Non-Uniform Computation & Circuits

Lecture 10 Wherein every language can be decided

Uniform: Same program for all (the infinitely many) inputs

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size
 - Then complexity of building the program and executing the program

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size
 - Then complexity of building the program and executing the program
 - Sometimes will focus on the latter alone

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size
 - Then complexity of building the program and executing the program
 - Sometimes will focus on the latter alone
 - Not entirely realistic if the program family is uncomputable or very complex to compute

Program: TM M and advice strings {A_n}

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n
 - $|A_n| = 2^n$ is sufficient

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n
 - $|A_n|=2^n$ is sufficient
 - But {A_n} can be uncomputable (even if just one bit long)

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n
 - $|A_n|=2^n$ is sufficient
 - But {A_n} can be uncomputable (even if just one bit long)
 - e.g. advice to decide undecidable unary languages

DTIME(T)/a

- DTIME(T)/a
 - Languages decided by a TM in time T(n) using non-uniform advice of length a(n)

- DTIME(T)/a
 - Languages decided by a TM in time T(n) using non-uniform advice of length a(n)

- DTIME(T)/a
 - Languages decided by a TM in time T(n) using non-uniform advice of length a(n)

P/log (or even DTIME(1)/1) has undecidable languages

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
 - So P/log cannot be contained in any of the uniform complexity classes

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
 - So P/log cannot be contained in any of the uniform complexity classes
- P/log contains P

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
 - So P/log cannot be contained in any of the uniform complexity classes
- P/log contains P
 - Does P/log or P/poly contain NP?

Recall finding witness for an NP language is Turing reducible to deciding the language

Search using Decision

- Suppose given "oracles" for deciding all NP languages, can we easily find certificates?
 - Yes! So, if decision easy (decision-oracles realizable), then search is easy too!
- \circ Say, given x, need to find w s.t. $(x,w) \in L'$ (if such w exists)
 - consider L_1 in NP: $(x,y) \in L_1$ iff $\exists z \text{ s.t. } (x,yz) \in L'$. (i.e., can y be a prefix of a certificate for x).
 - @ Query L_1 -oracle with (x,0) and (x,1). If $\exists w$, one of the two must be positive: say $(x,0) \in L_1$; then first bit of w be 0.
 - \odot For next bit query L₁-oracle with (x,00) and (x,01)

Search using Decision

- Suppose given "oracles" for deciding all NP languages, can we easily find certificates?
 - Yes! So, if decision easy (decision-oracles research is easy too!
- \circ Say, given x, need to find w s.t. $(x,w) \in L'$ (if sy
- Use L₂ so that (x,z,pad) in L₂ iff (x,z) in L₁. Can query L₂ with same size instances
- ø consider L₁ in NP: (x,y) ∈ L₁ iff ∃z s.t. (x,yz) ∈ L¹. (i.e., can y
 be a prefix of a certificate for x).
- @ Query L_1 -oracle with (x,0) and (x,1). If $\exists w$, one of the two must be positive: say $(x,0) \in L_1$; then first bit of w be 0.
- \odot For next bit query L₁-oracle with (x,00) and (x,01)

Recall finding witness for an NP language is Turing reducible to deciding the language

- Recall finding witness for an NP language is Turing reducible to deciding the language
- If NP ⊆ P/log, then for each L in NP, there is a poly-time
 TM with log advice which can <u>find</u> witness (via self-reduction)

- Recall finding witness for an NP language is Turing reducible to deciding the language
- If NP ⊆ P/log, then for each L in NP, there is a poly-time
 TM with log advice which can <u>find</u> witness (via self-reduction)
- Guess advice (poly many), and for each guessed advice, run the TM and see if it finds witness

- Recall finding witness for an NP language is Turing reducible to deciding the language
- If NP ⊆ P/log, then for each L in NP, there is a poly-time
 TM with log advice which can <u>find</u> witness (via self-reduction)
- Guess advice (poly many), and for each guessed advice, run the TM and see if it finds witness
- If no advice worked (one of them was correct), then input not in language

$$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$$

$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$

 \odot Will show $\Pi_2^P = \Sigma_2^P$

$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$

- \odot Will show $\Pi_2^P = \Sigma_2^P$
- © Consider L = $\{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi_2^P$ where $L' = \{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in NP$

