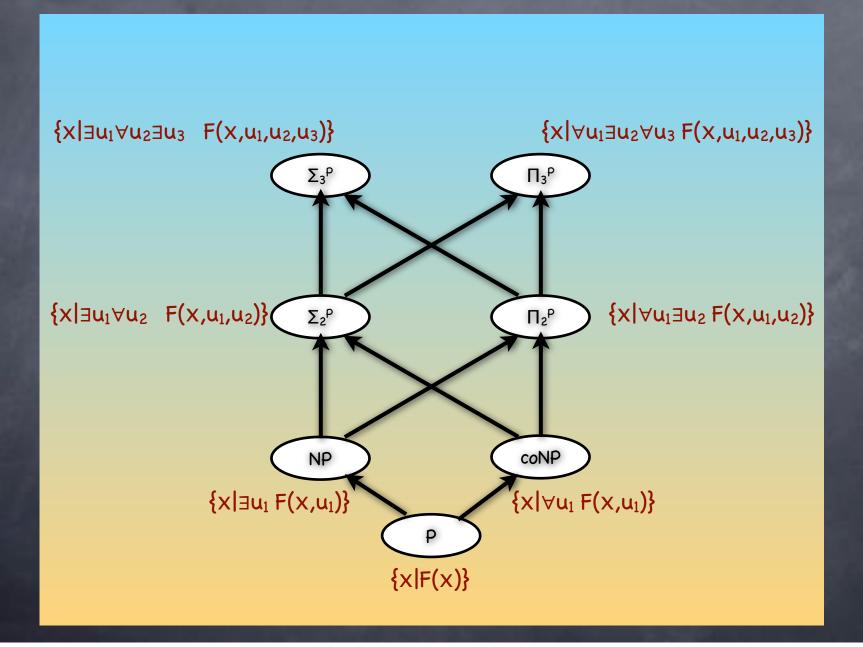
Computational Complexity

Lecture 8
More of the Polynomial Hierarchy
Oracle-based Definition

Recall PH



Recall Oracle Machine

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
 - Can run an oracle machine with any oracle

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
 - Can run an oracle machine with any oracle
 - Oracle fully specified by the input-output behavior

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
 - Can run an oracle machine with any oracle
 - Oracle fully specified by the input-output behavior
 - Language oracle: answer is a single bit

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
 - Can run an oracle machine with any oracle
 - Oracle fully specified by the input-output behavior
 - Language oracle: answer is a single bit
 - This is what we consider

Non-deterministic oracle machine

- Non-deterministic oracle machine
 - © Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)

- Non-deterministic oracle machine
 - © Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
 - Said to accept if any thread reaches accept state

- Non-deterministic oracle machine
 - © Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
 - Said to accept if any thread reaches accept state
 - Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of nondeterministic choices)

