently decide all NP problems?

- Can randomized algorithms efficiently decide all NP problems?
 - Unlikely: NP ⊆ BPP ⇒ PH = Σ_2^P

- Can randomized algorithms efficiently decide all NP problems?
 - Unlikely: NP ⊆ BPP ⇒ PH = Σ_2^P
 - Will show BPP ⊆ P/poly

- Can randomized algorithms efficiently decide all NP problems?
 - Unlikely: NP ⊆ BPP ⇒ PH = Σ_2^P
 - Will show BPP ⊆ P/poly
 - Then NP ⊆ BPP ⇒ NP ⊆ P/poly

- Can randomized algorithms efficiently decide all NP problems?
 - Unlikely: NP ⊆ BPP ⇒ PH = Σ_2^P
 - Will show BPP ⊆ P/poly
 - Then NP ⊆ BPP ⇒ NP ⊆ P/poly
 - $\Rightarrow PH = \Sigma_2^p$

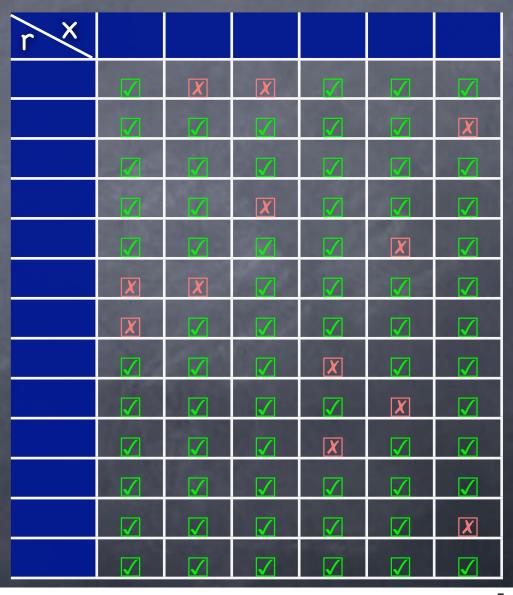
BPP ⊆ P/poly

BPP ⊆ P/poly

If error probability is sufficiently small, will show there should be at least one random tape which works for all 2ⁿ inputs of length n

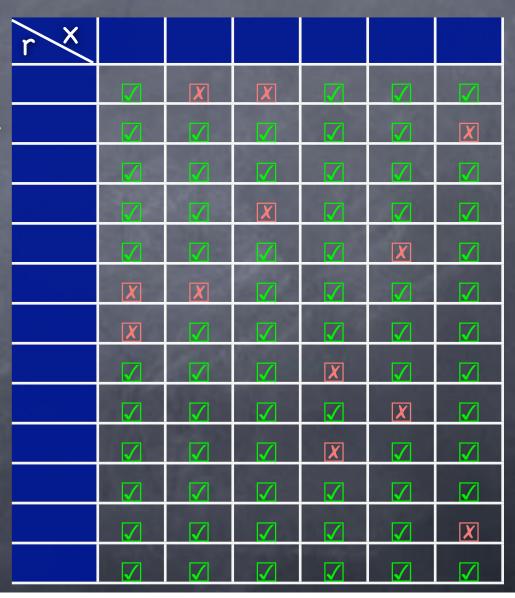
BPP ⊆ P/poly

If error probability is sufficiently small, will show there should be at least one random tape which works for all 2ⁿ inputs of length n



