Computational Complexity

Lecture 4
in which Diagonalization takes on itself,
and we enter Space Complexity

"Real" Questions

"Real" Questions

"Meta" Questions

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

Results non-specialists would care about

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

Results non-specialists would care about

What can we do with an oracle for SAT?

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

Results non-specialists would care about

What can we do with an oracle for SAT?

Will this proof technique work?

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

Results non-specialists would care about

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

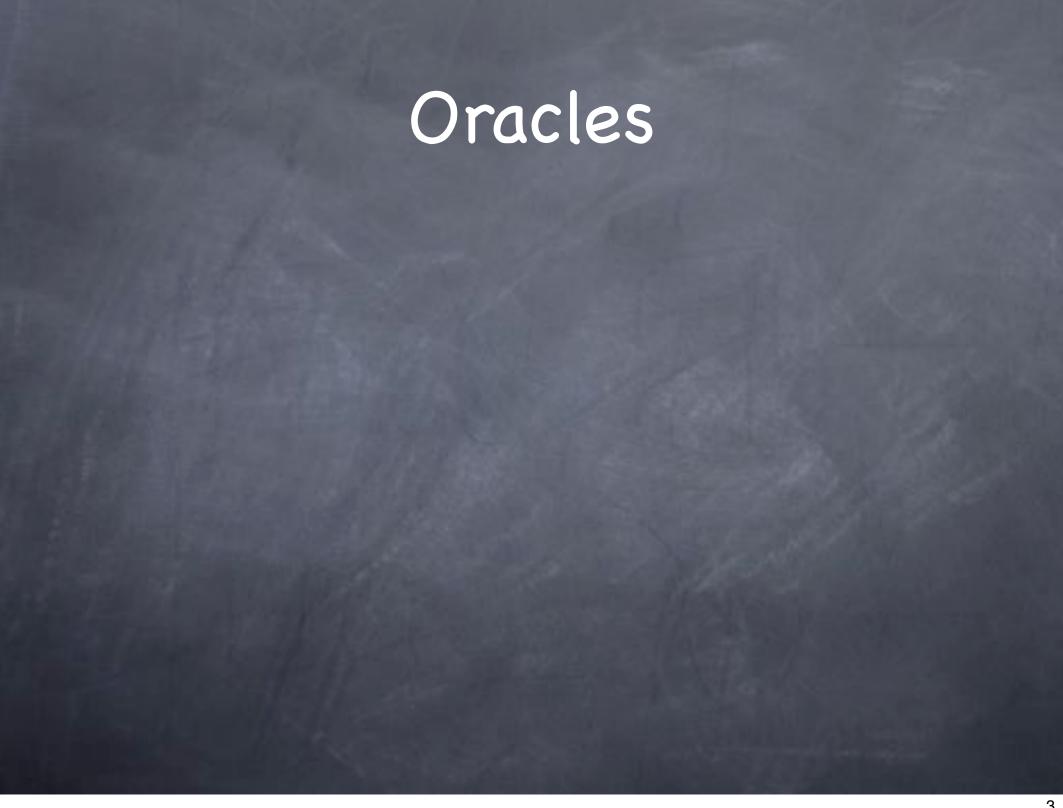
Results non-specialists would care about

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results

Under-the-hood stuff



What if we had an oracle for language A

- What if we had an oracle for language A

- What if we had an oracle for language A
 - - L decided by a TM MA, in poly time

- What if we had an oracle for language A
 - - L decided by a TM MA, in poly time
 - Turing reduction: L ≤TA

- What if we had an oracle for language A
 - Class P^A: L ∈ P^A if
 - L decided by a TM MA, in poly time
 - Turing reduction: L ≤TA
 - Class NPA: L ∈ NPA if

- What if we had an oracle for language A
 - - L decided by a TM M^A, in poly time
 - Turing reduction: L ≤TA
 - Class NPA: L ∈ NPA if
 - L decided by an NTM MA, in poly time

- What if we had an oracle for language A
 - - L decided by a TM MA, in poly time
 - Turing reduction: L ≤TA
 - Class NPA: L ∈ NPA if
 - L decided by an NTM MA, in poly time
 - © Equivalently, $L = \{x | \exists w, |w| < poly(|x|) \text{ s.t. } (x,w) \in L' \}$, where L' is in PA

- What if we had an oracle for language A
 - - L decided by a TM MA, in poly time
 - Turing reduction: L ≤TA
 - Class NPA: L ∈ NPA if
 - L decided by an NTM MA, in poly time
 - © Equivalently, L = {x| ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L' },</pre>
 where L' is in P^A

Equivalence over!