$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^p$

- Will show $\Pi_2^P = \Sigma_2^P$
- © Consider L = $\{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi_2^P$ where $L' = \{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in NP$
 - If NP \subseteq P/poly then consider M with advice $\{A_n\}$ which finds witness for L': i.e. if $(x,w_1) \in L'$, then $M(x,w_1;A_n)$ outputs a witness w_2 s.t. $F(x,w_1,w_2)$

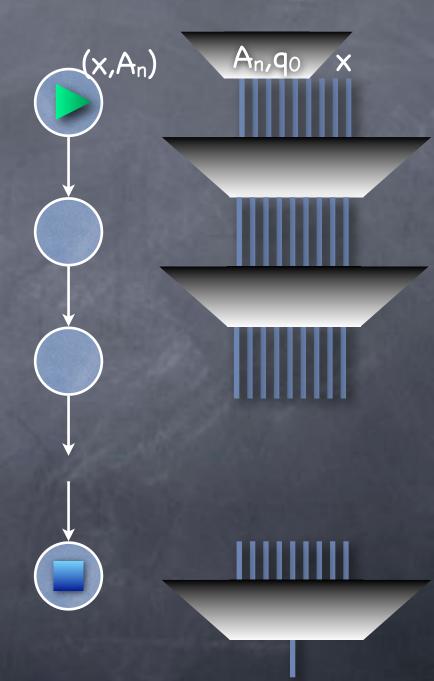
$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$

- Will show $\Pi_2^P = \Sigma_2^P$
- © Consider L = $\{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi_2^P$ where $L' = \{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in NP$
 - If NP \subseteq P/poly then consider M with advice $\{A_n\}$ which finds witness for L': i.e. if $(x,w_1) \in L'$, then $M(x,w_1;A_n)$ outputs a witness w_2 s.t. $F(x,w_1,w_2)$

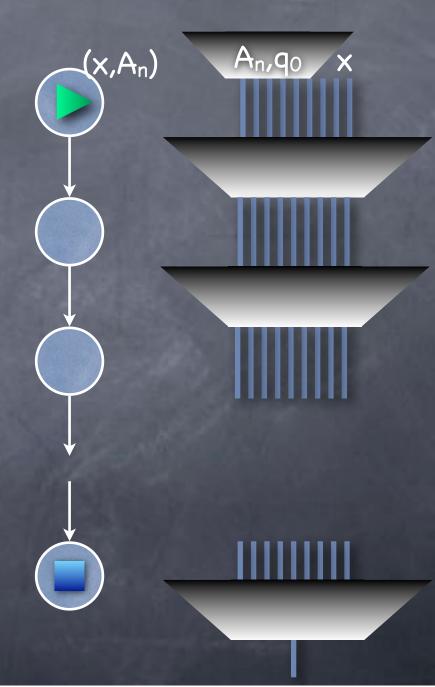
Non-uniformity: circuit family {C_n}

- Non-uniformity: circuit family {C_n}
 - © Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$

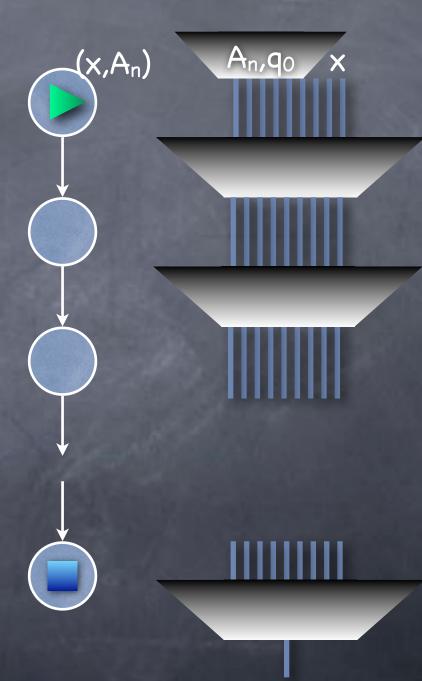
- Non-uniformity: circuit family {C_n}
 - © Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$