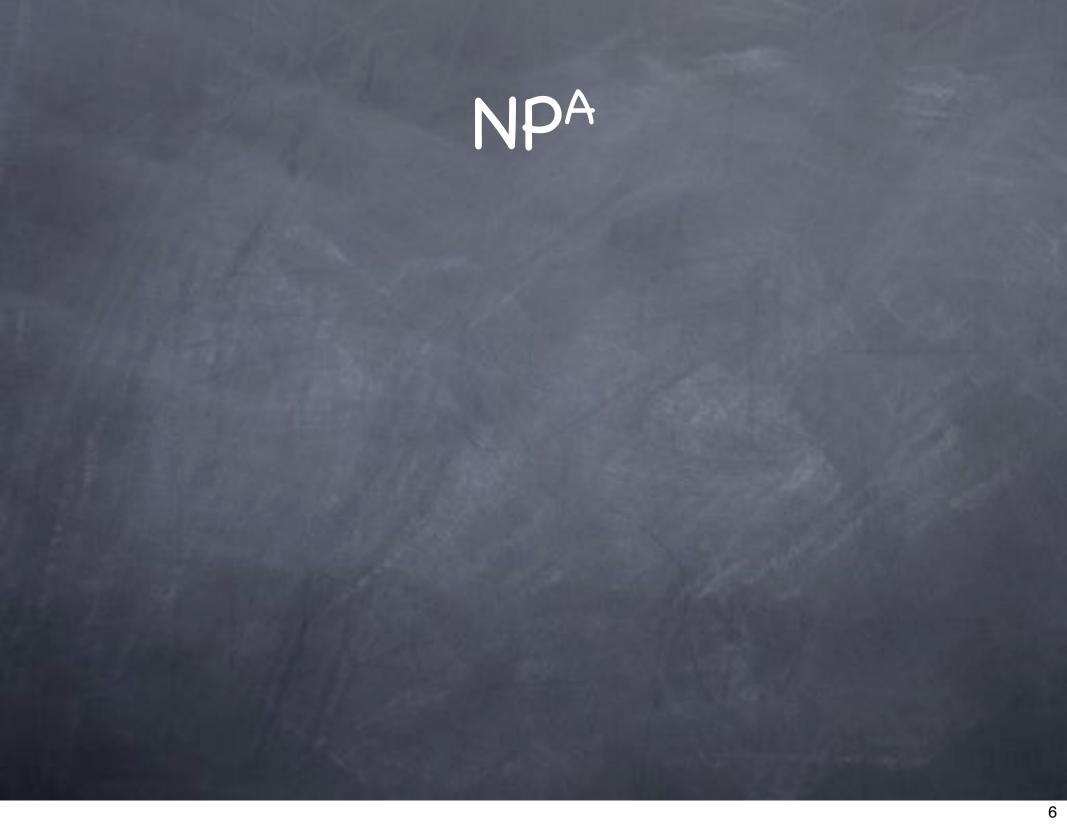
- Non-deterministic oracle machine
 - © Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
 - Said to accept if any thread reaches accept state
 - Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of nondeterministic choices)
 - Said to accept x if ∃w such that (x,w) takes it to accepting state

CO-

- Non-deterministic oracle machine
 - © Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!) all threads reach
 - Said to accept if any thread reaches accept state
 - Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of nondeterministic choices)

AM

Said to accept x if ∃w such that (x,w) takes it to accepting state



NPA: class of languages accepted by oracle NTMs with oracle for A in poly time

- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NPA has languages of the form

- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- © Certificate version: NPA has languages of the form
 - B = {x | ∃w $M^A(x,w) = 1$ }

- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- © Certificate version: NPA has languages of the form
 - $B = \{x \mid \exists w M^{A}(x,w) = 1\}$
 - where M deterministic oracle machine

- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NPA has languages of the form
 - B = {x | ∃w $M^A(x,w) = 1$ }
 - where M deterministic oracle machine

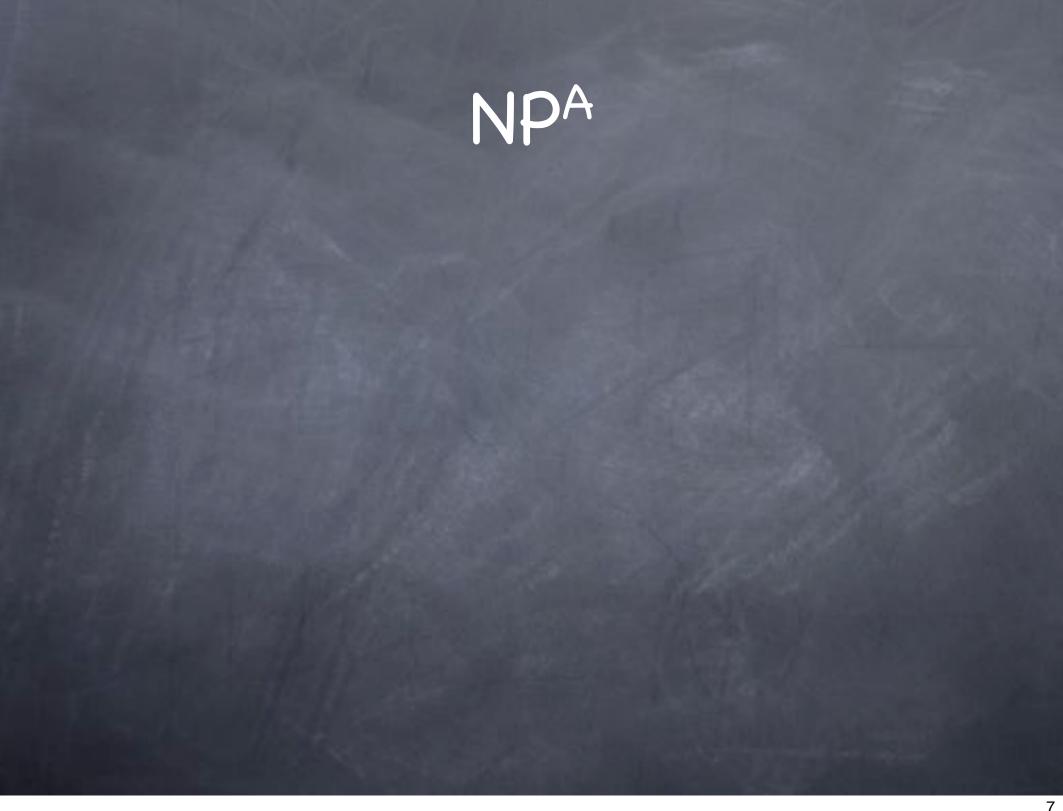
- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NPA has languages of the form
 - $B = \{x \mid \exists w M^{A}(x,w) = 1\}$
 - where M deterministic oracle machine

