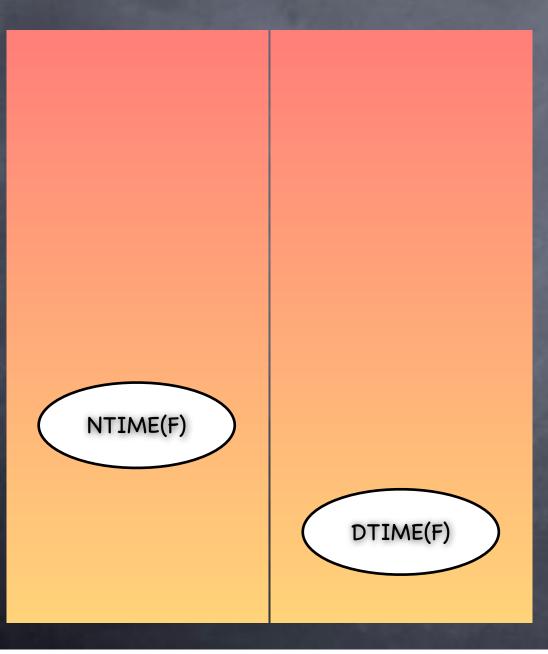
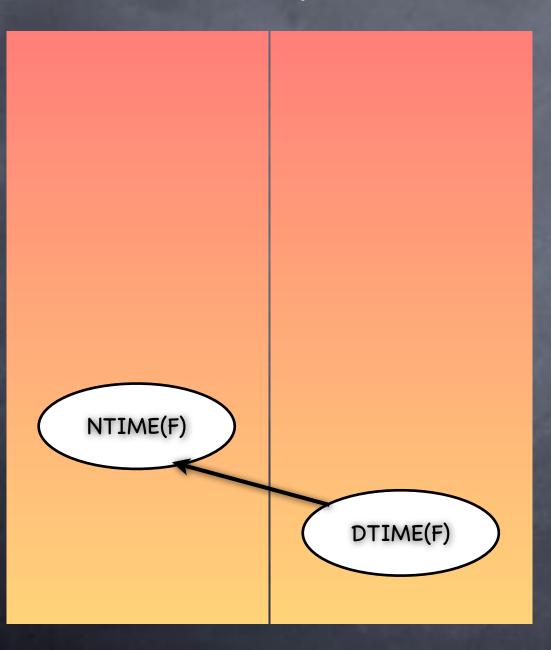
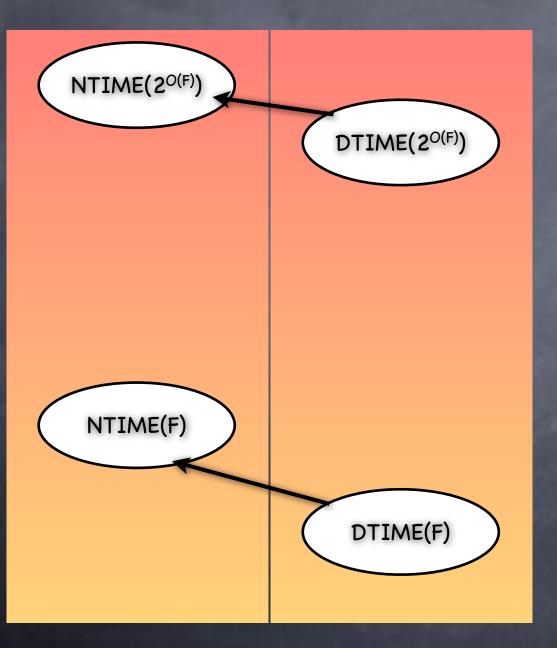
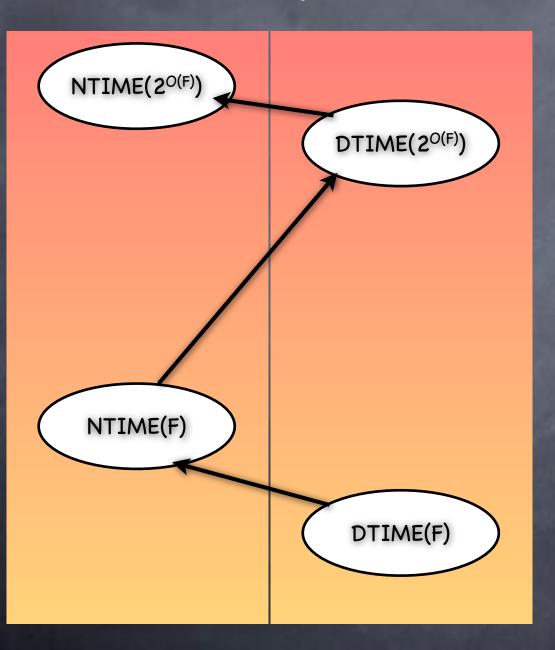
Computational Complexity

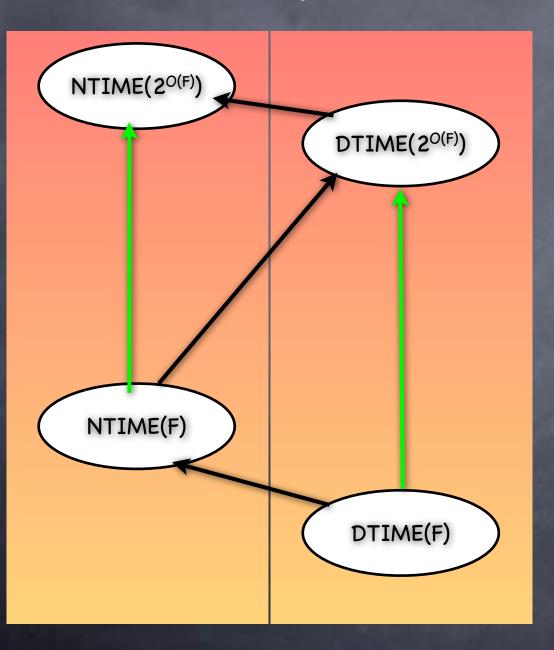
Lecture 5 in which we relate space and time, and see the essence of PSPACE (TQBF)