- Non-uniformity: circuit family {C_n}
 - Given non-uniform computation (M,{A_n}), can define equivalent $\{C_n\}$
 - Advice A_n is hard-wired into circuit C_n



- Non-uniformity: circuit family {C_n}
 - Given non-uniform computation (M,{A_n}), can define equivalent $\{C_n\}$
 - Advice A_n is hard-wired into circuit C_n
 - Size of circuit polynomially related to running time of TM

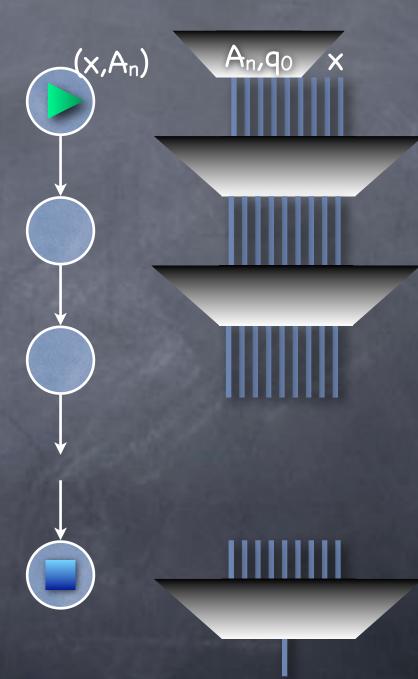


Non-uniformity: circuit family $\{C_n\}$

Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$ hines or

Advice An is hard-wired into circuit Cn

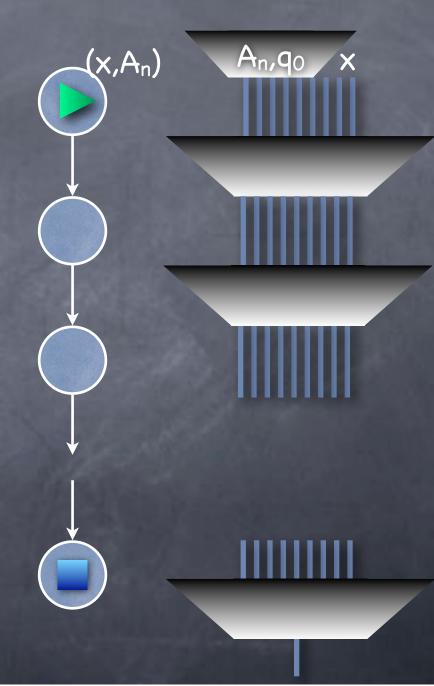
Size of circuit polynomially related to running time of TM



- Non-uniformity: circuit family {C_n}
- Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$ Wires or

Advice An is hard-wired into circuit Cn

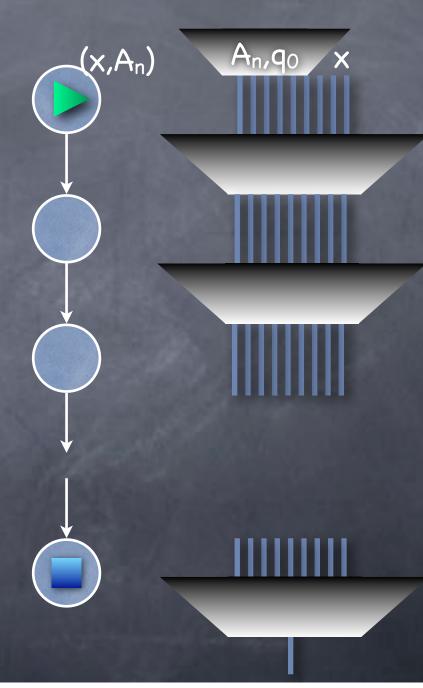
- Size of circuit polynomially related to running time of TM
- Conversely, given {C_n}, can use description of C_n as advice A_n for a "universal" TM