 - \bullet i.e., $B = \{x \mid \exists w (x,w) \in L\}$, where L in P^A

- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NPA has languages of the form
 - B = {x | ∃w $M^A(x,w) = 1$ }
 - where M deterministic oracle machine

 - \bullet i.e., $B = \{x \mid \exists w (x,w) \in L\}$, where L in P^A
- \circ co-(NPA) = (co-NP)A

- NPA: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NPA has languages of the form
 - - where M deterministic oracle machine
 - \bullet MA runs in poly(|x|) time and |w|=poly(|x|)
 - \bullet i.e., $B = \{x \mid \exists w (x,w) \in L\}$, where L in P^A
- \circ co-(NPA) = (co-NP)A
 - anguages of the form $\{x \mid \forall w (x,w) \in L\}$, where L in P^A



If A in P, NPA = NP

- If A in P, NP^A = NP
 - Can "implement" the oracle as a subroutine

- If A in P, NP^A = NP
 - Can "implement" the oracle as a subroutine
- If A in NP?

- If A in P, NP^A = NP
 - Can "implement" the oracle as a subroutine
- - Oracle for A is an oracle for A^c too! NP^A = NP^{A^c}

- - Can "implement" the oracle as a subroutine
- If A in NP?
 - Oracle for A is an oracle for A^c too! NP^A = NP^{A^c}
 - NP ∪ co-NP ⊆ NPSAT

- - Can "implement" the oracle as a subroutine
- If A in NP?
 - Oracle for A is an oracle for A^c too! NP^A = NP^{A^c}
 - NP ∪ co-NP ⊆ NPSAT
 - Can we better characterize NPSAT?

- - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

- - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)
 - NPSAT also called NPNP

NP^{NP} and relatives

- NPSAT = U_{A∈NP} NP^A
 - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)
 - NPSAT also called NPNP

NP^{NP} and relatives

- \bullet NPSAT = $U_{A \in NP} NP^A$
 - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)
 - NPSAT also called NPNP
- \otimes Will show $NP^{\Sigma_k} = \Sigma_{k+1}^P$ (alt. definition for Σ_{k+1}^P)

NP^{NP} and relatives

- NPSAT = U_{A∈NP} NPA
 - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)
 - NPSAT also called NPNP
- \otimes Will show $NP^{\Sigma_k} = \Sigma_{k+1}^P$ (alt. definition for Σ_{k+1}^P)
 - \odot In particular, NPNP = Σ_2^P

$$\Sigma_{k+1} = NP^{\Sigma_k}$$

$$\Sigma_{k+1} = NP^{\Sigma_k}$$

 $\hspace{0.1in} \hspace{0.1in} \hspace{0.$

$$\Sigma_{k+1} = NP^{\Sigma_k}$$

$$\Sigma_{k+1} = NP^{\Sigma_k}$$

- - \bullet L = { x| $\exists w (x,w) \in L'$ }, where L' in Π_k^P
 - \odot So L in NPL where L in Π_k^P