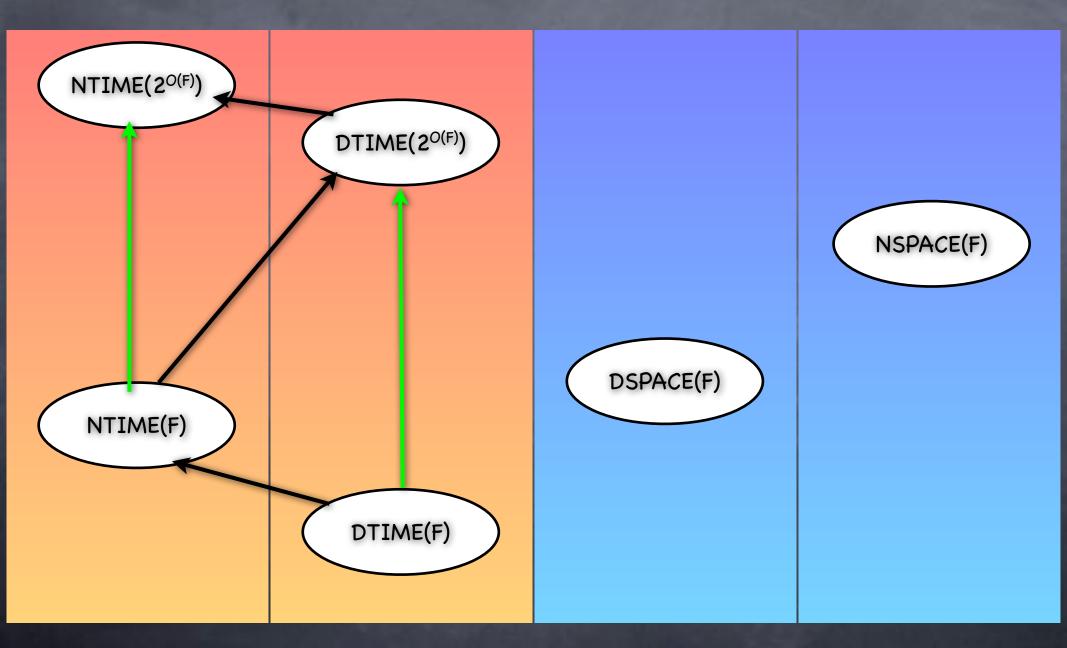


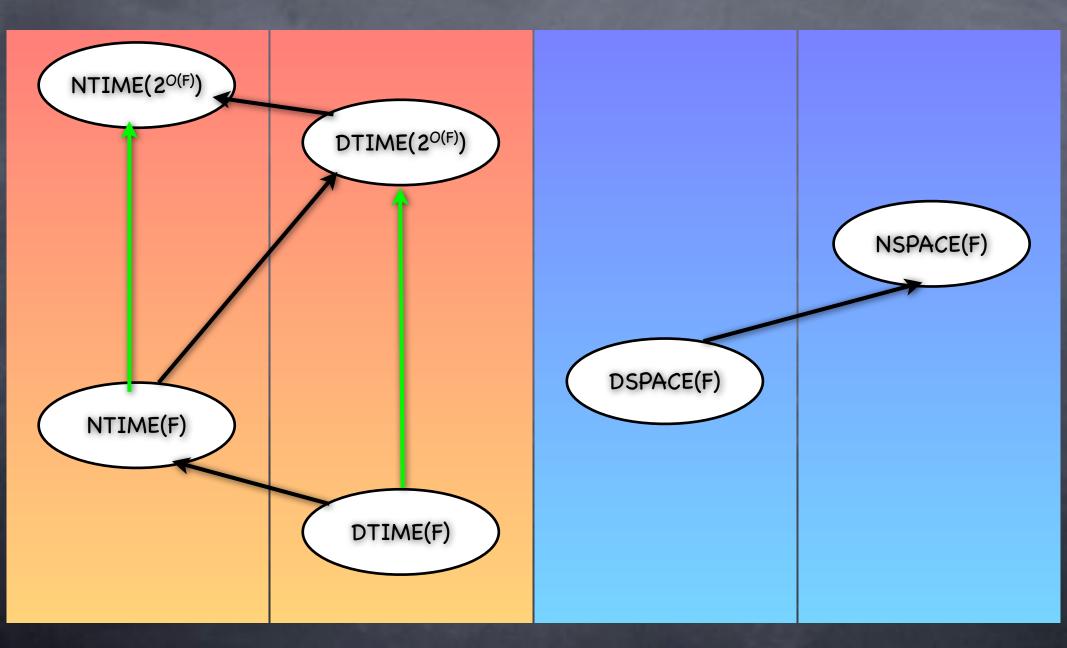


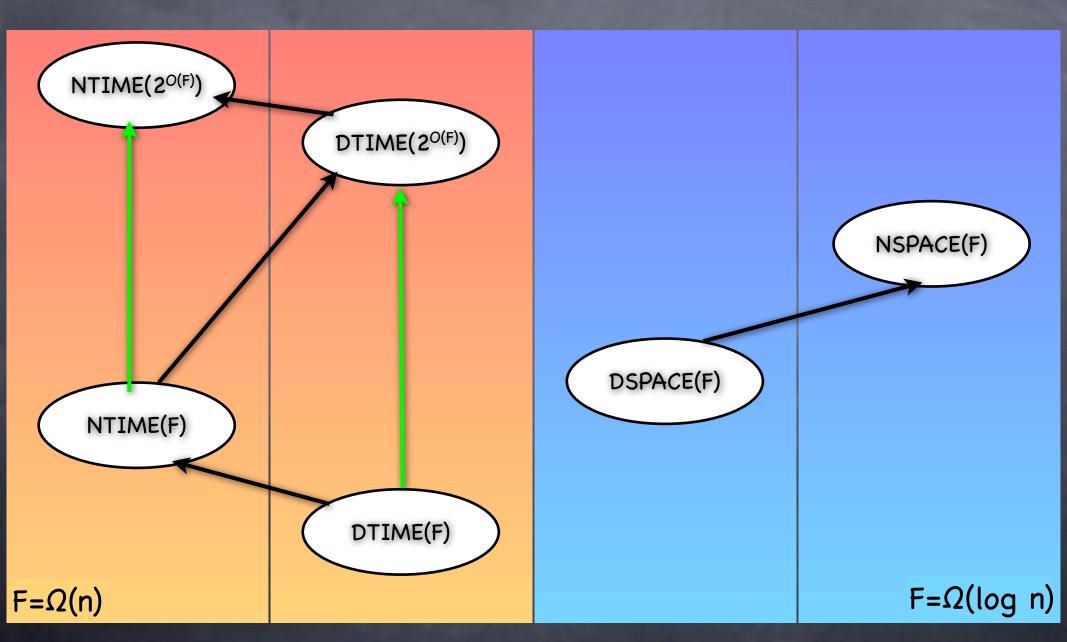












- In time T(n), can use at most T(n) space
 - DTIME(T) ⊆ DSPACE(T)

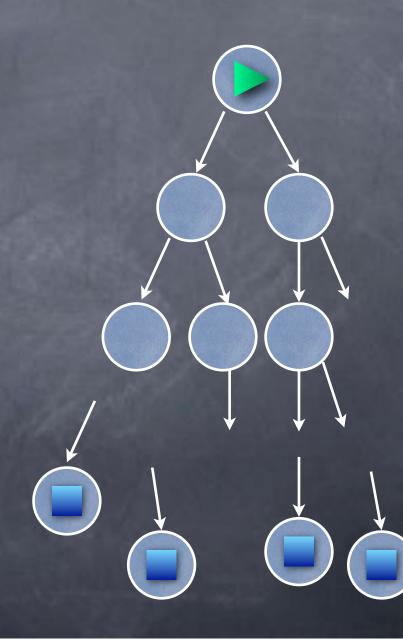
- In time T(n), can use at most T(n) space
 - DTIME(T) ⊆ DSPACE(T)
 - In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)

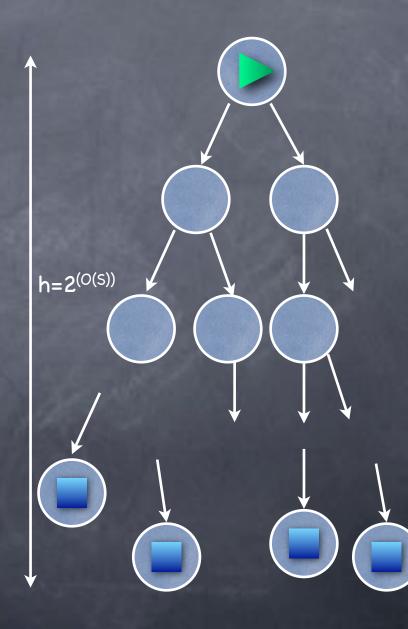
- In time T(n), can use at most T(n) space
 - DTIME(T) ⊆ DSPACE(T)
 - In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)
- With space S(n), only $2^{O(S(n))}$ configurations (for S(n) = $\Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

- In time T(n), can use at most T(n) space
 - DTIME(T) ⊆ DSPACE(T)
 - In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)
- With space S(n), only $2^{O(S(n))}$ configurations (for S(n) = $\Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

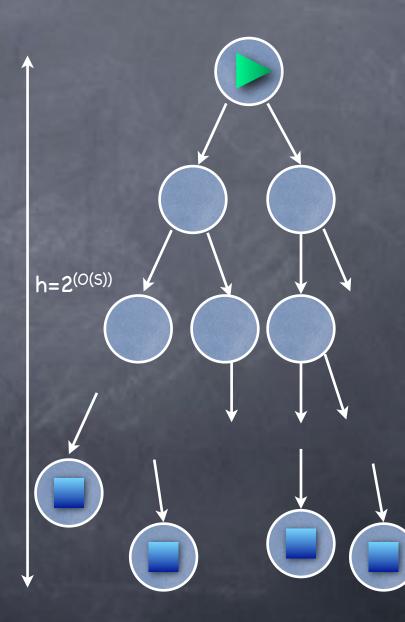
- In time T(n), can use at most T(n) space
 - DTIME(T) ⊆ DSPACE(T)
 - In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)
- With space S(n), only $2^{O(S(n))}$ configurations (for S(n) = $\Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

 - In fact, NSPACE(S) ⊆ DTIME($2^{O(S)}$)

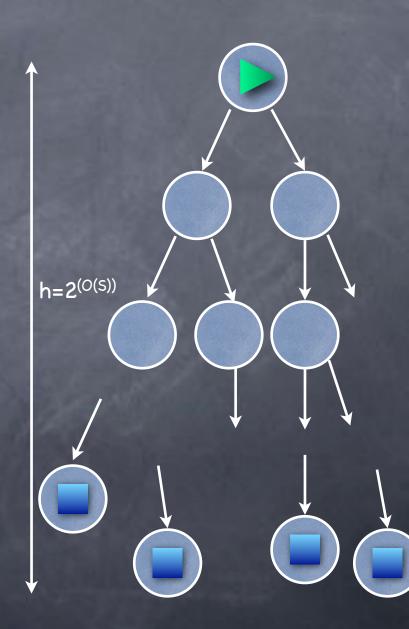




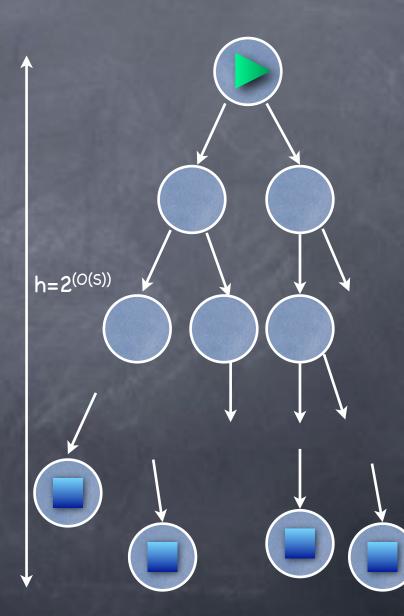
© Configuration graph of the NSPACE(S) computation as a DAG has size 20(S)