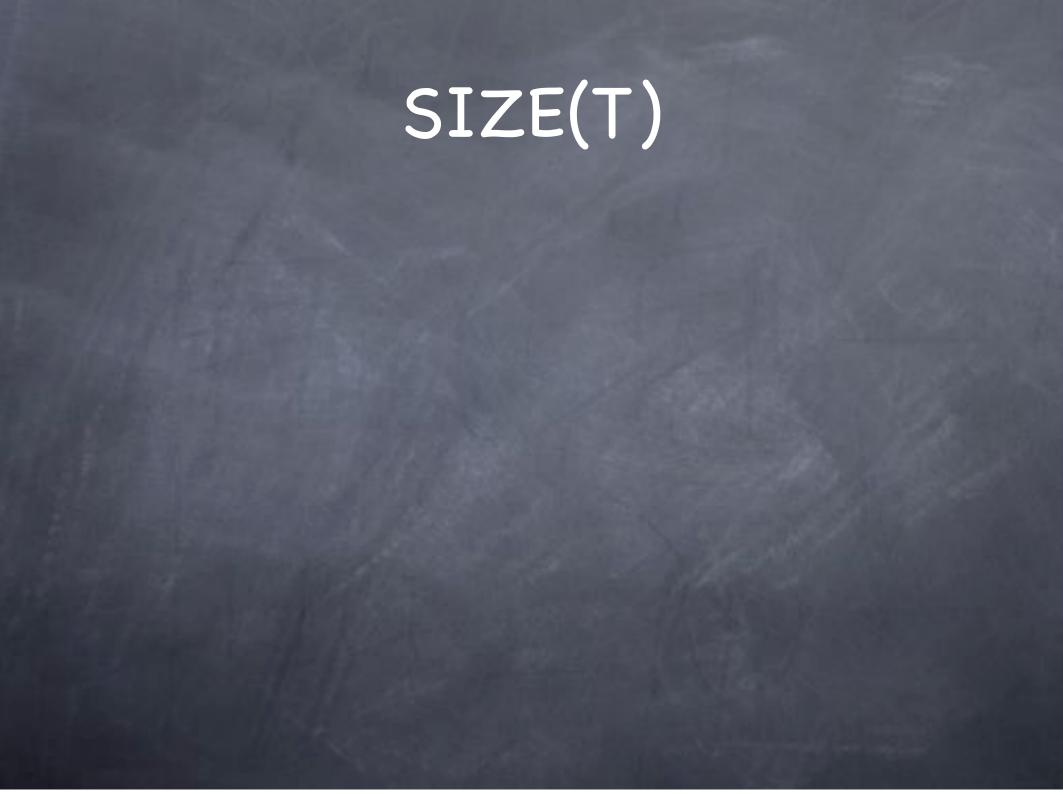


- Non-uniformity: circuit family {C_n}
- Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$ hines or

Advice An is hard-wired into circuit Cn

- Size of circuit polynomially related to running time of TM
- Conversely, given {C_n}, can use description of C_n as advice A_n for a "universal" TM
 - |A_n| comparable to size of circuit Cn





SIZE(T): languages solved by circuit families of size T(n)

- SIZE(T): languages solved by circuit families of size T(n)
- P/poly = SIZE(poly)

- SIZE(T): languages solved by circuit families of size T(n)
- P/poly = SIZE(poly)
 - SIZE(poly) ⊆ P/poly: Size T circuit can be described in O(T log T) bits (advice). Universal TM can evaluate this circuit in poly time

- SIZE(T): languages solved by circuit families of size T(n)
- P/poly = SIZE(poly)
 - SIZE(poly) ⊆ P/poly: Size T circuit can be described in O(T log T) bits (advice). Universal TM can evaluate this circuit in poly time
 - P/poly ⊆ SIZE(poly): Transformation from Cook's
 theorem, with advice string hardwired into circuit

All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - © Circuit encodes truth-table

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - © Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}

