Lecture 25 Weak circuits are indeed weak

Today:

- Today:
 - PARITY ∉ AC⁰

- Today:
 - PARITY ∉ AC⁰
 - Two different proofs! (Latter generalizes to ACC⁰)

- Today:
 - PARITY ∉ AC⁰
 - Two different proofs! (Latter generalizes to ACC⁰)
 - CLIQUE cannot be decided by poly-sized monotone circuits

- Today:
 - PARITY ∉ AC⁰
 - Two different proofs! (Latter generalizes to ACC⁰)
 - CLIQUE cannot be decided by poly-sized monotone circuits
- Only sketches/partial proofs. See textbook or lecturenotes from linked courses)

PARITY $\notin AC^0$

PARITY ∉ AC°

Recall ACO

- Recall ACO
 - Poly size, constant depth (unbounded fan-in)

- Recall ACO
 - Poly size, constant depth (unbounded fan-in)
 - Today, non-uniform AC⁰

- Recall AC⁰
 - Poly size, constant depth (unbounded fan-in)
 - Today, non-uniform AC⁰
 - How powerful can AC⁰ be?

- Recall ACO
 - Poly size, constant depth (unbounded fan-in)
 - Today, non-uniform AC⁰
 - How powerful can AC⁰ be?
- Recall PARITY

PARITY ∉ AC⁰

- Recall AC⁰
 - Poly size, constant depth (unbounded fan-in)
 - Today, non-uniform AC⁰
 - How powerful can AC⁰ be?
- Recall PARITY
 - How shallow can a poly-sized circuit family for PARITY be?

Suppose constant depth (say ≤ d, d being minimal) circuits for PARITY

- Suppose constant depth (say ≤ d, d being minimal) circuits for PARITY
 - Plan for contradiction: Show depth d-1 circuits for every input size n: start from depth d circuit for a larger n', and construct one for the smaller n.

- Suppose constant depth (say ≤ d, d being minimal) circuits for PARITY
 - Plan for contradiction: Show depth d-1 circuits for every input size n: start from depth d circuit for a larger n', and construct one for the smaller n.
 - By "restricting" to n inputs

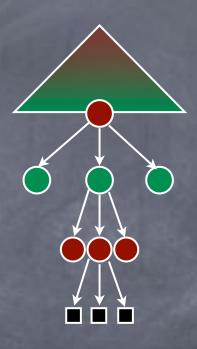
- Suppose constant depth (say ≤ d, d being minimal) circuits for PARITY
 - Plan for contradiction: Show depth d-1 circuits for every input size n: start from depth d circuit for a larger n', and construct one for the smaller n.
 - By "restricting" to n inputs
 - And showing how to rewrite with depth d-1, staying poly sized

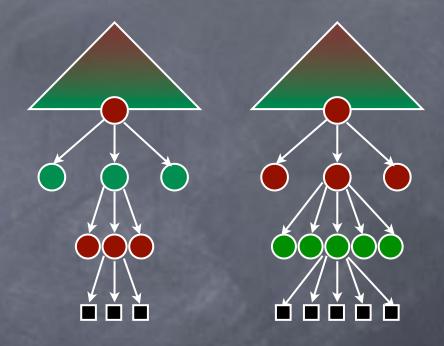
Any function can be written as depth 2 AND-OR tree or an OR-AND tree

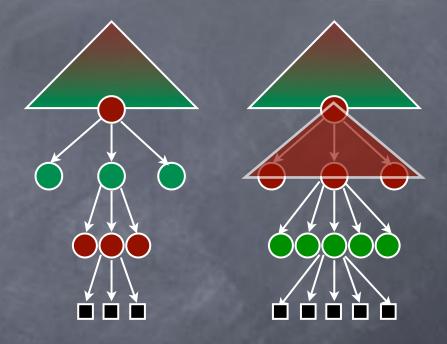
- Any function can be written as depth 2 AND-OR tree or an OR-AND tree
 - But exponential size

- Any function can be written as depth 2 AND-OR tree or an OR-AND tree
 - But exponential size
- Any circuit can be rewritten as an AND-OR tree (each leaf has a literal, possibly shared with other leaves)

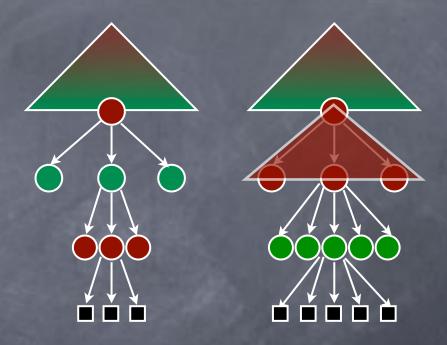
- Any function can be written as depth 2 AND-OR tree or an OR-AND tree
 - But exponential size
- Any circuit can be rewritten as an AND-OR tree (each leaf has a literal, possibly shared with other leaves)
 - If polynomial size and constant depth (AC⁰), stays so