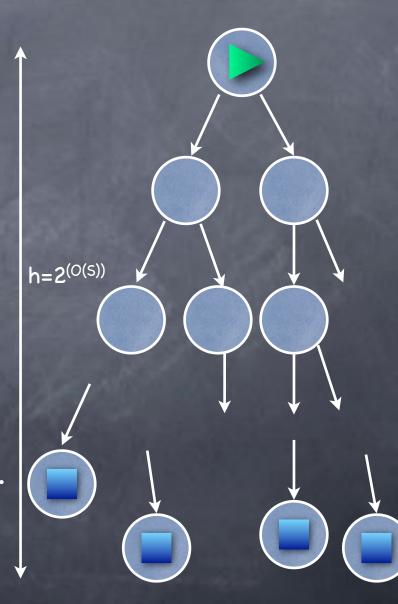
- © Configuration graph of the NSPACE(S) computation as a DAG has size 20(S)
 - Write down all configurations and edges



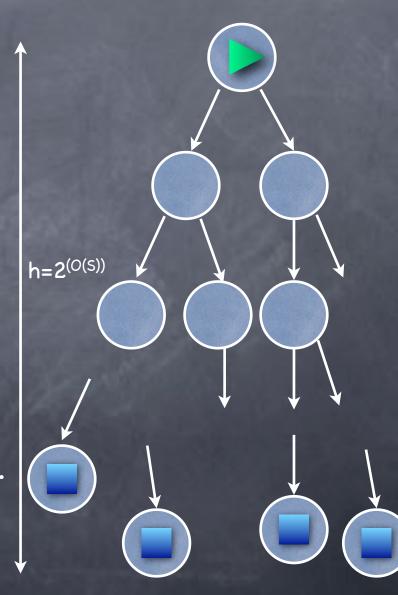
- © Configuration graph of the NSPACE(S) computation as a DAG has size 20(S)
 - Write down all configurations and edges
 - © Can do it less explicitly if space were a concern (but it's not, here)

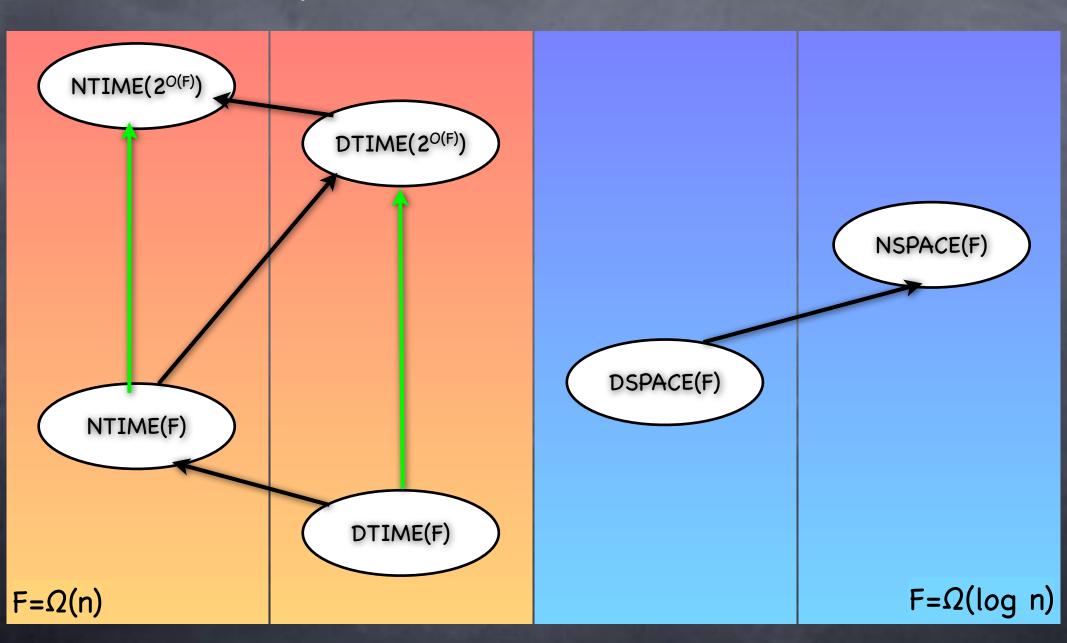


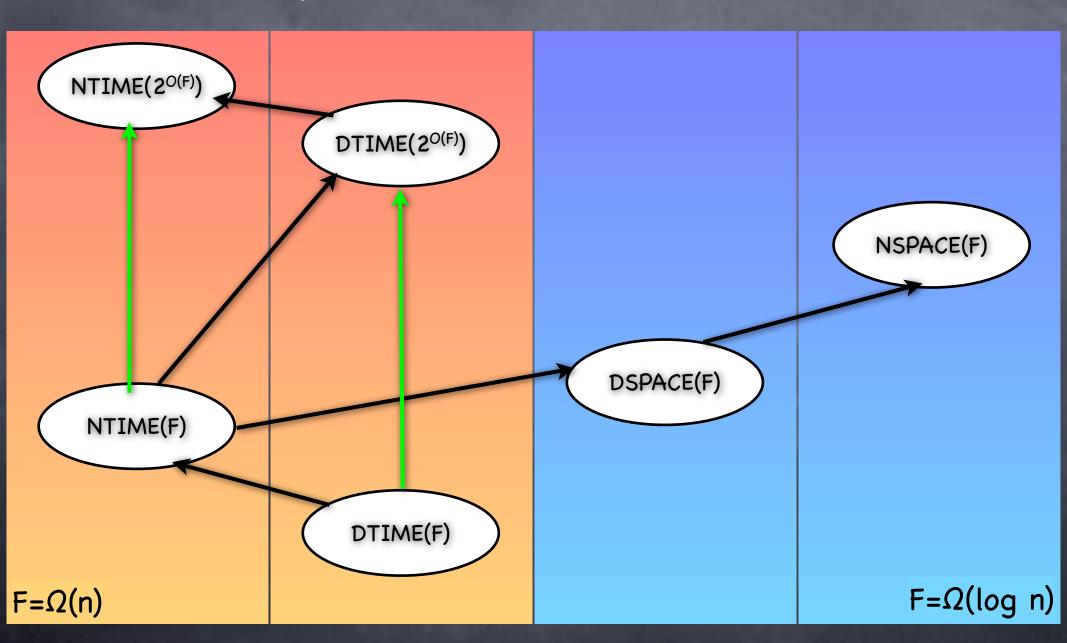
- © Configuration graph of the NSPACE(S) computation as a DAG has size 20(S)
 - Write down all configurations and edges
 - © Can do it less explicitly if space were a concern (but it's not, here)
 - Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.

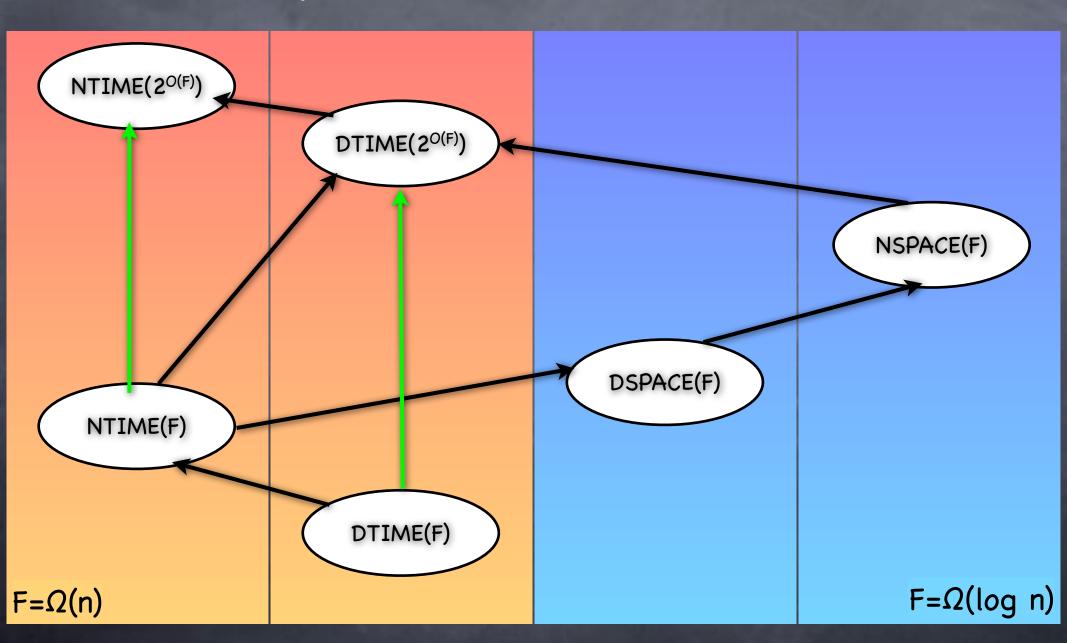


- © Configuration graph of the NSPACE(S) computation as a DAG has size 20(S)
 - Write down all configurations and edges
 - © Can do it less explicitly if space were a concern (but it's not, here)
 - Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.
 - $oldsymbol{o}$ poly(2^{O(S)}) = 2^{O(S)}