Often entire theorems/proofs carry over, with the oracle tagging along

- Often entire theorems/proofs carry over, with the oracle tagging along
 - e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A

- Often entire theorems/proofs carry over, with the oracle tagging along
 - e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A
 - Said to "relativize"

How does P vs. NP fare relative to different oracles?

- How does P vs. NP fare relative to different oracles?
 - Does their relation (equality or not) relativize?

- How does P vs. NP fare relative to different oracles?
 - Does their relation (equality or not) relativize?
 - No! Different in different worlds!

- How does P vs. NP fare relative to different oracles?
 - Does their relation (equality or not) relativize?
 - No! Different in different worlds!
 - There exist languages A, B such that $P^A = NP^A$, but $P^B \neq NP^B$!

If A is EXP-complete (w.r.t ≤ cook or ≤P), $P^A = NP^A = EXP$

- If A is EXP-complete (w.r.t ≤ cook or ≤ P), $P^A = NP^A = EXP$

- If A is EXP-complete (w.r.t ≤ cook or ≤ P), $P^A = NP^A = EXP$
 - \bullet A EXP-hard \Rightarrow EXP \subseteq PA \subseteq NPA

- If A is EXP-complete (w.r.t ≤ cook or ≤ P), $P^A = NP^A = EXP$
 - \bullet A EXP-hard \Rightarrow EXP \subseteq PA \subseteq NPA
 - A in EXP ⇒ NP^A ⊆ EXP (note: to decide a language in NP^A can try all possible witnesses, and carry out P^A computation in exponential time)
- A simple EXP-complete language:

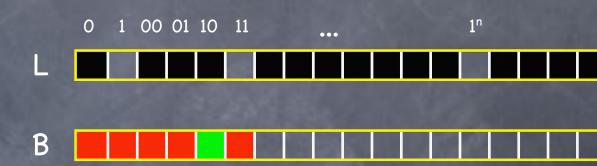
- If A is EXP-complete (w.r.t ≤ cook or ≤ P), $P^A = NP^A = EXP$
- A simple EXP-complete language:
 - EXPTM = { (M,x,1ⁿ) | TM represented by M accepts x
 within time 2ⁿ }

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in $NP^{B} \setminus P^{B}$

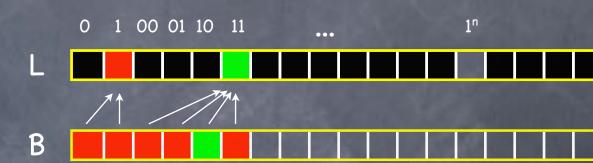
Building B and L, s.t. L in NPB\PB

Building B and L, s.t. L in NPB\PB

Building B and L, s.t. L in NPB \PB

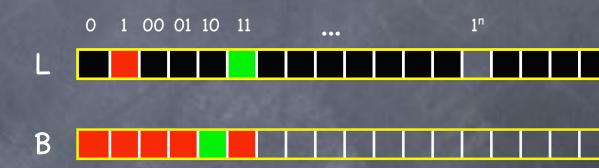


Building B and L, s.t. L in NPB\PB

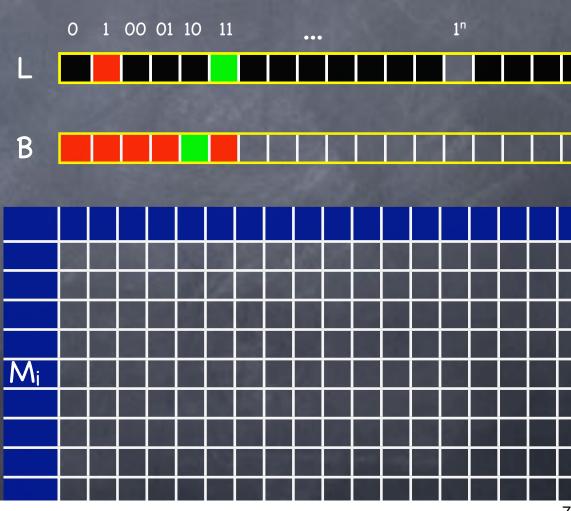


- \bullet L= $\{1^n | \exists w, |w| = n \text{ and } w \in B\}$
- L in NPB. To do: L not in PB