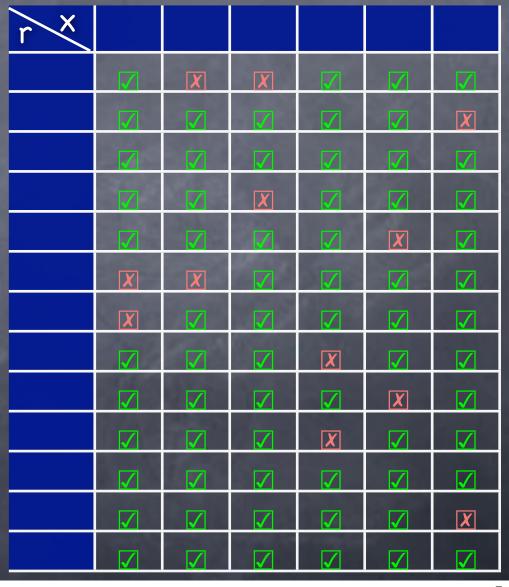
$BPP \subseteq P/poly$

- If error probability is sufficiently small, will show there should be at least one random tape which works for all 2ⁿ inputs of length n
 - Then, can give that random tape as advice



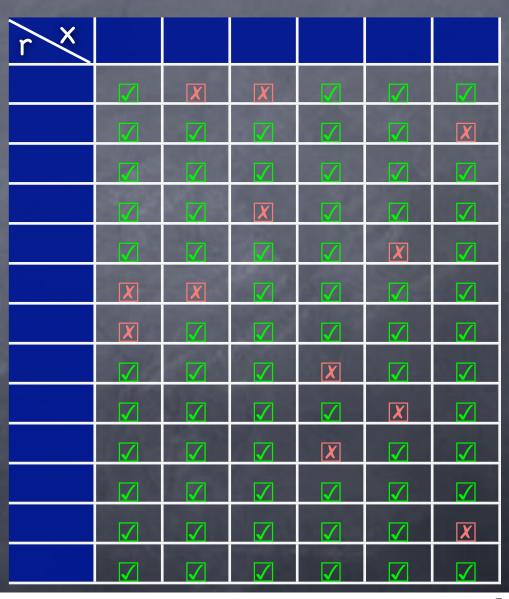
$BPP \subseteq P/poly$

- If error probability is sufficiently small, will show there should be at least one random tape which works for all 2ⁿ inputs of length n
 - Then, can give that random tape as advice
- One such random tape if average (over x) error probability is less than 2⁻ⁿ



$BPP \subseteq P/poly$

- If error probability is sufficiently small, will show there should be at least one random tape which works for all 2ⁿ inputs of length n
 - Then, can give that random tape as advice
- One such random tape if average (over x) error probability is less than 2⁻ⁿ
 - BPP: can make worst error probability < 2⁻ⁿ



BPP vs. PH

BPP vs. PH

BPP vs. PH

- - \odot So BPP $\subseteq \Sigma_2^P \cap \Pi_2^P$

 $BPP \subseteq \Sigma_2^P$

$BPP \subseteq \Sigma_2^P$

 $x \in L$: "for almost all" r, M(x,r)=yes

BPP $\subseteq \Sigma_2^P$

- $x \in L$: "for almost all" r, M(x,r)=yes

$\mathsf{BPP} \subseteq \Sigma_2^\mathsf{P}$

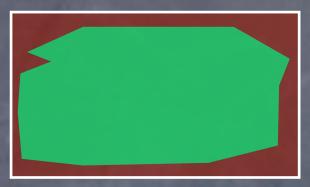
- $x \in L$: "for almost all" r, M(x,r)=yes
- x∉L: M(x,r)=yes for very few r

$\mathsf{BPP} \subseteq \Sigma_2^\mathsf{P}$

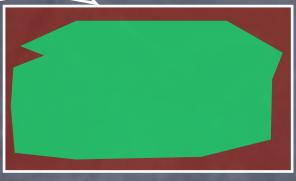
- $x \in L$: "for almost all" r, M(x,r)=yes
- - If it were "for all", in coNP