$\Sigma_{k+1} = NP^{\Sigma_k}$

- - \bullet L = { x| $\exists w (x,w) \in L'$ }, where L' in Π_k^P
 - \odot So L in NPL where L in Π_k^P
 - \odot So $NP^{L'} \subseteq NP^{\Pi_k} = NP^{\Sigma_k}$

$\Sigma_{k+1} = NP^{\Sigma_k}$

- - \bullet L = { x| $\exists w (x,w) \in L'$ }, where L' in Π_k^P
 - \odot So L in NPL where L in Π_k^P
 - So $NP^{L'} \subseteq NP^{\Pi_k} = NP^{\Sigma_k}$
- \bullet So $\Sigma_{k+1}^P \subseteq NP^{\Sigma_k}$

$$\Sigma_{k+1} = NP^{\Sigma_k}$$

- - \bullet L = { x| $\exists w (x,w) \in L'$ }, where L' in Π_k^P
 - \odot So L in NPL where L in Π_k^P
 - \odot So $NP^{L'} \subseteq NP^{\Pi_k} = NP^{\Sigma_k}$

$$NP^{\Sigma_k}\subseteq\ \Sigma_{k+1}$$

$$NP^{\Sigma_k}\subseteq\ \Sigma_{k+1}$$

- To show NPA $\subseteq \Sigma_{k+1}^P$ if A in Σ_k^P
 - For $B \in NP^A$ poly-time TM M s.t. $B = \{ x | \exists w M^A(x,w)=1 \}$

$\mathsf{NP}^{\Sigma_k}\subseteq\ \Sigma_{k+1}$

- \bullet To show NPA $\subseteq \Sigma_{k+1}^P$ if A in Σ_k^P
 - For $B \in NP^A$ poly-time TM M s.t. $B = \{ x \mid \exists w \ M^A(x,w)=1 \}$
 - \bullet i.e., $B = \{ x \mid \exists w \exists ans M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"} \}$

$\mathsf{NP}^{\Sigma_k}\subseteq\ \Sigma_{k+1}$

- \bullet To show NP^A $\subseteq \Sigma_{k+1}^P$ if A in Σ_k^P
 - For $B \in NP^A$ poly-time TM M s.t. $B = \{ x \mid \exists w \ M^A(x,w)=1 \}$
 - i.e., $B = \{ x \mid \exists w \exists ans M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"} \}$
 - To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"}\}\ in \Sigma_{k+1}^P$

$\mathsf{NP}^{\Sigma_k}\subseteq\ \Sigma_{k+1}$

- To show $NP^A \subseteq \Sigma_{k+1}^P$ if A in Σ_k^P
 - For $B \in NP^A$ poly-time TM M s.t. $B = \{ x \mid \exists w \ M^A(x,w)=1 \}$
 - i.e., $B = \{ x \mid \exists w \exists ans M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"} \}$
 - To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"}\}\ in \Sigma_{k+1}^P$
 - \odot Then B also in Σ_{k+1}^{P}

$$NP^{\Sigma_k}\subseteq \ \Sigma_{k+1}$$

To show $C = \{(x,w,ans) \mid M^{ans}(x,w)=1 \text{ and "ans correct"}\}$ in Σ_{k+1}^{P}

- To show $C = \{(x,w,ans) \mid M^{ans}(x,w)=1 \text{ and "ans correct"}\} \text{ in } \Sigma_{k+1}^{P}$
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not

- To show $C = \{(x,w,ans) \mid M^{ans}(x,w)=1 \text{ and "ans correct"}\} \text{ in } \Sigma_{k+1}^{P}$
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - ** "ans correct": (ans=1 \land z \in A) or (ans=0 \land z \notin A)

$\mathsf{NP}^{\Sigma_k}\subseteq \Sigma_{k+1}$

- To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"}\}\ in \Sigma_{k+1}^P$
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - ** ans correct": (ans=1 \land z \in A) or (ans=0 \land z \notin A)