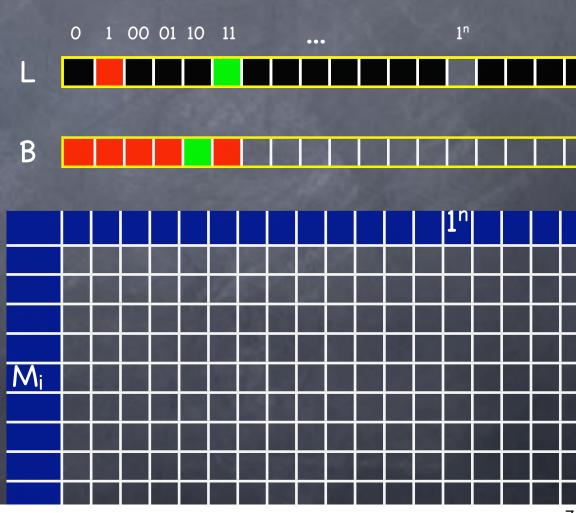
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)



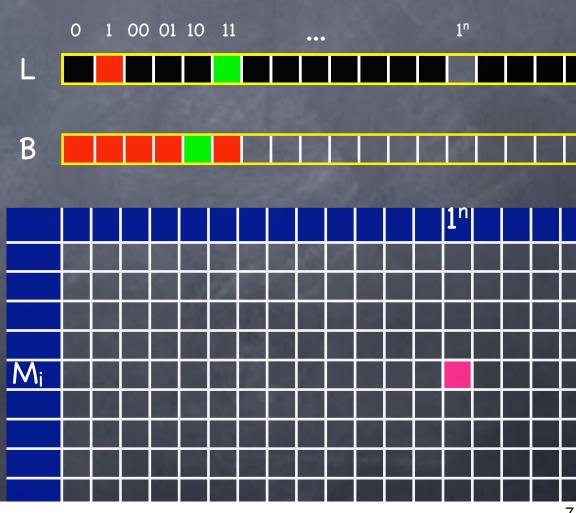
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)



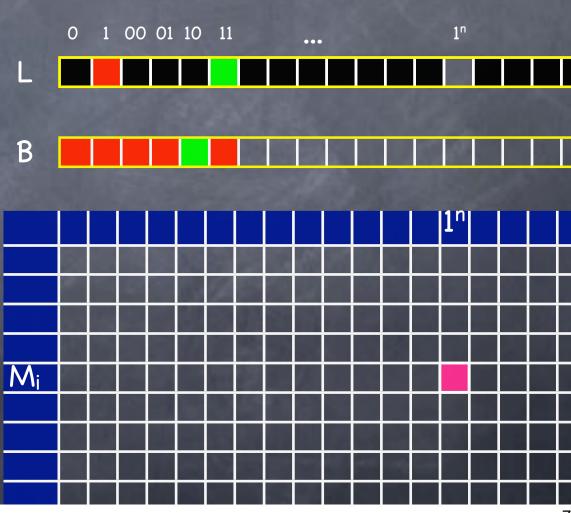
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)



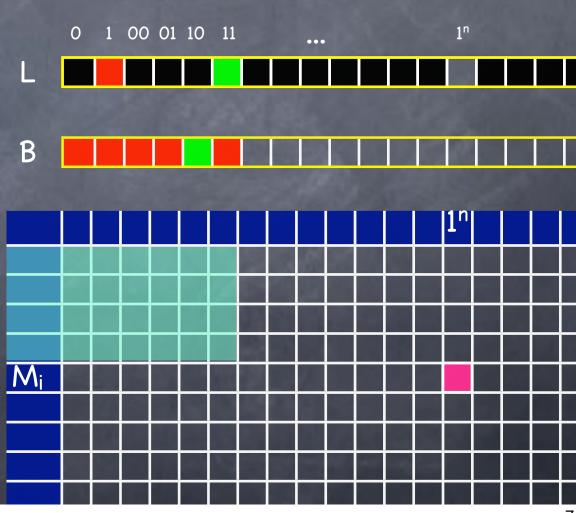
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure MiB in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)