- $x \in L$: "for almost all" r, M(x,r)=yes
- - If it were "for all", in coNP

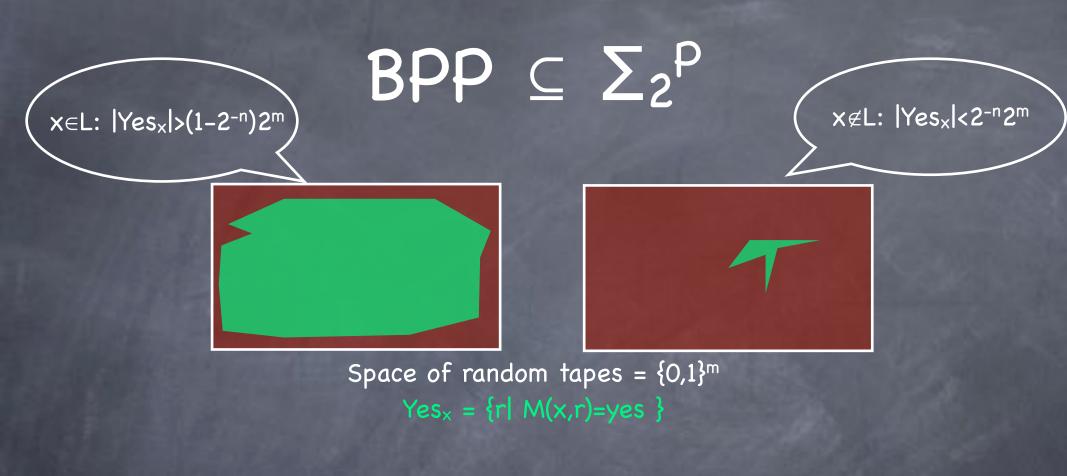
- $x \in L$: "for almost all" r, M(x,r)=yes
- x∉L: M(x,r)=yes for very few r
- - If it were "for all", in coNP
 - □ L = { x| ∃a small "neighborhood", $\forall z$, for some r "near" z, M(x,r)=yes }
 - Note: Neighborhood of z is small (polynomially large), so can go through all of them in polynomial time