 - Number of languages = 2^{2ⁿ}

SIZE(T') ⊆ SIZE(T) if T=Ω(†2†) and T'=O(2†/†), for t(n)≤n

- SIZE(T') ⊆ SIZE(T) if T=Ω(†2†) and T'=O(2†/t), for t(n)≤n
 - \odot e.g., $T(n) = n \log n$ and $T'(n) = n/\log n$

- SIZE(T') ⊆ SIZE(T) if T=Ω(†2†) and T'=O(2†/t), for t(n)≤n
 - \odot e.g., T(n) = n log n and T'(n) = n/log n
 - Consider functions on t bits (ignoring n-t bits)

- SIZE(T') ⊆ SIZE(T) if $T=Ω(t2^t)$ and $T'=O(2^t/t)$, for $t(n) \le n$
 - \odot e.g., T(n) = n log n and T'(n) = n/log n
 - Consider functions on t bits (ignoring n-t bits)
 - All of them in SIZE(T), most not in SIZE(T')

Uniform circuit family: constructed by a TM

- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families

- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs

- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs
- Logspace-uniform:

- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs
- Logspace-uniform:
 - An O(log n) space TM can compute the circuit

NCi and ACi

NCi and ACi

NCi: class of languages decided by bounded fan-in logspace-uniform circuits of polynomial size and depth O(logi n)

- NCi: class of languages decided by bounded fan-in logspace-uniform circuits of polynomial size and depth O(logi n)
 - ACi: Similar, but unbounded fan-in circuits

- NCi: class of languages decided by bounded fan-in logspace-uniform circuits of polynomial size and depth O(logi n)
 - ACi: Similar, but unbounded fan-in circuits
- NC⁰ and AC⁰: constant depth circuits

- NCi: class of languages decided by bounded fan-in logspace-uniform circuits of polynomial size and depth O(logi n)
 - ACi: Similar, but unbounded fan-in circuits
- NC⁰ and AC⁰: constant depth circuits
 - NC⁰ output depends on only a constant number of input bits

- NCi: class of languages decided by bounded fan-in logspace-uniform circuits of polynomial size and depth O(logi n)
 - ACi: Similar, but unbounded fan-in circuits
- NC⁰ and AC⁰: constant depth circuits
 - NC⁰ output depends on only a constant number of input bits

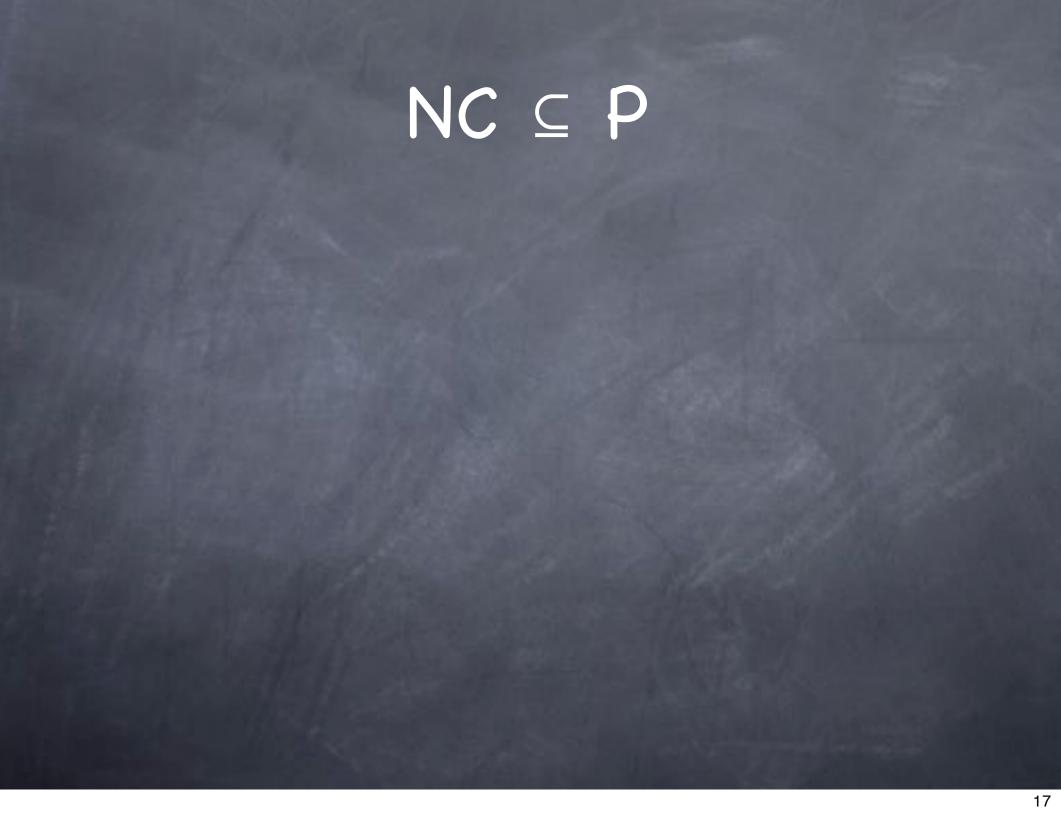
NC = $\cup_{i>0}$ NCⁱ. Similarly AC.