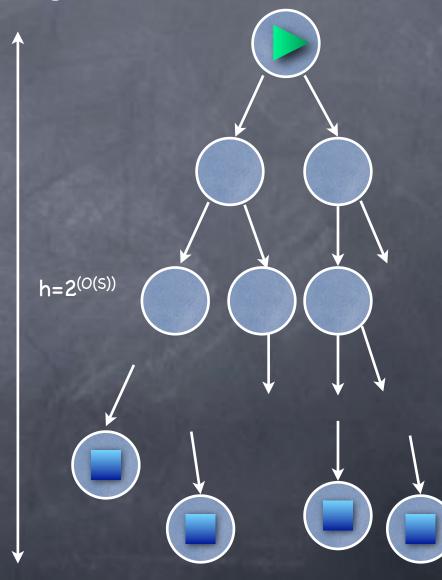




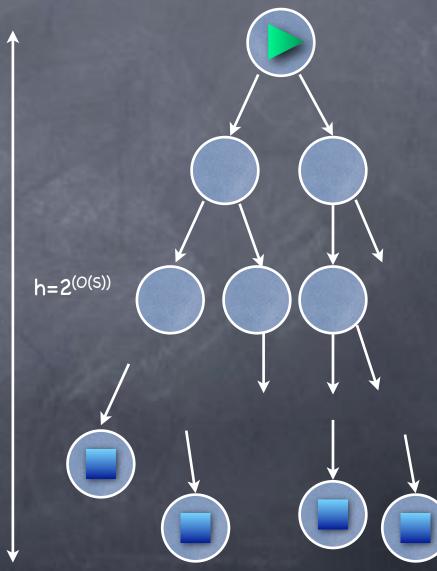




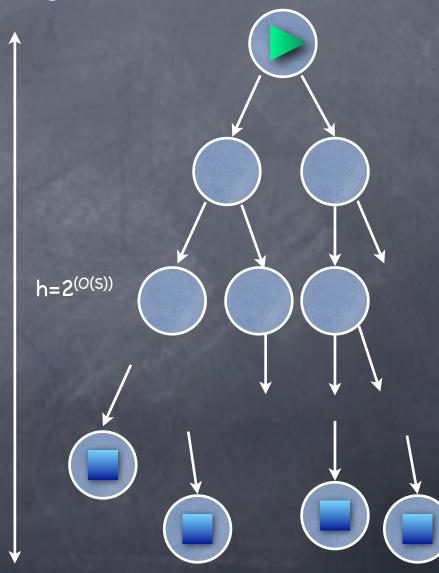
 \circ NSPACE(S) \subseteq DSPACE(S²)



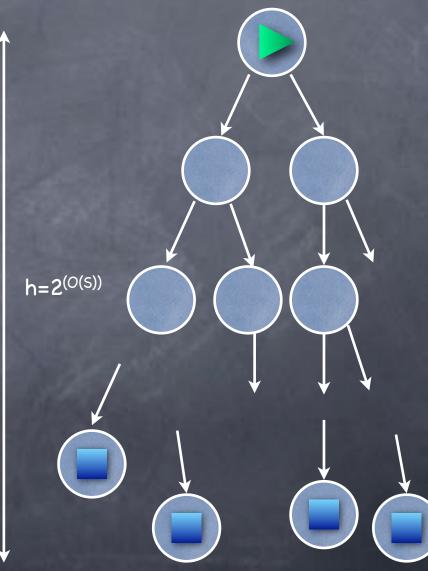
- - Deterministically search for the accept configuration in the DAG



- NSPACE(S) DSPACE(S²)
 - Deterministically search for the accept configuration in the DAG
 - DFS (or BFS) has stack depth h=2^{(O(S))}

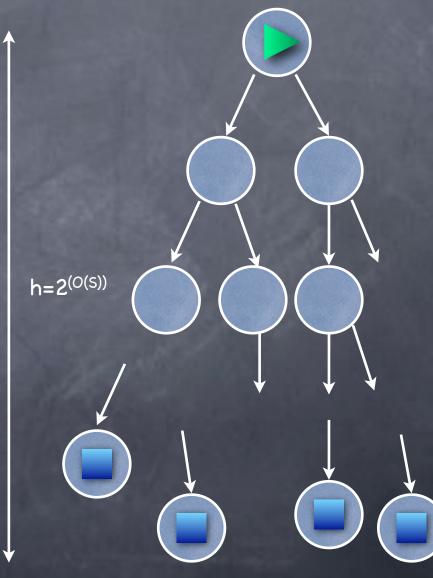


- - Deterministically search for the accept configuration in the DAG
 - The DFS (or BFS) has stack depth $h=2^{(O(S))}$



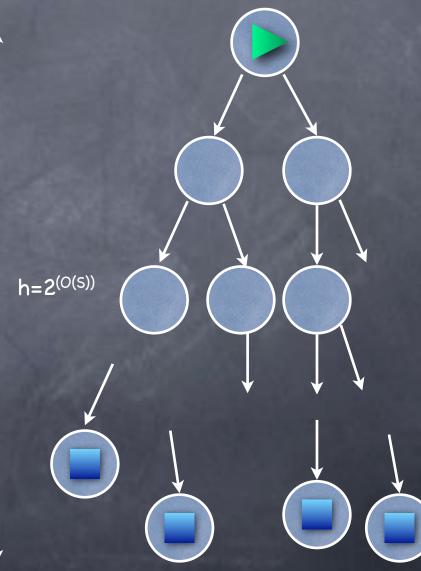
\circ NSPACE(S) \subseteq DSPACE(S²)

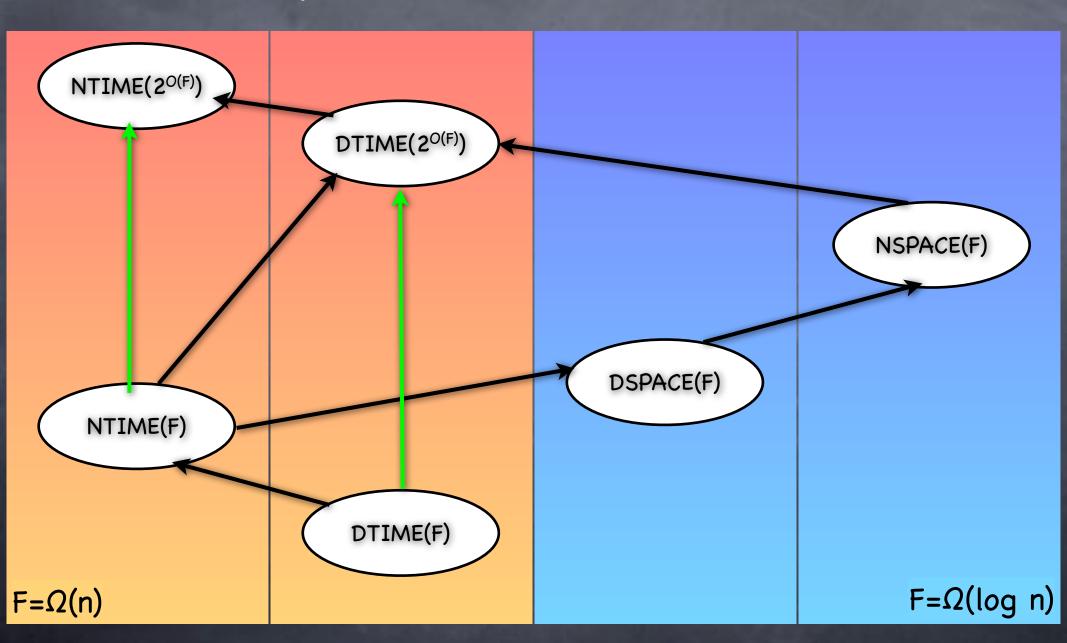
- Deterministically search for the accept configuration in the DAG
- \odot DFS (or BFS) has stack depth h=2^{(O(S))}
- Look for C s.t. Start → C in h/2 steps
 and C → Accept in h/2 steps
- Recursively! Depth of recursion only log h; at each level remember one configuration