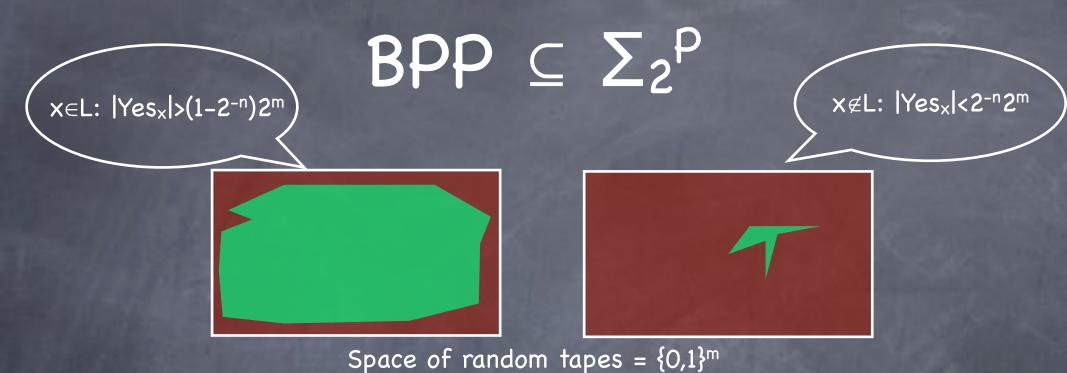


Space of random tapes = $\{0,1\}^m$ Yes_x = $\{r \mid M(x,r)=yes \}$



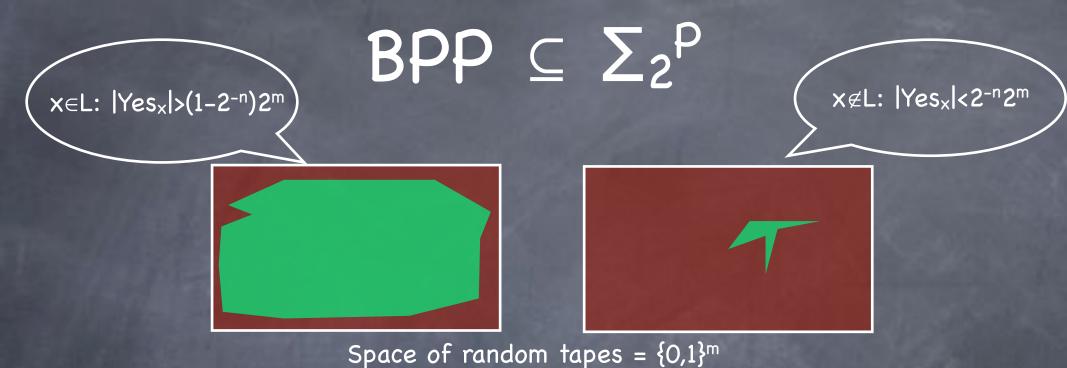
Space of random tapes = $\{0,1\}^m$ Yes_x = $\{r \mid M(x,r)=yes \}$





 x∈L: Will show that there exist a small set of shifts of Yes_x that cover all z

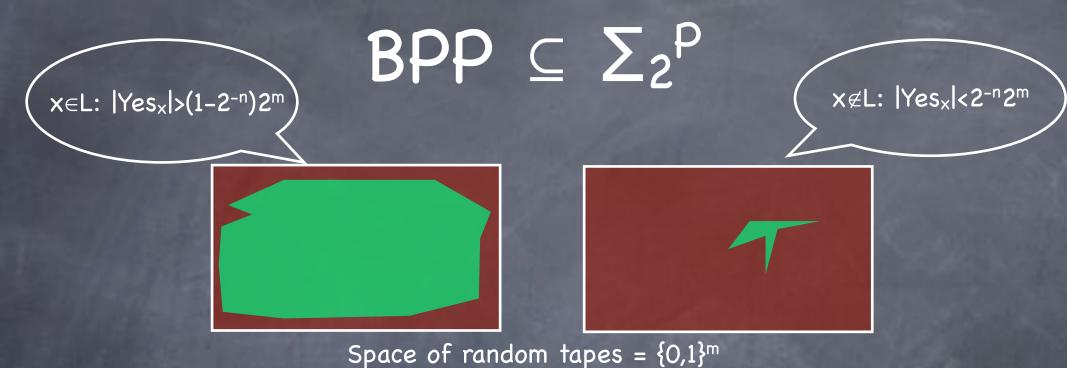
 $Yes_x = \{r | M(x,r) = yes \}$



 \circ x∈L: Will show that there exist a small set of shifts of Yes $_{\times}$ that cover all z

 $Yes_{x} = \{r | M(x,r) = yes \}$

 \odot If z is a shift of $r \in Yes_x$, r is in the neighborhood of z



 \odot x \in L: Will show that there exist a small set of shifts of Yes $_{\times}$ that cover all z

 $Yes_{\times} = \{r | M(x,r) = yes \}$

- If z is a shift of $r \in Yes_x$, r is in the neighborhood of z
- x∉L: Yes_x very small, so its few shifts cover only a small region

"A small set of shifts": $P = \{u_1, u_2, ..., u_k\}$

$\overline{\mathsf{BPP}}\subseteq\Sigma_2^\mathsf{P}$

- \circ "A small set of shifts": $P = \{u_1, u_2, ..., u_k\}$
 - $P(r)=\{r⊕u_1,r⊕u_2,...,r⊕u_k\}$ where r, u_i are m-bit strings, and k is "small" (poly(n))

- \circ "A small set of shifts": $P = \{u_1, u_2, ..., u_k\}$
 - $P(r)=\{r⊕u_1,r⊕u_2,...,r⊕u_k\}$ where r, u_i are m-bit strings, and k is "small" (poly(n))
- For each x∈L, does there exist a P s.t. P(Yes_x) := ∪_{r∈Yes(x)} P(r) = {0,1}^m?