- NC = $\cup_{i>0}$ NCⁱ. Similarly AC.

- \circ NC = $\cup_{i>0}$ NCⁱ. Similarly AC.
- - \odot Clearly $NC^i \subseteq AC^i$

- O NC = $\cup_{i>0}$ NCⁱ. Similarly AC.
- $OC^i \subseteq AC^i \subseteq NC^{i+1}$
 - Olearly NCⁱ ⊆ ACⁱ

- O NC = $\cup_{i>0}$ NCⁱ. Similarly AC.
- $OC^i \subseteq AC^i \subseteq NC^{i+1}$
 - Clearly NCⁱ ⊆ ACⁱ
- So NC = AC



Generate circuit of the right input size and evaluate on input

- @ Generate circuit of the right input size and evaluate on input
- Generating the circuit

- @ Generate circuit of the right input size and evaluate on input
- Generating the circuit
 - o in logspace, so poly time; also circuit size is poly

- @ Generate circuit of the right input size and evaluate on input
- Generating the circuit
 - o in logspace, so poly time; also circuit size is poly
- Evaluating the gates

- @ Generate circuit of the right input size and evaluate on input
- Generating the circuit
 - o in logspace, so poly time; also circuit size is poly
- Evaluating the gates
 - Poly(n) gates

- @ Generate circuit of the right input size and evaluate on input
- Generating the circuit
 - o in logspace, so poly time; also circuit size is poly
- Evaluating the gates
 - Poly(n) gates
 - Per gate takes O(1) time + time to look up output values of (already evaluated) gates