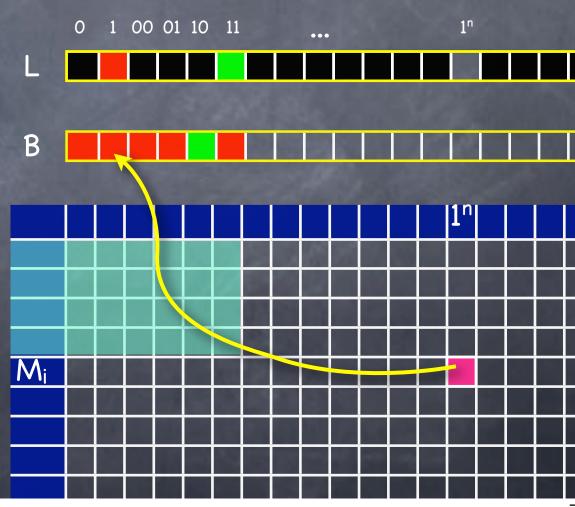
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.



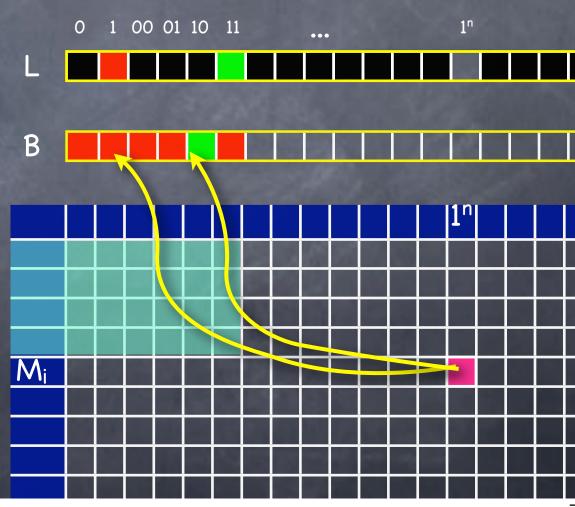
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.



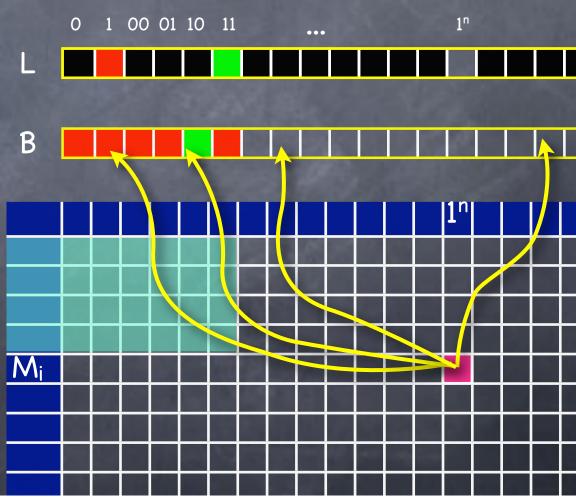
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.



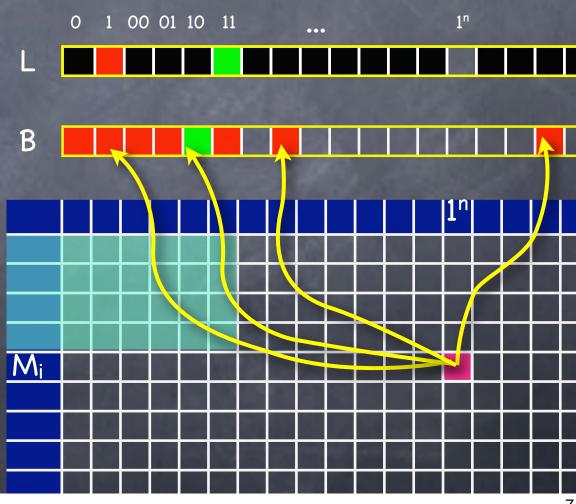
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.