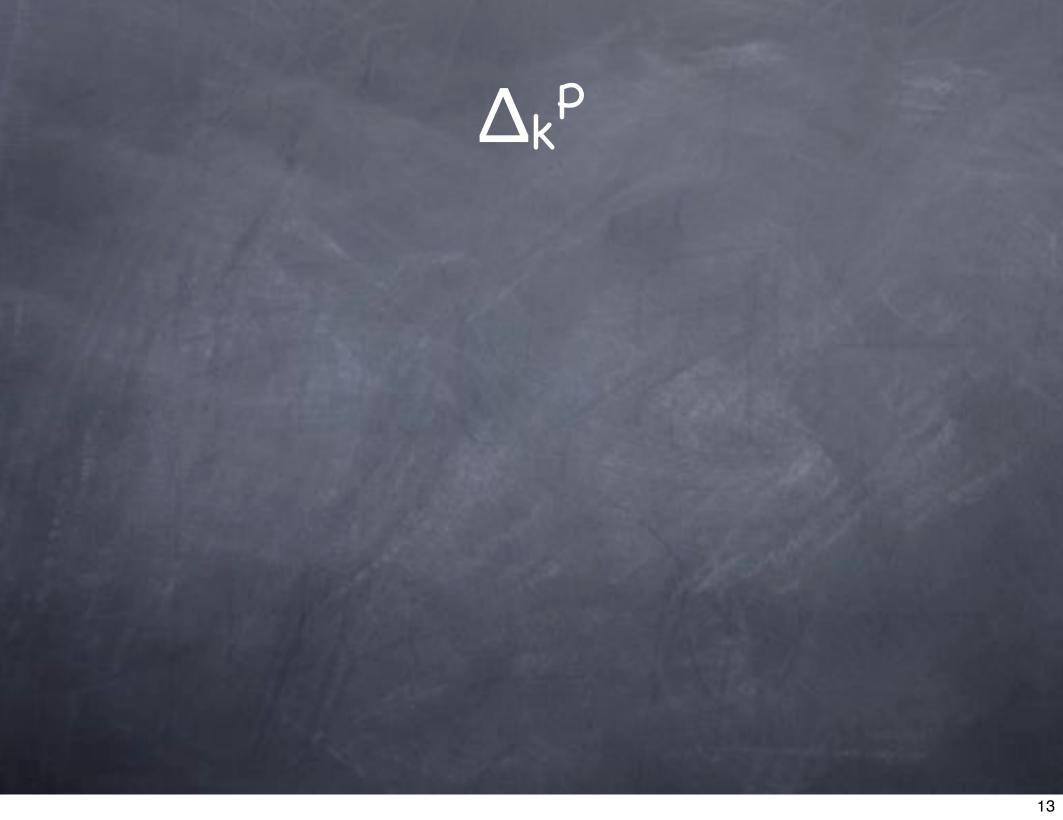
- To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"}\}\ in \Sigma_{k+1}^P$
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - ** ans correct": (ans=1 \land z \in A) or (ans=0 \land z \notin A)

 - $C=\{(x,w,ans) \mid \exists u_1 \forall u_2 v_1 \exists u_3 v_2 ... Q_k u_k v_{k-1} Q'_k v_k \quad M^{(ans)}(x,w)=1 \land \{(ans=1 \land F(z,u_1,...)=1) \quad or \quad (ans=0 \land F(z,v_1,...)=0)\}$

- To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"}\}\ in \Sigma_{k+1}^P$
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - ** ans correct": (ans=1 \land z \in A) or (ans=0 \land z \notin A)
 - $C=\{(x,w,ans) \mid M^{(ans)}(x,w)=1 \land [(ans=1 \land \exists u_1 \forall u_2...Q_k u_k F(z,u_1,...)=1) \text{ or } (ans=0 \land \forall v_1 \exists v_2...Q'_k v_k F(z,v_1,...)=0)] \}$
 - $C = \{(x,w,ans) \mid \exists u_1 \forall u_2 v_1 \exists u_3 v_2 ... Q_k u_k v_{k-1} Q'_k v_k \quad M^{\langle ans \rangle}(x,w) = 1 \land [(ans=1 \land F(z,u_1,...)=1) \quad or \quad (ans=0 \land F(z,v_1,...)=0)] \}$

- To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"}\}\ in \Sigma_{k+1}^P$
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - \circ "ans correct": (ans=1 \land z \in A) or (ans=0 \land z \notin A)