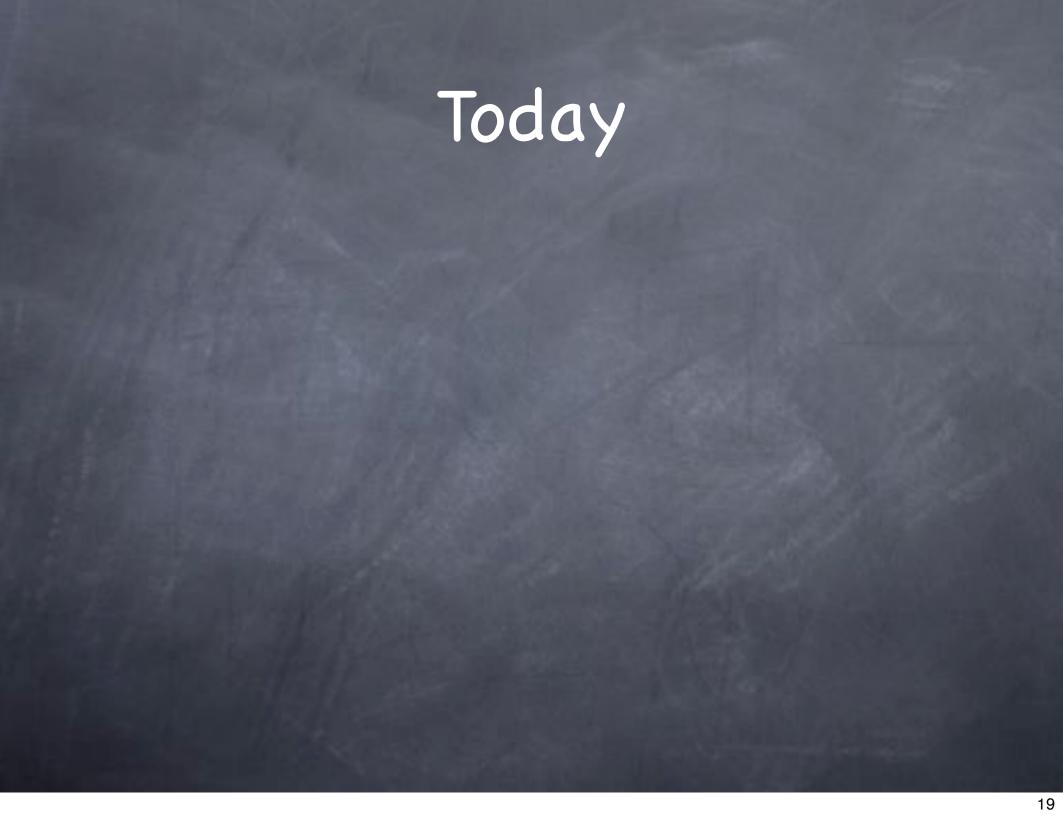
- Generate circuit of the right input size and evaluate on input
- Generating the circuit
 - o in logspace, so poly time; also circuit size is poly
- Evaluating the gates
 - Poly(n) gates
 - Per gate takes O(1) time + time to look up output values of (already evaluated) gates
- Open problem: Is NC = P?

Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
 - Corresponds to NC (How?)

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
 - Corresponds to NC (How?)
 - Depth translates to time

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
 - Corresponds to NC (How?)
 - Depth translates to time
 - Total "work" is size of the circuit



Non-uniform complexity

- Non-uniform complexity
 - P/1
 Decidable

- Non-uniform complexity
 - P/1
 Decidable

- Non-uniform complexity
 - P/1
 Decidable

 - ⊗ NP ⊆ P/poly ⇒ PH = $Σ_2$ P

- Non-uniform complexity
 - P/1
 Decidable

 - ⋄ NP ⊆ P/poly ⇒ PH = $Σ_2$ P
- Non-uniform circuit Complexity

- Non-uniform complexity
 - P/1
 Decidable
 - $> NP \subseteq P/log \Rightarrow NP = P$
- Non-uniform circuit Complexity
 - SIZE(poly) = P/poly

- Non-uniform complexity
 - P/1
 Decidable

 - ⊗ NP ⊆ P/poly ⇒ PH = $Σ_2$ P
- Non-uniform circuit Complexity
 - SIZE(poly) = P/poly
 - SIZE-hierarchy: SIZE(T') ⊆ SIZE(T) if T = Ω(†2†), T' = O(2†/†)

- Non-uniform complexity
 - P/1
 Decidable
 - ⊗ NP ⊆ P/log ⇒ NP = P
 - ⊗ NP ⊆ P/poly ⇒ PH = $Σ_2$ P
- Non-uniform circuit Complexity
 - SIZE(poly) = P/poly
 - SIZE-hierarchy: SIZE(T') ⊆ SIZE(T) if T=Ω(†2†), T'=O(2†/†)
- Uniform Circuit Complexity

- Non-uniform complexity
 - P/1
 Decidable

 - ⊗ NP ⊆ P/poly ⇒ PH = $Σ_2^P$
- Non-uniform circuit Complexity
 - SIZE(poly) = P/poly
 - SIZE-hierarchy: SIZE(T') ⊆ SIZE(T) if T=Ω(†2†), T'=O(2†/†)
- Uniform Circuit Complexity