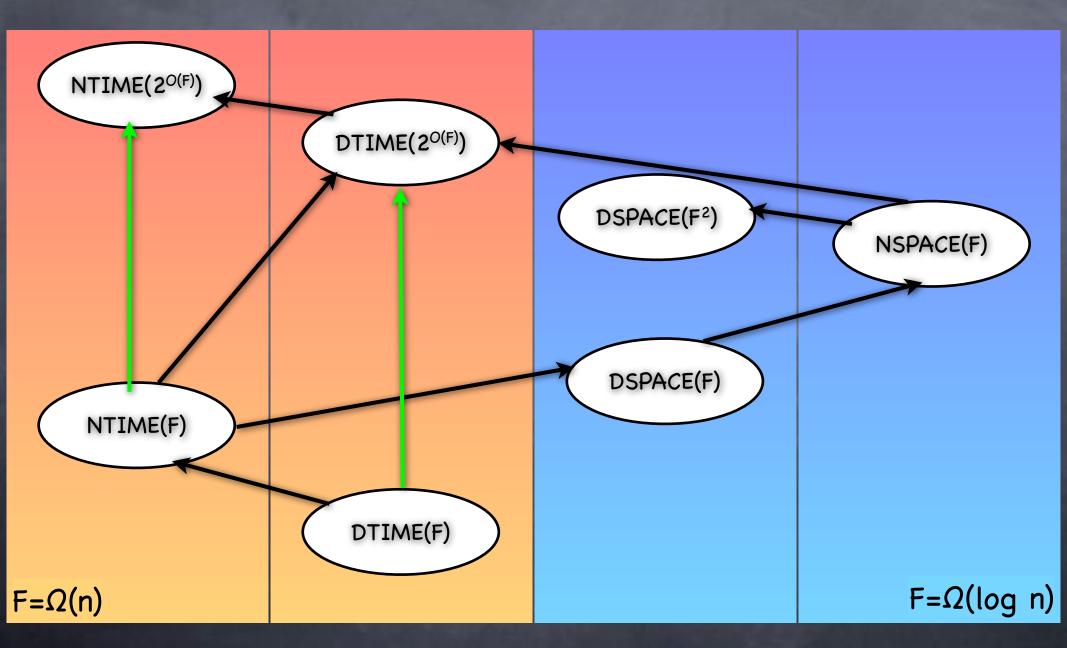
\circ NSPACE(S) \subseteq DSPACE(S²)

- Deterministically search for the accept configuration in the DAG
- The DFS (or BFS) has stack depth $h=2^{(O(S))}$
- Recursively! Depth of recursion only log h; at each level remember one configuration
- Space needed = $O(\log h)*O(S) = O(S^2)$

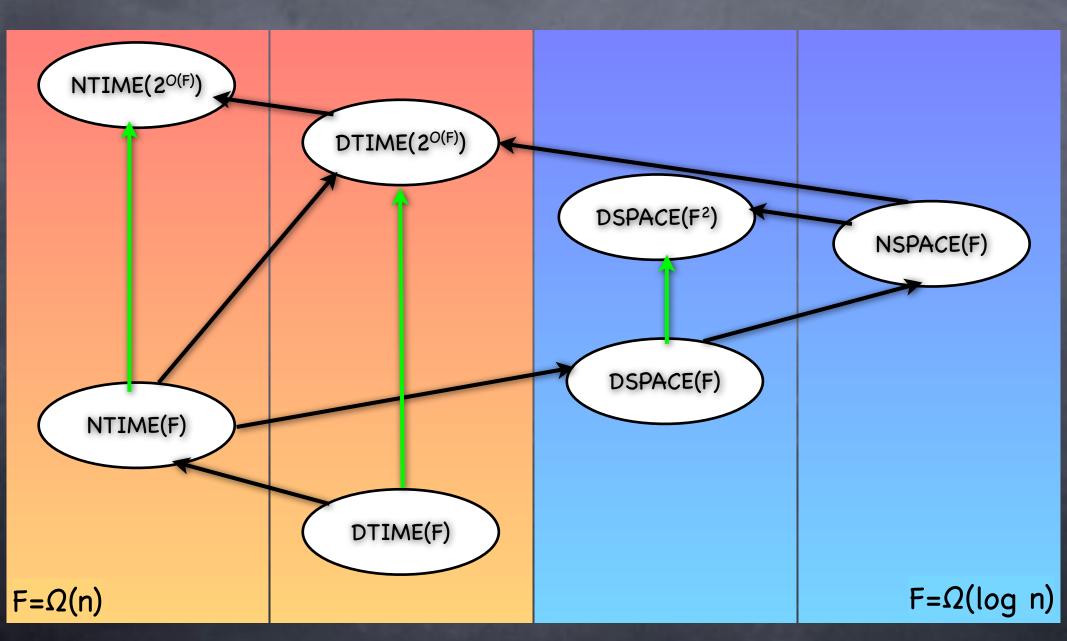


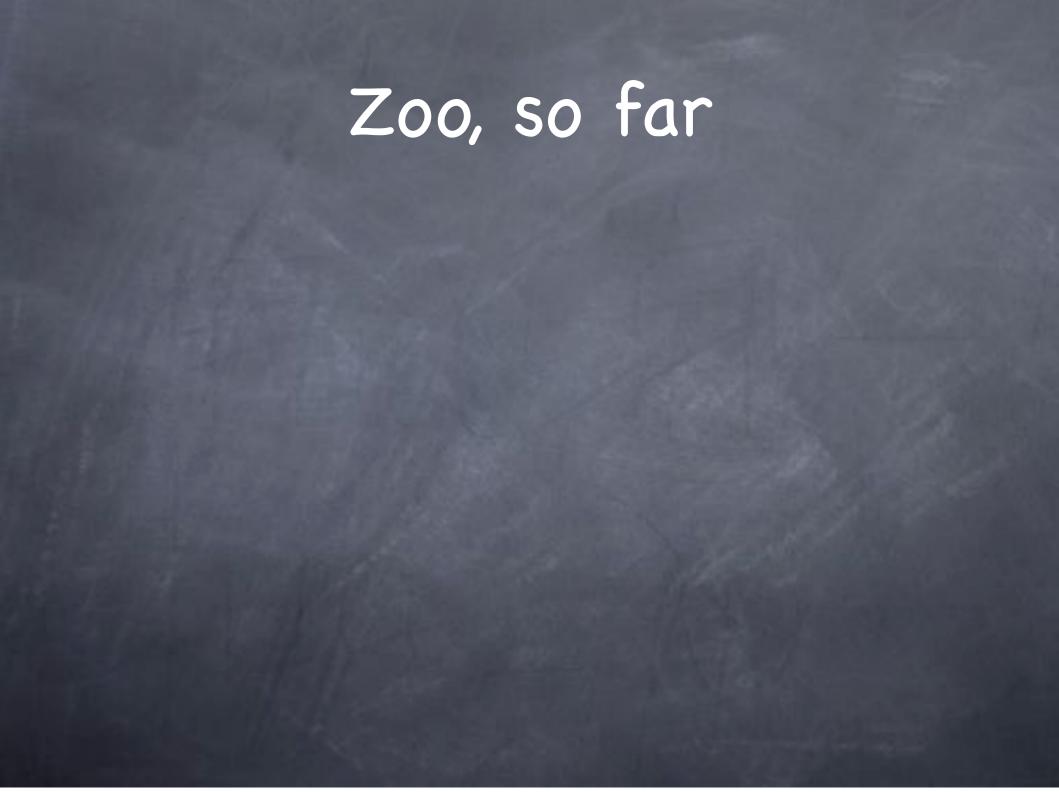


SPACE and TIME



SPACE and TIME

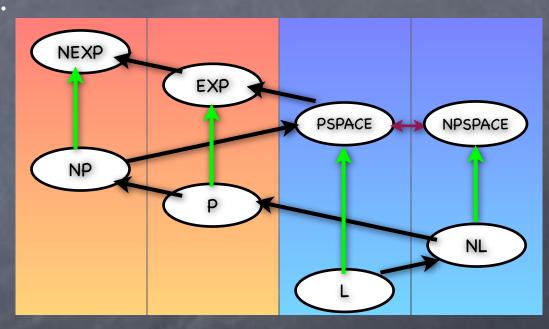




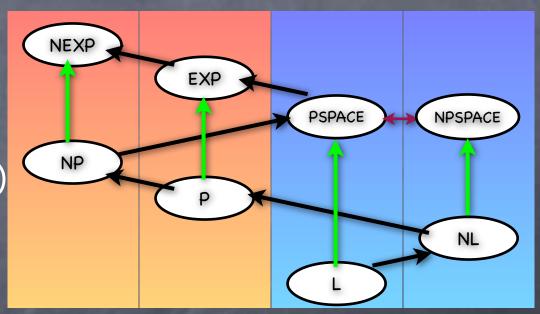
Major classes of interest (so far):

- Major classes of interest (so far):
 - P, EXP; NP, NEXP; L, NL; PSPACE, NPSPACE

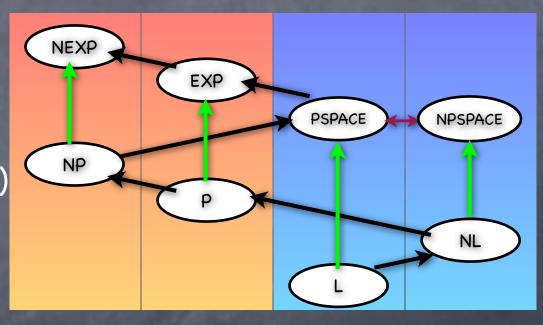
- Major classes of interest (so far):
 - P, EXP; NP, NEXP; L, NL; PSPACE, NPSPACE