- \circ "A small set of shifts": $P = \{u_1, u_2, ..., u_k\}$
 - P(r)={ r⊕u₁,r⊕u₂,...,r⊕u_k} where r, u_i are m-bit strings, and k is "small" (poly(n))
- For each x∈L, does there exist a P s.t. P(Yes_x) := ∪_{r∈Yes(x)} P(r) = {0,1}^m?
 - Yes! For all large S (like Yes_x) can indeed find a P s.t. P(S) = $\{0,1\}^m$

- "A small set of shifts": $P = \{u_1, u_2, ..., u_k\}$
- For each x∈L, does there exist a P s.t. P(Yes_x) := ∪_{r∈Yes(x)} P(r) = {0,1}^m?
 - - In fact, most P work (if k big enough)!

$$BPP \subseteq \Sigma_2^P$$

Probabilistic Method (finding hay in haystack)

- Probabilistic Method (finding hay in haystack)
 - To prove ∃P with some property

- Probabilistic Method (finding hay in haystack)
 - To prove ∃P with some property
 - Define a probability distribution over all candidate P's and prove that the property holds with positive probability (often even close to one)

- Probabilistic Method (finding hay in haystack)
 - To prove ∃P with some property
 - Define a probability distribution over all candidate P's and prove that the property holds with positive probability (often even close to one)
 - Distribution s.t. easy to prove positive probability of property holding

Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$

$$BPP \subseteq \Sigma_2^P$$

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - Pick each u_i independently, and uniformly at random from {0,1}^m

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - Pick each u_i independently, and uniformly at random from {0,1}^m
 - $Pr(\text{over P})[P(S) \neq \{0,1\}^m] = Pr(\text{over P})[\exists z z \notin P(S)]$

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - Pick each u_i independently, and uniformly at random from {0,1}^m
 - Pr(over P)[P(S) ≠ {0,1}^m] = Pr(over P)[∃z z∉P(S)]

 ≤ Σ_z Pr(over P)[z∉P(S)]

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - $\ensuremath{\text{@}}$ Pick each u_i independently, and uniformly at random from $\{0,1\}^m$
 - Pr(over P)[P(S) ≠ {0,1}^m] = Pr(over P)[∃z z∉P(S)]

 ≤ Σ_z Pr(over P)[z∉P(S)] = Σ_z Pr(over u1..uk)[∀i z⊕ui ∉ S]

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - $\ensuremath{\text{@}}$ Pick each u_i independently, and uniformly at random from $\{0,1\}^m$
 - $Pr_{(over\ P)}[P(S) \neq \{0,1\}^m] = Pr_{(over\ P)}[\exists z\ z \not\in P(S)]$ $\leq \Sigma_z \ Pr_{(over\ P)}[z \not\in P(S)] = \Sigma_z \ Pr_{(over\ u1..uk)}[\forall i \ z \oplus u_i \not\in S]$ $= \Sigma_z \ \Pi_i \ Pr_{(over\ ui)}[z \oplus u_i \not\in S]$

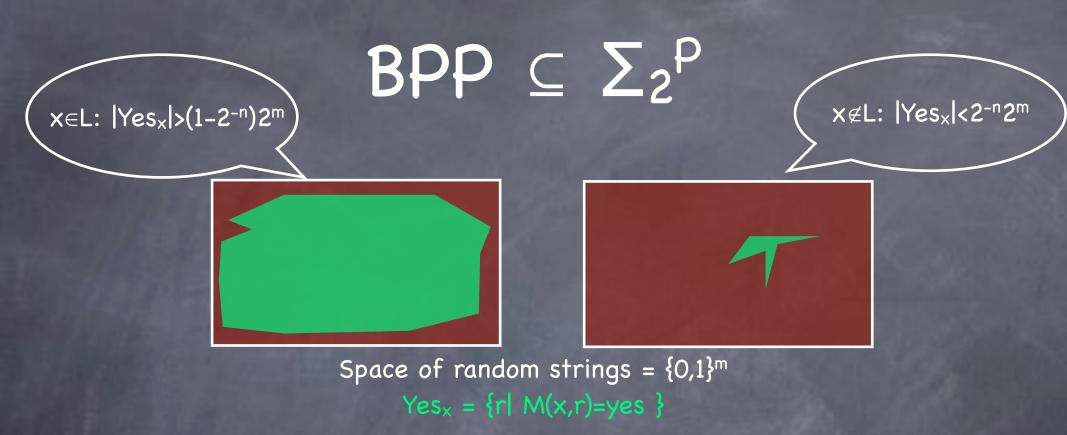
- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - $\ensuremath{\text{@}}$ Pick each u_i independently, and uniformly at random from $\{0,1\}^m$
 - $Pr_{(over\ P)}[P(S) \neq \{0,1\}^m] = Pr_{(over\ P)}[\exists z\ z \not\in P(S)]$ $\leq \Sigma_z \ Pr_{(over\ P)}[z \not\in P(S)] = \Sigma_z \ Pr_{(over\ u1..uk)}[\forall i\ z \oplus u_i \not\in S]$ $= \Sigma_z \ \Pi_i \ Pr_{(over\ ui)}[z \oplus u_i \not\in S] = \Sigma_z \ \Pi_i \ Pr_{(over\ ui)}[u_i \not\in z \oplus S]$