 - $C = \{(x,w,ans) \mid \exists u_1 \forall u_2 v_1 \exists u_3 v_2 ... Q_k u_k v_{k-1} Q'_k v_k \quad M^{\langle ans \rangle}(x,w) = 1 \land [(ans=1 \land F(z,u_1,...)=1) \quad or \quad (ans=0 \land F(z,v_1,...)=0)] \}$
 - Changes for t queries: $z=Z(x,w) \rightarrow (z^{(1)}...z^{(t)}) = Z(x,w,ans),$ $u_i \rightarrow u_i^{(1)}...u_i^{(t)}, v_i \rightarrow v_i^{(1)}...v_i^{(t)},$ and use conjunction of t checks (for j=1,...,t) of the form [$(ans^{(j)}=1 \land F(z^{(j)},u_1^{(j)},...)=1)$ or $(ans^{(j)}=0 \land F(z^{(j)},v_1^{(j)},...)=0)$]



$$\Delta_k^P$$

$$\Delta_1^P = P$$

$$\Delta_2^P = P^{NP}$$

$$\odot$$
 Note that $\Delta_2^P = co - \Delta_2^P$

$$\Delta_1^P = P$$

$$\Delta_2^P = P^{NP}$$

- \odot Note that $\Delta_2^P = co \Delta_2^P$

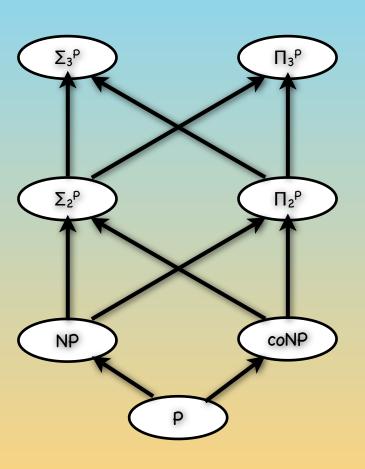
$$\Delta_2^P = P^{NP}$$

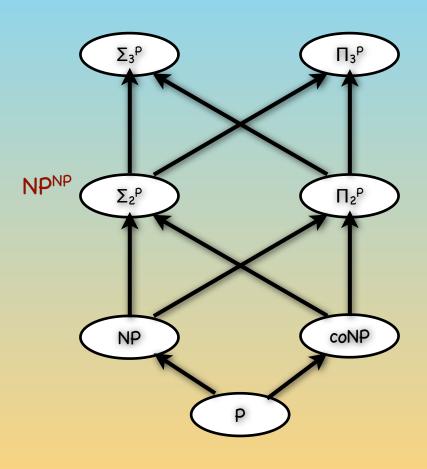
- \odot Note that $\Delta_2^P = co \Delta_2^P$