- Major classes of interest (so far):
 - P, EXP; NP, NEXP; L, NL; PSPACE, NPSPACE
 - PSPACE = NPSPACE (by Savitch)



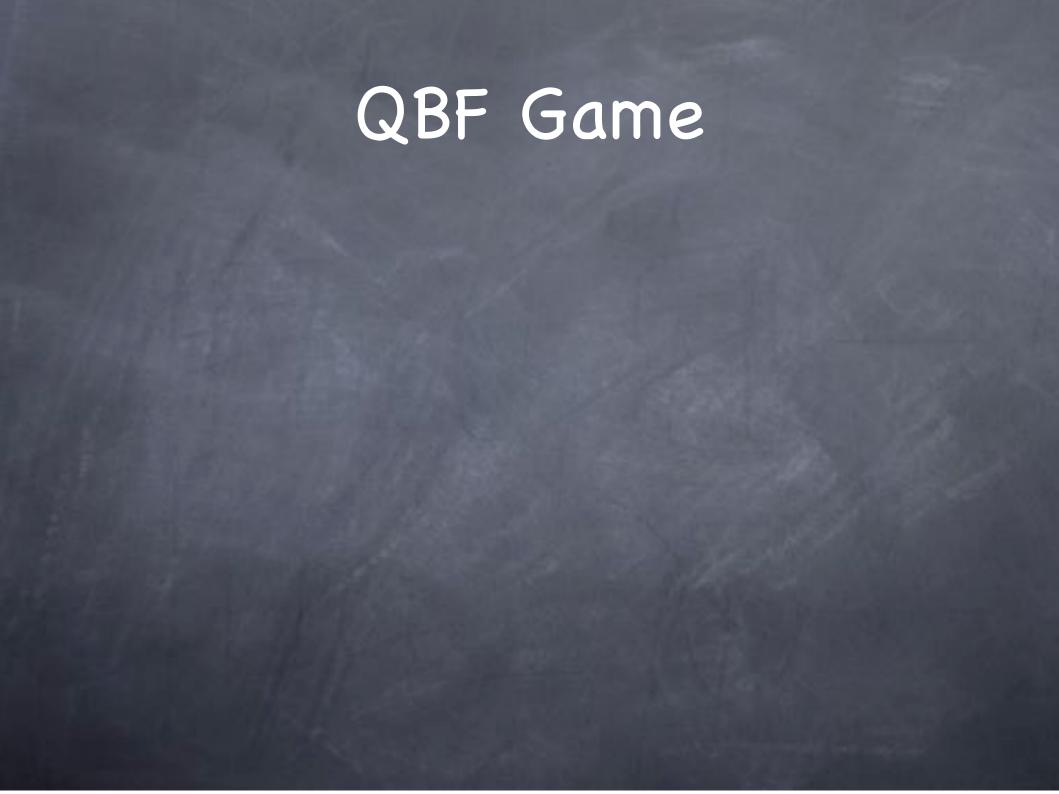
- Major classes of interest (so far):
 - P, EXP; NP, NEXP; L, NL; PSPACE, NPSPACE
 - PSPACE = NPSPACE (by Savitch)
- Coming up:
 - PSPACE-completeness



- Trivial PSPACE-complete problem:
 SPACETM = { (M,z,1ⁿ) | TM M accepts z within space n }

- Trivial PSPACE-complete problem:
 SPACETM = { (M,z,1ⁿ) | TM M accepts z within space n }
- (An) essence of PSPACE: Understanding 2-player games

- Trivial PSPACE-complete problem:
 SPACETM = { (M,z,1ⁿ) | TM M accepts z within space n }
- (An) essence of PSPACE: Understanding 2-player games
 - Can the first/second player always win?



Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])

- Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])
- Given a boolean formula over these variables

- Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])
- Given a boolean formula over these variables
 - In ith round players set the values of the variables in their ith sets. Say Alice moves first.

- Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])
- Given a boolean formula over these variables
 - In ith round players set the values of the variables in their ith sets. Say Alice moves first.
 - When all variables set, formula evaluated. If true Alice wins, else adversary wins

- Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])
- Given a boolean formula over these variables
 - In ith round players set the values of the variables in their ith sets. Say Alice moves first.
 - When all variables set, formula evaluated. If true Alice wins, else adversary wins
- Given a QBF game does Alice have a sure-to-win strategy

 \bullet Vars: x_1 , y_1 , x_2 , y_2 , x_3 , y_3 . Formula: $\phi(x_1,y_1,x_2,y_1,x_3,y_3)$

- \bullet Vars: x_1 , y_1 , x_2 , y_2 , x_3 , y_3 . Formula: $\phi(x_1,y_1,x_2,y_1,x_3,y_3)$
- \odot Say, no variables for Adversary. Only x_1

- \bullet Vars: x_1 , y_1 , x_2 , y_2 , x_3 , y_3 . Formula: $\phi(x_1,y_1,x_2,y_1,x_3,y_3)$
- Say, no variables for Adversary. Only x₁
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?

- \odot Say, no variables for Adversary. Only x_1
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?
- Say, no variables for Alice. Only y₁

- \odot Say, no variables for Adversary. Only x_1
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?
- Say, no variables for Alice. Only y₁
 - Strategy for Alice? Is "∀y₁ φ(y₁)" true?

- \bullet Vars: x_1 , y_1 , x_2 , y_2 , x_3 , y_3 . Formula: $\phi(x_1,y_1,x_2,y_1,x_3,y_3)$
- Say, no variables for Adversary. Only x₁
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?
- Say, no variables for Alice. Only y₁
 - Strategy" for Alice? Is " $\forall y_1 \ \phi(y_1)$ " true?
- \odot Say only x_1 , y_1 (now, that's more like a game):

- Say, no variables for Adversary. Only x₁
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?
- \odot Say, no variables for Alice. Only y_1
 - Strategy for Alice? Is "∀y₁ φ(y₁)" true?
- \odot Say only x_1 , y_1 (now, that's more like a game):
 - Strategy for Alice? Is "∃x₁ ∀y₁ $\phi(x_1,y_1)$ " true?

- Say, no variables for Adversary. Only x₁
 - Strategy for Alice? Is " $\exists x_1 \varphi(x_1)$ " true?
- \odot Say, no variables for Alice. Only y_1
 - Strategy for Alice? Is "∀y₁ φ(y₁)" true?
- \odot Say only x_1 , y_1 (now, that's more like a game):
 - Strategy for Alice? Is "∃x₁ ∀y₁ $\phi(x_1,y_1)$ " true?
- In general, winning strategy for Alice exists iff

- Say, no variables for Adversary. Only x₁
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?
- \odot Say, no variables for Alice. Only y_1
 - Strategy for Alice? Is "∀y₁ φ(y₁)" true?
- \odot Say only x_1 , y_1 (now, that's more like a game):
 - Strategy for Alice? Is "∃x₁ ∀y₁ $\phi(x_1,y_1)$ " true?
- In general, winning strategy for Alice exists iff

- Say, no variables for Adversary. Only x₁
 - Strategy for Alice? Is "∃x₁ φ(x₁)" true?
- Say, no variables for Alice. Only y₁
 - "Strategy" for Alice? Is " $\forall y_1 \varphi(y_1)$ " true?
- \odot Say only x_1 , y_1 (now, that's more like a game):
 - Strategy for Alice? Is "∃x₁ ∀y₁ $\phi(x_1,y_1)$ " true?
- In general, winning strategy for Alice exists iff

 - Else adversary has a winning strategy

True Quantified Boolean Formula:

True Quantified Boolean Formula:

True Quantified Boolean Formula:

$$\bullet \ \psi := \exists x_1 \ \forall y_1 \ ... \ \exists x_n \ \forall y_n \ \phi(x_1,y_1,...,x_n,y_n)$$

TQBF = $\{\psi \mid \psi \text{ is true}\}$

True Quantified Boolean Formula:

- TQBF = $\{\psi \mid \psi \text{ is true}\}$
- \odot e.g. ψ_1 : $\exists x \forall y (x=y), \psi_2$: $\forall y \exists x (x=y)$

TQBF is in PSPACE

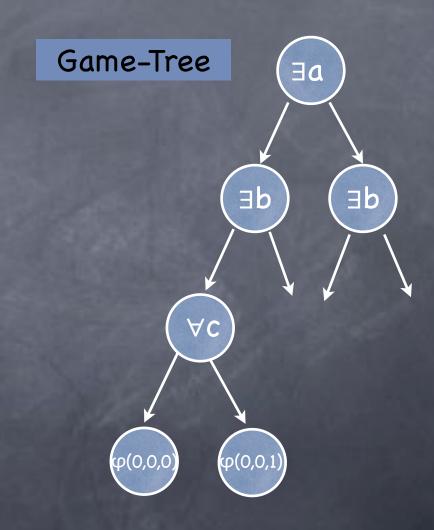
When is a QBF true?

- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)

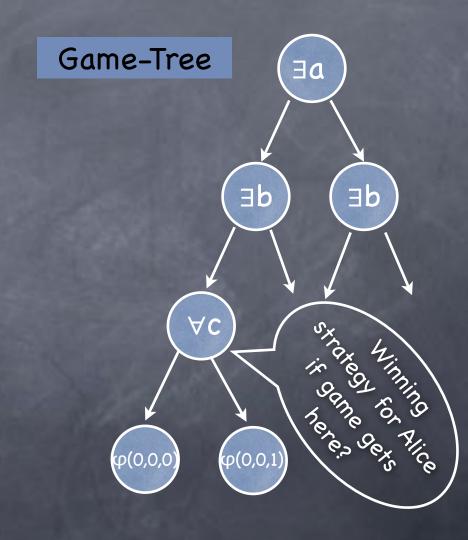
- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)

Game-Tree

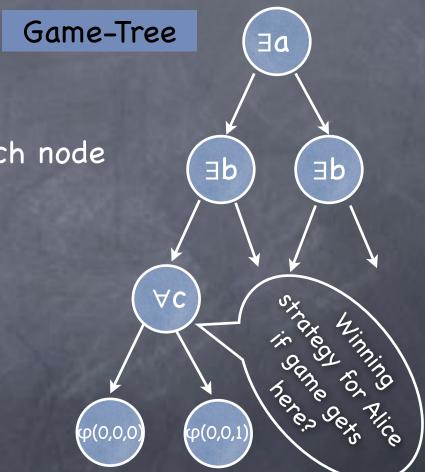
- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)



- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)

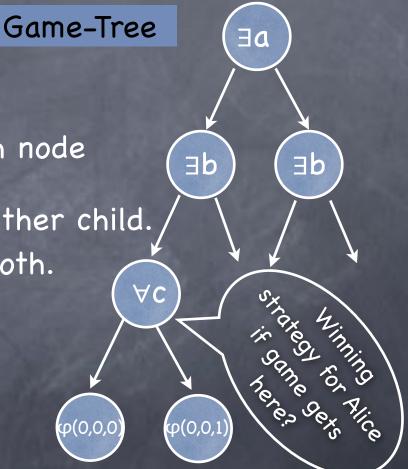


- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)
 - Ask if winning strategy from each node

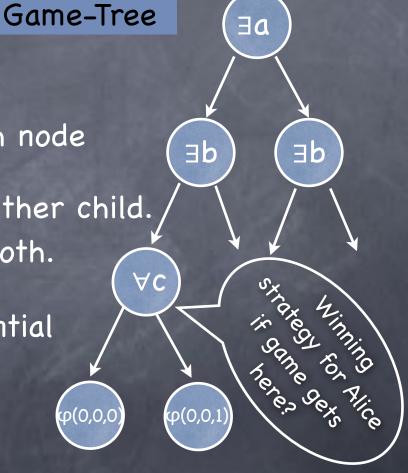


- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)
 - Ask if winning strategy from each node

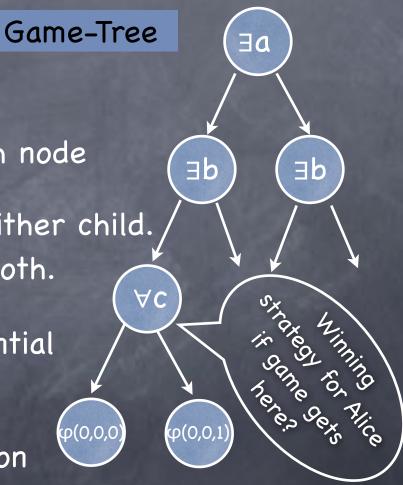
Yes from ∃ node if yes from either child.
Yes from ∀ node if yes from both.



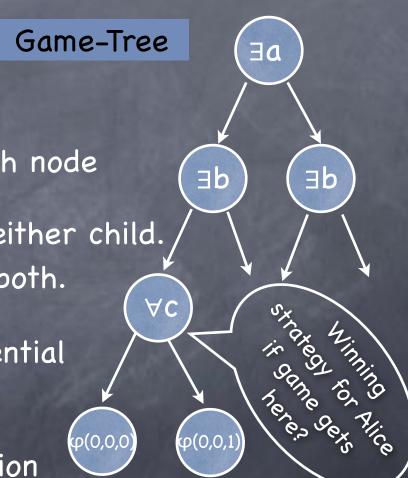
- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)
 - Ask if winning strategy from each node
 - Yes from ∃ node if yes from either child.
 Yes from ∀ node if yes from both.
 - Naive evaluation takes exponential space (and time)



- When is a QBF true?
 - ø e.g. ∃a,b ∀c φ(a,b,c)
 - Ask if winning strategy from each node
 - Yes from ∃ node if yes from either child.
 Yes from ∀ node if yes from both.
 - Naive evaluation takes exponential space (and time)
 - Can reuse left child computation space for the right child



- When is a QBF true?
 - e.g. ∃a,b ∀c φ(a,b,c)
 - Ask if winning strategy from each node
 - Yes from ∃ node if yes from either child.
 Yes from ∀ node if yes from both.
 - Naive evaluation takes exponential space (and time)
 - © Can reuse left child computation space for the right child
 - Space needed = $O(depth) + \varphi$ evaluation = poly(|QBF|)



For L in PSPACE (i.e., TM M_L decides L in space poly(n), or with configs of size S(n)=poly(n)), show L ≤_p TQBF

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or with configs of size S(n)=poly(n)), show L ≤_p TQBF
- @ Given x, output $f(x) = \psi$, s.t. ψ is true iff M_L accepts x

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or with configs of size S(n)=poly(n)), show L ≤_p TQBF
- @ Given x, output $f(x) = \psi$, s.t. ψ is true iff M_L accepts x

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or with configs of size S(n)=poly(n)), show L ≤_p TQBF
- @ Given x, output $f(x) = \psi$, s.t. ψ is true iff M_L accepts x

 - ® Note: As in Cook's theorem, can build an <u>unquantified</u> formula ϕ (even 3CNF) s.t. ϕ is true iff M_L accepts x

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or with configs of size S(n)=poly(n)), show L ≤_p TQBF
- @ Given x, output $f(x) = \psi$, s.t. ψ is true iff M_L accepts x
 - $x \rightarrow \psi$ in poly time. In particular size of ψ is poly(n)
 - ® Note: As in Cook's theorem, can build an <u>unquantified</u> formula ϕ (even 3CNF) s.t. ϕ is true iff M_L accepts x
 - But size is poly(time bound on M_L) = exp(n)

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or with configs of size S(n)=poly(n)), show L ≤_p TQBF
- @ Given x, output $f(x) = \psi$, s.t. ψ is true iff M_L accepts x

 - ® Note: As in Cook's theorem, can build an <u>unquantified</u> formula ϕ (even 3CNF) s.t. ϕ is true iff M_L accepts x
 - But size is poly(time bound on M_L) = exp(n)
 - Use power of quantification to write it succinctly

An exponential QBF:

- An exponential QBF:
 - \odot \exists C_1 C_2 ... C_T $\psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$

- An exponential QBF:
 - $\exists C_1 C_2 ... C_T \psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$
 - There each C_i a set of variables whose value assignments correspond to a full configuration: $|C_i| = O(S(n))$

- An exponential QBF:
 - \odot \exists C_1 C_2 ... C_T $\psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$
 - Here each C_i a set of variables whose value assignments correspond to a full configuration: $|C_i| = O(S(n))$
 - ϕ $\psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step

- An exponential QBF:
 - $\exists C_1 C_2 ... C_T \psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$
 - Here each C_i a set of variables whose value assignments correspond to a full configuration: $|C_i| = O(S(n))$
 - $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step
 - F be the (const. sized) formula to derive each bit of new config from a few bits in the previous config

- An exponential QBF:
 - \odot \exists C_1 C_2 ... C_T $\psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$
 - Here each C_i a set of variables whose value assignments correspond to a full configuration: $|C_i| = O(S(n))$
 - $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step
 - F be the (const. sized) formula to derive each bit of new config from a few bits in the previous config
 - Then, $\psi_0(C,C')$ is $\bigwedge_j \left(C'^{(j)} = F(C^{(j-c)},...,C^{(j+c)})\right)$

- An exponential QBF:
 - \odot \exists C_1 C_2 ... C_T $\psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$
 - Here each C_i a set of variables whose value assignments correspond to a full configuration: $|C_i| = O(S(n))$
 - $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step
 - F be the (const. sized) formula to derive each bit of new config from a few bits in the previous config
 - Then, $\psi_0(C,C')$ is $\bigwedge_{j} \left(C'^{(j)} = F(C^{(j-c)},...,C^{(j+c)}) \right)$
 - $|\psi_0(C,C')| = O(|C|) = O(S(n))$