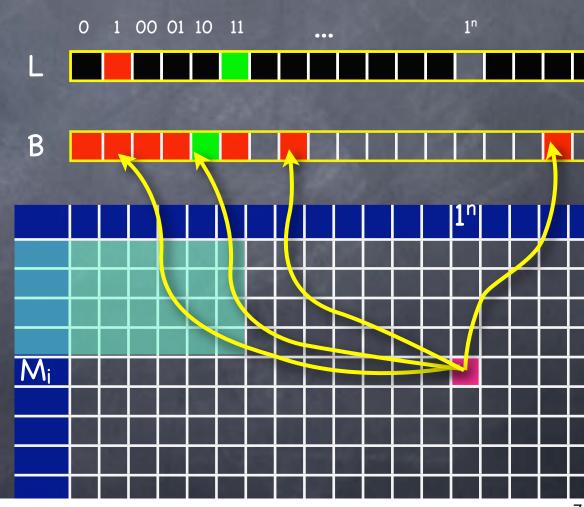
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.



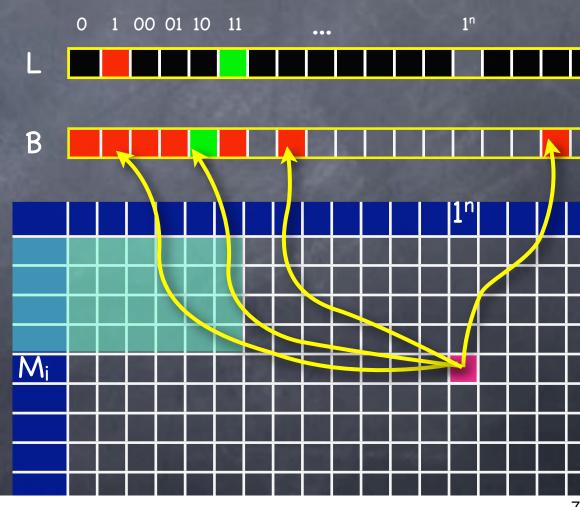
- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.



- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.
 - When M_i queries B on $X > 1^{n-1}$, set B(X)=0



- \bullet L= $\{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.
 - When M_i queries B on $x > 1^{n-1}$, set B(X)=0
 - After M_i finished set B up to $x=1^n$ s.t. $L(1^n) \neq M_i^B(1^n)$



P vs. NP cannot be resolved using a relativizing proof

- P vs. NP cannot be resolved using a relativizing proof
 - "Diagonalization proofs" relativize

- P vs. NP cannot be resolved using a relativizing proof
 - Diagonalization proofs" relativize
 - Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding

- P vs. NP cannot be resolved using a relativizing proof
 - "Diagonalization proofs" relativize
 - Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
 - Do not further depend on internals of computation

- P vs. NP cannot be resolved using a relativizing proof
 - "Diagonalization proofs" relativize
 - Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
 - Do not further depend on internals of computation
 - e.g. of non-relativizing proof: that of Cook-Levin theorem

Natural complexity question

- Natural complexity question
 - How much memory is needed

- Natural complexity question
 - How much memory is needed
 - More pressing than time:

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can't generate memory on the fly

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can't generate memory on the fly
 - Or maybe less pressing:

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can't generate memory on the fly
 - Or maybe less pressing:
 - Turns out, often a little memory can go a long way (if we can spare the time)

DSPACE and NSPACE

DSPACE and NSPACE

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage
 - DSPACE(n) may already be inefficient in terms of time

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage
 - DSPACE(n) may already be inefficient in terms of time
 - \circ We shall stick to $\Omega(\log n)$

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage
 - DSPACE(n) may already be inefficient in terms of time
 - \circ We shall stick to $\Omega(\log n)$
 - Less than log is too little space to remember locations in the input