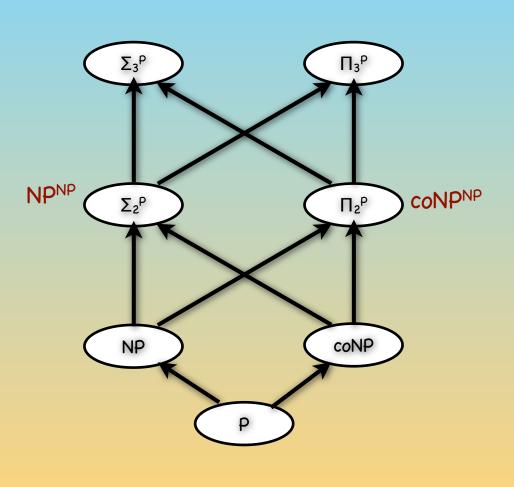
$$\Delta_1^P = P$$

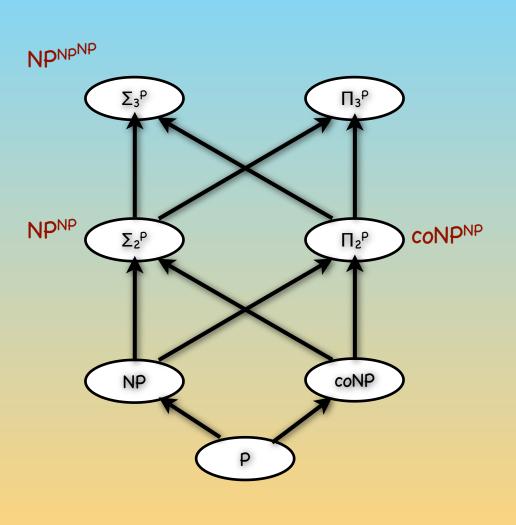
$$\Delta_2^P = P^{NP}$$

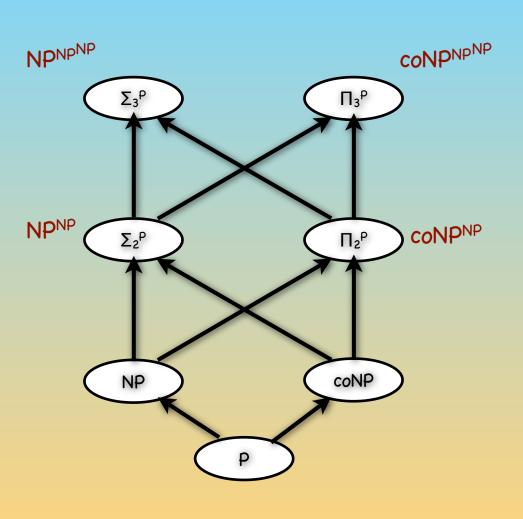
- \bullet Note that $\Delta_2^P = co \Delta_2^P$