- An exponential QBF:
 - $\exists C_1 C_2 ... C_T \psi_0(C_{\text{start}}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{\text{accept}})$
 - Here each C_i a set of variables whose value assignments correspond to a full configuration: $|C_i| = O(S(n))$
 - $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step
 - F be the (const. sized) formula to derive each bit of new config from a few bits in the previous config
 - Then, $\psi_0(C,C')$ is $\bigwedge_{j} \left(C'^{(j)} = F(C^{(j-c)},...,C^{(j+c)}) \right)$
 - $|\psi_0(C,C')| = O(|C|) = O(S(n))$
 - However T=20(S(n))

Plan for a more succinct ψ : A partially quantified boolean formula ψ_i s.t. $\psi_i(C,C')$ (fully quantified) is true iff C' reachable from C in the configuration graph $G(M_L,x)$ within 2^i steps. Output $\psi=\psi_{SM}$ [start, accept]

- Plan for a more succinct ψ : A partially quantified boolean formula ψ_i s.t. $\psi_i(C,C')$ (fully quantified) is true iff C' reachable from C in the configuration graph $G(M_L,x)$ within 2^i steps. Output $\psi=\psi_{SM}[start,accept]$
 - \odot Base case (i=0): an unquantified formula, ψ_0

- Plan for a more succinct ψ : A partially quantified boolean formula ψ_i s.t. $\psi_i(C,C')$ (fully quantified) is true iff C' reachable from C in the configuration graph $G(M_L,x)$ within 2^i steps. Output $\psi=\psi_{SM}$ start, accept
 - \odot Base case (i=0): an unquantified formula, ψ_0

Plan for a more succinct Ψ: A partially quantified boolean formula Ψ_i s.t. Ψ_i(C,C') (fully quantified) is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output Ψ=Ψ_{sm}(start,accept)

Savitch's
theorem

- $\ensuremath{\mathfrak{D}}$ Base case (i=0): an unquantified formula, ψ_0

Plan for a more succinct Ψ: A partially quantified boolean formula Ψ_i s.t. Ψ_i(C,C') (fully quantified) is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output Ψ=Ψ_E start, accept

Savitch's
theorem

- $\ensuremath{\mathfrak{D}}$ Base case (i=0): an unquantified formula, ψ_0
- \bullet $\psi_{i+1}(C,C') := \exists C'' \ \psi_i(C,C'') \land \psi_i(C'',C')$
 - Can be rewritten as a QBF in "Prenex Normal form"

Plan for a more succinct Ψ: A partially quantified boolean formula Ψ_i s.t. Ψ_i(C,C') (fully quantified) is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output Ψ=Ψ_E start, accept

Savitch's theorem

- \odot Base case (i=0): an unquantified formula, ψ_0
- - Can be rewritten as a QBF in "Prenex Normal form"
 - \circ Problem: $|\psi_{S(n)}|$ still exponential in S(n)

Plan for a more succinct Ψ: A partially quantified boolean formula Ψ_i s.t. Ψ_i(C,C') (fully quantified) is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output Ψ=Ψ_E [start,accept]

Savitch's
theorem

- \odot Base case (i=0): an unquantified formula, ψ_0
- - Can be rewritten as a QBF in "Prenex Normal form"
 - \odot Problem: $|\psi_{S(n)}|$ still exponential in S(n)
 - In fact, same as naive formula!

- - \circ Problem: $|\psi_{S(n)}|$ exponential in S(n)

- - \bullet Problem: $|\psi_{S(n)}|$ exponential in S(n)
 - More variables/quantification to "reuse" formula

- - \odot Problem: $|\psi_{S(n)}|$ exponential in S(n)
 - More variables/quantification to "reuse" formula

- \bullet $\psi_{i+1}(C,C') := \exists C'' \ \psi_i(C,C'') \land \psi_i(C'',C')$
 - \bullet Problem: $|\psi_{S(n)}|$ exponential in S(n)
 - More variables/quantification to "reuse" formula
- - = and = shorthands for slightly longer formulas

Problem: $|\psi_{S(n)}|$ exponential in S(n)

More variables/quantification to "reuse" formula

and - shorthands for slightly longer formulas

 \checkmark Problem: $|\psi_{S(n)}|$ exponential in S(n) Problem: |Ψ_{S(n)}| exponential in S(n)

Seo (Ch)

More variables/quantification to "reuse" formula

- - = and = shorthands for slightly longer formulas
- $|\psi_{S(n)}| = O(S(n)) + |\psi_{S(n)-1}| = O(S(n)^2) + |\psi_0| = O(S(n)^2)$

Problem: |Ψ_{S(n)}| exponential in S(n)

Nore variables/quantification to "reuse" formula

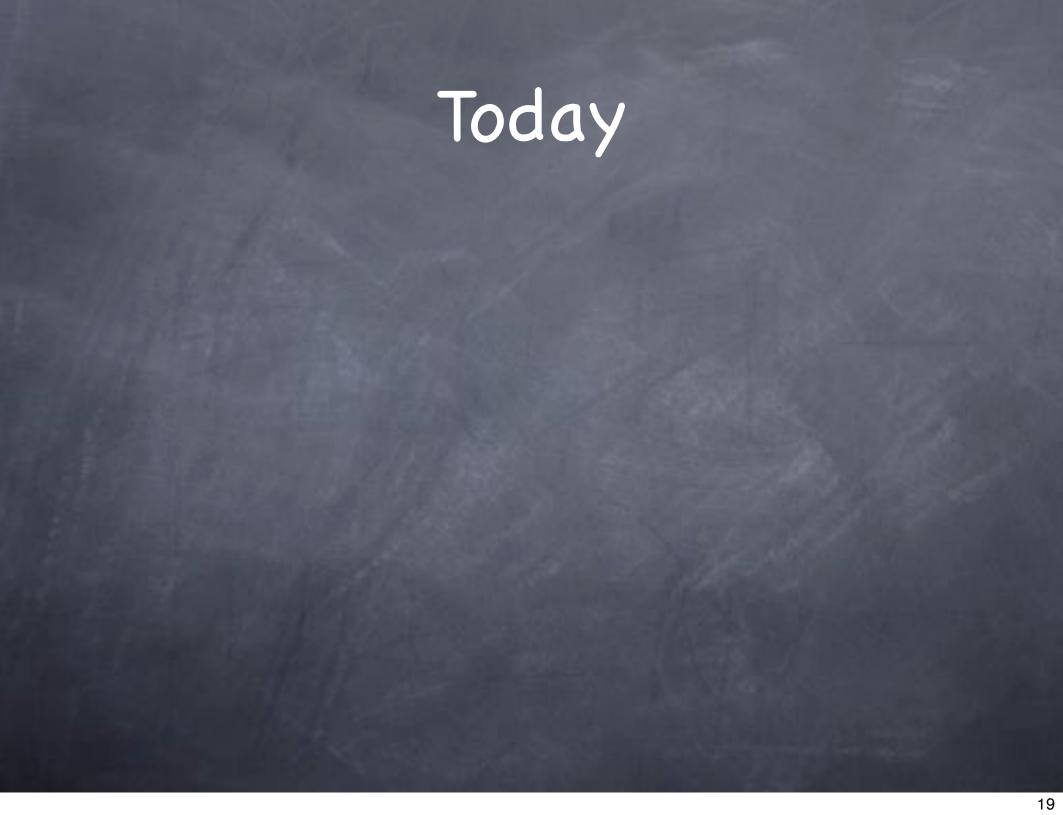
- $\psi_{i+1}(C,C') := \exists C'' \ \forall (D,D') \ \ (D,D')=(C,C'') \ \lor \ (D,D')=(C'',C') \ \rightarrow \ \psi_i(D,D')$
 - = and = shorthands for slightly longer formulas
- $|\psi_{S(n)}| = O(S(n)) + |\psi_{S(n)-1}| = O(S(n)^2) + |\psi_0| = O(S(n)^2)$
- "Quantification is a powerful programming language"

PSPACE-complete

- PSPACE-complete
- Generalizes SAT and SAT^c (which have only one quantifier)

- PSPACE-complete
- Generalizes SAT and SAT^c (which have only one quantifier)
- How about 2, 3, 4, ... quantifier alternations?

- PSPACE-complete
- Generalizes SAT and SAT^c (which have only one quantifier)
- How about 2, 3, 4, ... quantifier alternations?
 - Coming soon!



Zoo (more later)

- Zoo (more later)
- TQBF

- Zoo (more later)
- TQBF
 - PSPACE complete

- Zoo (more later)
- TQBF
 - PSPACE complete
 - Will see more of it soon

- Zoo (more later)
- TQBF
 - PSPACE complete
 - Will see more of it soon
- Next Lecture: NL

- Zoo (more later)
- TQBF
 - PSPACE complete
 - Will see more of it soon
- Next Lecture: NL
 - NL-completeness

- Zoo (more later)
- TQBF
 - PSPACE complete
 - Will see more of it soon
- Next Lecture: NL
 - NL-completeness