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - $Pr_{(over\ P)}[P(S) \neq \{0,1\}^m] = Pr_{(over\ P)}[\exists z\ z \not\in P(S)]$ $\leq \Sigma_z \ Pr_{(over\ P)}[z \not\in P(S)] = \Sigma_z \ Pr_{(over\ u1..uk)}[\forall i\ z \oplus u_i \not\in S]$ $= \Sigma_z \ \Pi_i \ Pr_{(over\ ui)}[z \oplus u_i \not\in S] = \Sigma_z \ \Pi_i \ Pr_{(over\ ui)}[u_i \not\in z \oplus S]$ $= \Sigma_z \ \Pi_i \ (|S^c|/2^m)$

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - Pick each u_i independently, and uniformly at random from {0,1}^m
 - $Pr_{(over\ P)}[P(S) \neq \{0,1\}^m] = Pr_{(over\ P)}[\exists z\ z \not\in P(S)]$ $\leq \Sigma_z\ Pr_{(over\ P)}[z \not\in P(S)] = \Sigma_z\ Pr_{(over\ u1..uk)}[\forall i\ z \oplus u_i \not\in S]$ $= \Sigma_z\ \Pi_i\ Pr_{(over\ ui)}[z \oplus u_i \not\in S] = \Sigma_z\ \Pi_i\ Pr_{(over\ ui)}[u_i \not\in z \oplus S]$ $= \Sigma_z\ \Pi_i\ (|S^c|/2^m) \ < \Sigma_z\ \Pi_i\ 2^{-n}$

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - $\ensuremath{\text{@}}$ Pick each u_i independently, and uniformly at random from $\{0,1\}^m$
 - $Pr_{(over\ P)}[P(S) \neq \{0,1\}^m] = Pr_{(over\ P)}[\exists z\ z \not\in P(S)]$ $\leq \Sigma_z\ Pr_{(over\ P)}[z \not\in P(S)] = \Sigma_z\ Pr_{(over\ u1..uk)}[\forall i\ z \oplus u_i \not\in S]$ $= \Sigma_z\ \Pi_i\ Pr_{(over\ ui)}[z \oplus u_i \not\in S] = \Sigma_z\ \Pi_i\ Pr_{(over\ ui)}[u_i \not\in z \oplus S]$ $= \Sigma_z\ \Pi_i\ (|S^c|/2^m) \ < \Sigma_z\ \Pi_i\ 2^{-n} = 2^m.(2^{-n})^k = 1$