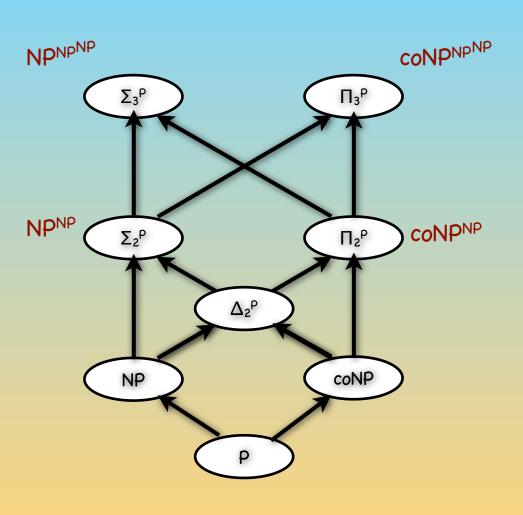


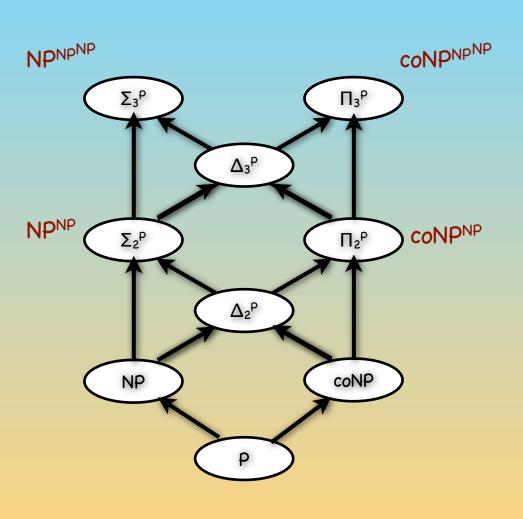


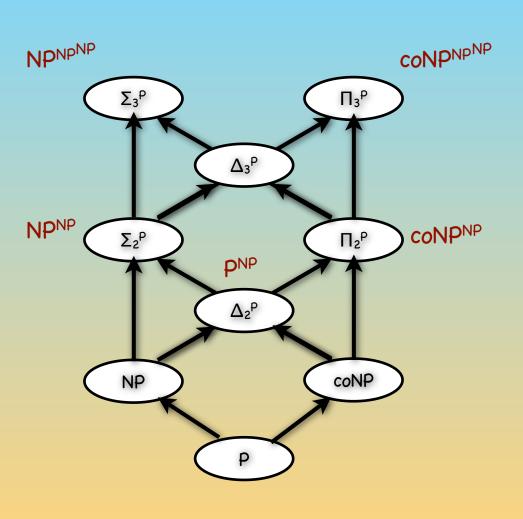


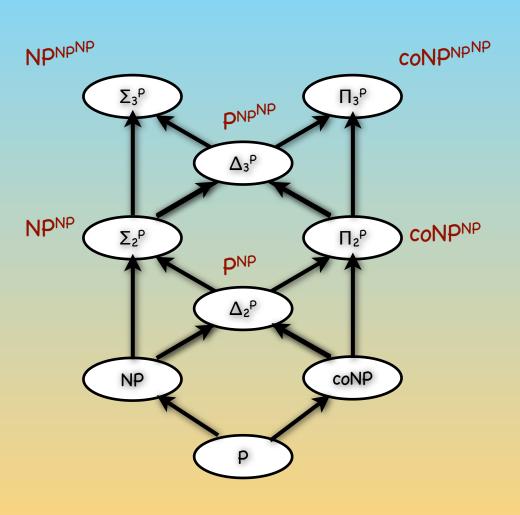


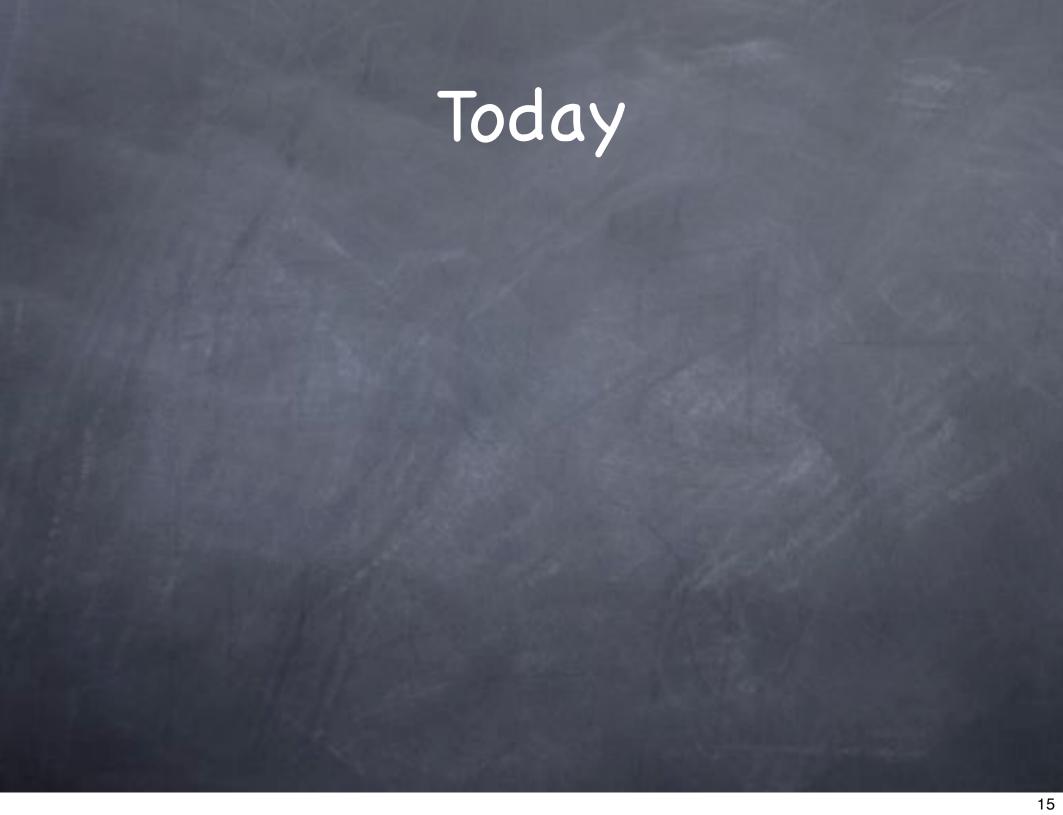












Today, more PH

- Today, more PH
 - © Oracle-based definitions (in particular $NP^{NP} = \Sigma_2^P$)

- Today, more PH
 - \odot Oracle-based definitions (in particular NPNP = Σ_2^P)
- Next lecture, more PH

- Today, more PH
 - \circ Oracle-based definitions (in particular NP^{NP} = Σ_2^P)
- Next lecture, more PH
 - Alternating TM-based definitions

- Today, more PH
 - \odot Oracle-based definitions (in particular NPNP = Σ_2^P)
- Next lecture, more PH
 - Alternating TM-based definitions
 - Time-Space tradeoffs