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage
 - DSPACE(n) may already be inefficient in terms of time
 - \circ We shall stick to $\Omega(\log n)$
 - Less than log is too little space to remember locations in the input
- DSPACE/NSPACE more robust across models

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage
 - DSPACE(n) may already be inefficient in terms of time
 - \circ We shall stick to $\Omega(\log n)$
 - Less than log is too little space to remember locations in the input
- DSPACE/NSPACE more robust across models
 - Constant factor (+O(log n)) simulation overhead

Non-deterministic M

- Non-deterministic M
- o input: x

- Non-deterministic M
- o input: x
- makes non-det choices

- Non-deterministic M
- o input: x
- makes non-det choices
- x ∈ L iff some thread of
 M accepts

- Non-deterministic M
- o input: x
- makes non-det choices
- x ∈ L iff some thread of
 M accepts
- in at most S(|x|) space

- Non-deterministic M
- input: x
- makes non-det choices
- in at most S(|x|) space

Deterministic M'

- Non-deterministic M
- input: x
- makes non-det choices
- in at most S(|x|) space

- Deterministic M'
- input: x and read-once w

- Non-deterministic M
- input: x
- makes non-det choices
- in at most S(|x|) space

- Deterministic M'
- input: x and read-once w
- reads bits from w (certificate)

- Non-deterministic M
- input: x
- makes non-det choices
- in at most S(|x|) space

- Deterministic M'
- input: x and read-once w
- reads bits from w (certificate)
- $x \in L$ iff for some cert. w, M' accepts

- Non-deterministic M
- input: x
- makes non-det choices
- $x \in L$ iff some thread of M accepts
- o in at most S(|x|) space

- Deterministic M'
- o input: x and read-once w
- reads bits from w (certificate)
- $x \in L$ iff for some cert. w, M' accepts
- in at most S(|x|) space

- Non-deterministic M
- input: x
- makes non-det choices
- in at most S(|x|) space

- Deterministic M'
- input: x and read-once w
- reads bits from w (certificate)
- $x \in L$ iff for some cert. w, M' accepts
- in at most S(|x|) space

L = DSPACE(O(log n))

- L = DSPACE(O(log n))

- L = DSPACE(O(log n))
- NL = NSPACE(O(log n))

- L = DSPACE(O(log n))
 - \circ L = U_{a,b > 0} DSPACE(a.log n+b)
- NL = NSPACE(O(log n))
 - O NL = $U_{a,b} > 0$ NSPACE(a.log n+b)

- L = DSPACE(O(log n))
 - \bullet L = $U_{a,b} > 0$ DSPACE(a.log n+b)
- NL = NSPACE(O(log n))
 - O NL = $U_{a,b} > 0$ NSPACE(a.log n+b)
- "L and NL are to space what P and NP are to time"

UTM space-overhead is only a constant factor

- UTM space-overhead is only a constant factor
 - Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then $DSPACE(T(n)) \subseteq DSPACE(T'(n))$

- UTM space-overhead is only a constant factor
 - Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then $DSPACE(T(n)) \subseteq DSPACE(T'(n))$
 - Same for NSPACE

- UTM space-overhead is only a constant factor
 - Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then $DSPACE(T(n)) \subseteq DSPACE(T'(n))$
 - Same for NSPACE
 - Again, tighter than for NTIME (where in fact, we needed T(n+1) = o(T'(n))

- UTM space-overhead is only a constant factor
 - Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then $DSPACE(T(n)) \subseteq DSPACE(T'(n))$
 - Same for NSPACE
 - Again, tighter than for NTIME (where in fact, we needed T(n+1) = o(T'(n))
 - No "delayed flip," because, as we will see later, NSPACE(O(S)) = co-NSPACE(O(S))!

DSPACE, NSPACE

- DSPACE, NSPACE
- Tight hierarchy.

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
 - Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
 - Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 - Hence PSPACE = NPSPACE

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
 - Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 - Hence PSPACE = NPSPACE
 - PSPACE-completeness and NL-completeness

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
 - Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 - Hence PSPACE = NPSPACE
 - PSPACE-completeness and NL-completeness
 - NSPACE = co-NSPACE

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
 - Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 - Hence PSPACE = NPSPACE
 - PSPACE-completeness and NL-completeness