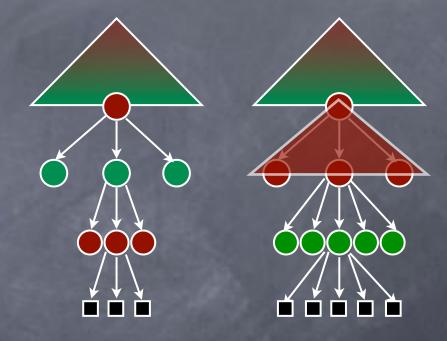




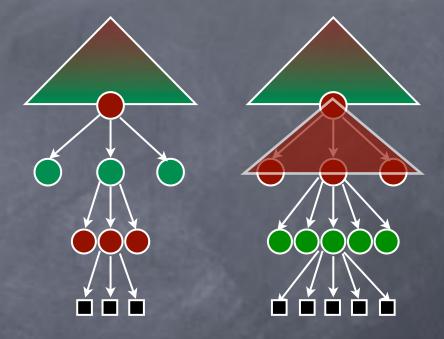
- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit changes into depth d-1

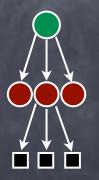


- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?

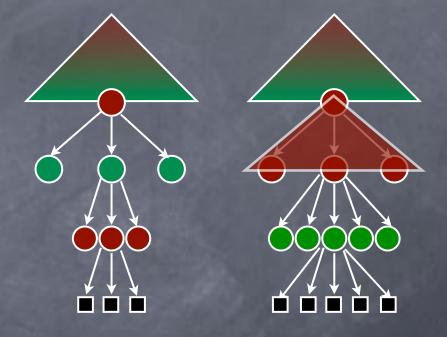


- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?

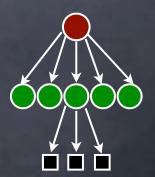




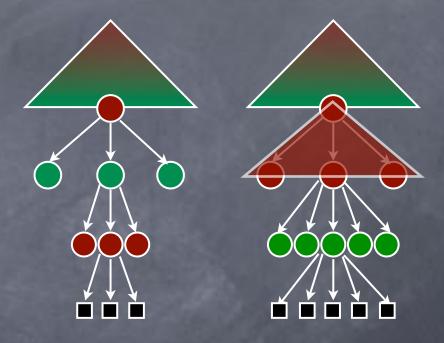
- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?

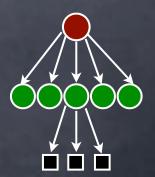




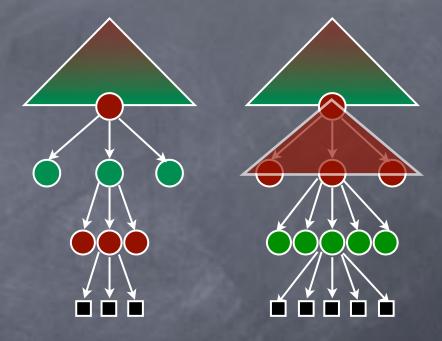


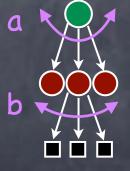
- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?
 - Distributivity

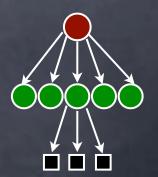




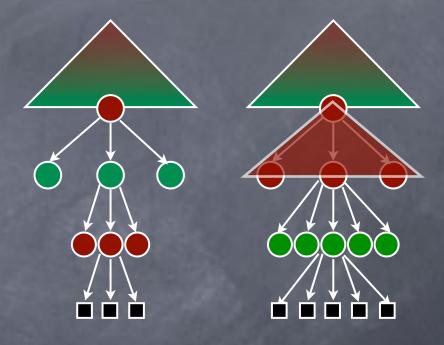
- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?
 - Distributivity

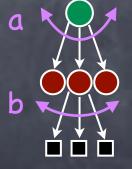


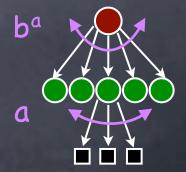




- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?
 - Distributivity

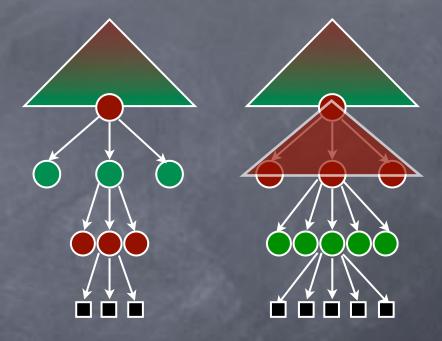


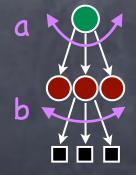


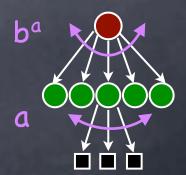


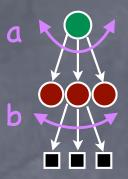
Switching

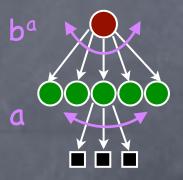
- In an AND-OR tree, if bottom two levels can be replaced by equivalent two levels with switched AND-OR order, and polynomial size
 - A depth d AC⁰ circuit
 changes into depth d-1
- When is switching possible?
 - Distributivity
 - But may increase size to exponential