- Probabilistic method to find $P = \{u_1, u_2, ..., u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$
 - Distribution over P's: randomized experiment to generate P
 - Pick each u_i independently, and uniformly at random from {0,1}^m
 - $\begin{array}{lll} & \text{Pr}_{(\text{over P})}[P(S) \neq \{0,1\}^m] = \text{Pr}_{(\text{over P})}[\exists z \ z \not\in P(S)] \\ & \leq \Sigma_z \ \text{Pr}_{(\text{over P})}[z \not\in P(S)] = \Sigma_z \ \text{Pr}_{(\text{over u1..uk})}[\forall i \ z \oplus u_i \not\in S] \\ & = \Sigma_z \ \Pi_i \ \text{Pr}_{(\text{over ui})}[z \oplus u_i \not\in S] = \Sigma_z \ \Pi_i \ \text{Pr}_{(\text{over ui})}[u_i \not\in z \oplus S] \\ & = \Sigma_z \ \Pi_i \ (|S^c|/2^m) \ < \Sigma_z \ \Pi_i \ 2^{-n} = 2^m.(2^{-n})^k = 1 \end{array}$
 - So (with $|S|>(1-2^{-n})2^m$ and k=m/n), ∃P, P(S) = $\{0,1\}^m$

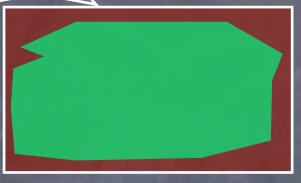


Space of random strings = $\{0,1\}^m$ Yes_x = $\{r \mid M(x,r)=yes \}$

For each x∈L, ∃P (of size k=m/n) s.t. P(Yes_x)={0,1}^m

 $x \in L: |Yes_x| > (1-2^{-n})2^m$

x∉L: |Yes_x|<2⁻ⁿ2^m



Space of random strings = $\{0,1\}^m$ Yes_x = $\{r \mid M(x,r)=yes \}$

- For each x∈L, ∃P (of size k=m/n) s.t. P(Yes_x)={0,1}^m
- For each $x \notin L$, $P(Yes_x) \subseteq \{0,1\}^m$

 $x \in L: |Yes_x| > (1-2^{-n})2^m$

x∉L: |Yes_x|<2⁻ⁿ2^m



Space of random strings = $\{0,1\}^m$ Yes_x = $\{r \mid M(x,r) = yes \}$

- For each x∈L, ∃P (of size k=m/n) s.t. P(Yes_x)={0,1}^m
- For each x∉L, P(Yes_x) ⊆ {0,1}^m

 $x \in L: |Yes_x| > (1-2^{-n})2^m$

 $x \notin L$: $|Yes_x| < 2^{-n}2^m$

Space of random strings =
$$\{0,1\}^m$$

Yes_x = $\{r \mid M(x,r) = yes \}$

- For each x∈L, ∃P (of size k=m/n) s.t. P(Yes_x)={0,1}^m
- For each x∉L, P(Yes_x) ⊆ {0,1}^m
 - P(Yes_x) | ≤ k| Yes_x | = (m/n) $2^{-n}2^m < 2^m$
- □ L = { x | ∃P \forall z for some r∈P⁻¹(z) M(x,r)=yes }

Not known!

Not known!

- Not known!

 - Is indeed BPP-Hard

- Not known!
 - \bullet L = { (M,x,1[†]) | M(x)=yes in time t with probability > 2/3} ?
 - Is indeed BPP-Hard
 - But in BPP?

- Not known!

 - Is indeed BPP-Hard
 - But in BPP?
 - Just run M(x) for t steps and accept if it accepts?

- Not known!

 - Is indeed BPP-Hard
 - But in BPP?
 - Just run M(x) for t steps and accept if it accepts?
 - If $(M,x,1^{\dagger})$ in L, we will indeed accept with prob. > 2/3

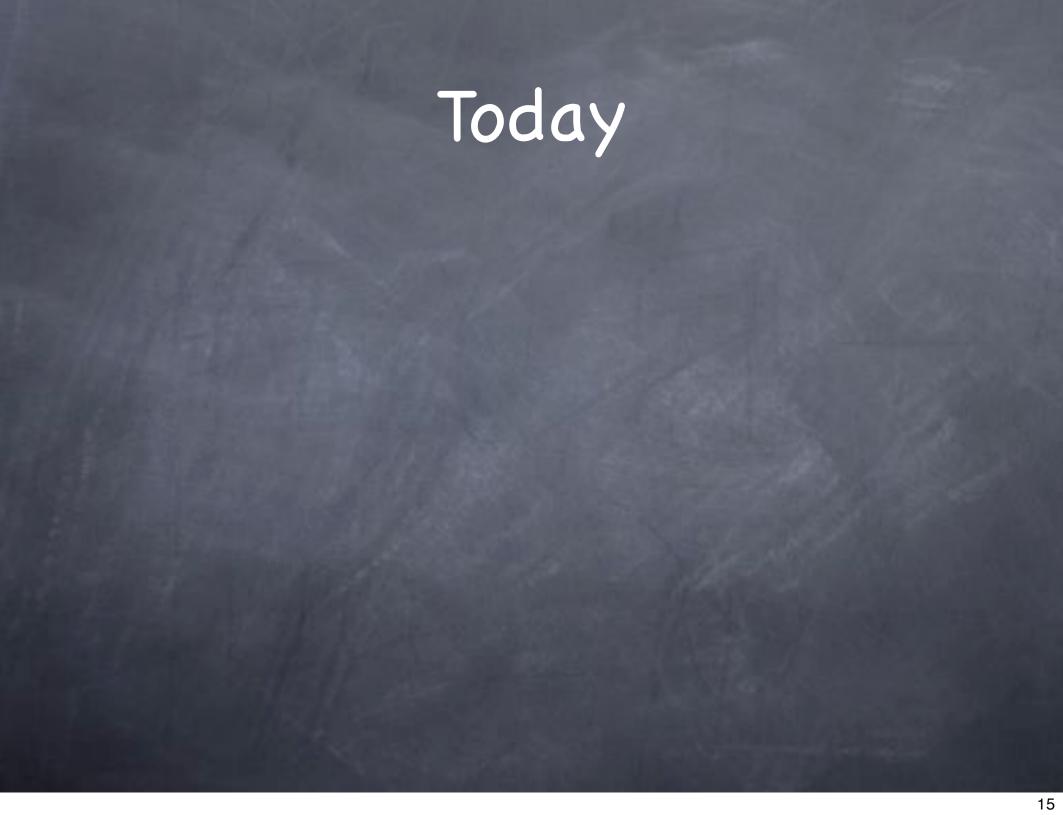
- Not known!

 - Is indeed BPP-Hard
 - But in BPP?
 - Just run M(x) for t steps and accept if it accepts?
 - If (M,x,1[†]) in L, we will indeed accept with prob. > 2/3
 - But M may not have a bounded gap. Then, if $(M,x,1^{\dagger})$ not in L, we may accept with prob. very close to 2/3.

BPTIME(n)
 □ BPTIME(n^{100})?

- BPTIME(n)
 □ BPTIME(n^{100})?
- Not known!

- BPTIME(n) \subseteq BPTIME(n¹⁰⁰)?
- Not known!
 - But is true for BPTIME(T)/1



Probabilistic computation

- Probabilistic computation
- $BPP \subseteq P/poly (so if NP \subseteq BPP, then <math>PH=\Sigma_2^p)$

- Probabilistic computation
- $BPP \subseteq P/poly (so if NP \subseteq BPP, then <math>PH=\Sigma_2^p)$

- Probabilistic computation
- $BPP \subseteq P/poly (so if NP \subseteq BPP, then <math>PH=\Sigma_2^p)$
- Coming up

- Probabilistic computation
- BPP ⊆ P/poly (so if NP ⊆ BPP, then PH= Σ_2^P)
- Coming up
 - Basic randomized algorithmic techniques

- Probabilistic computation
- BPP ⊆ P/poly (so if NP ⊆ BPP, then PH= Σ_2^P)
- Coming up
 - Basic randomized algorithmic techniques
 - Saving on randomness