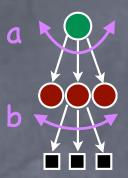


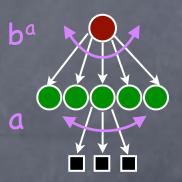




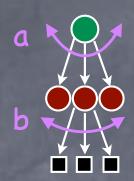


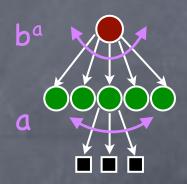
A modified function has a switched circuit



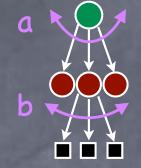


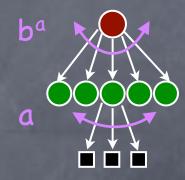
- A modified function has a switched circuit
 - Size stays polynomial even after switching





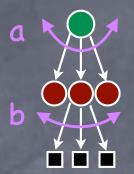
- A modified function has a switched circuit
 - Size stays polynomial even after switching

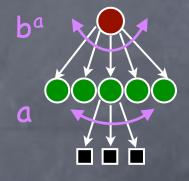


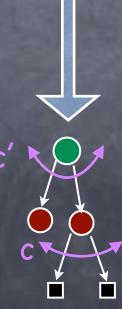


© Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)

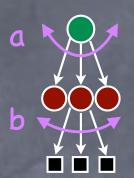
- A modified function has a switched circuit
 - Size stays polynomial even after switching
 - © Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)

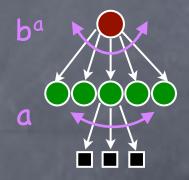


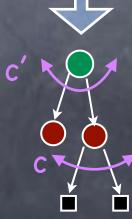


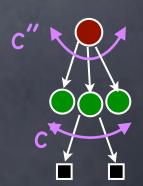


- A modified function has a switched circuit
 - Size stays polynomial even after switching
 - © Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)

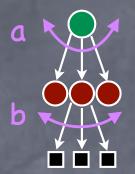


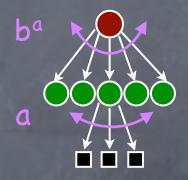


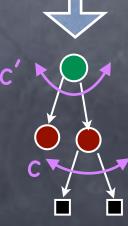


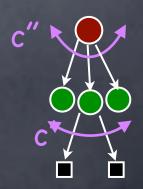


- A modified function has a switched circuit
 - Size stays polynomial even after switching
 - © Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)
 - Still function of many variables

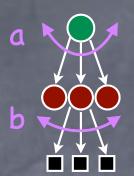


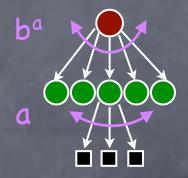


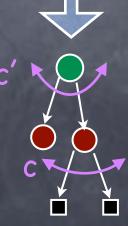


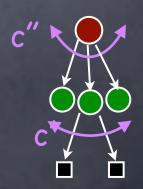


- A modified function has a switched circuit
 - Size stays polynomial even after switching
 - © Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)
 - Still function of many variables
- How to find such a modified function

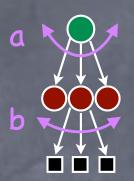


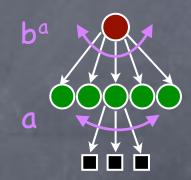


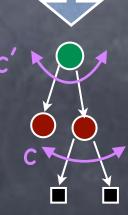


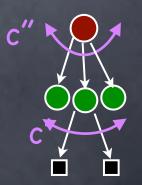


- A modified function has a switched circuit
 - Size stays polynomial even after switching
 - © Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)
 - Still function of many variables
- How to find such a modified function



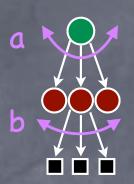


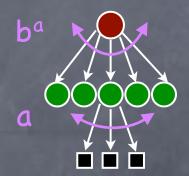


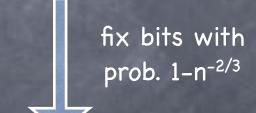


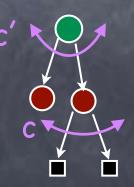
Random restriction

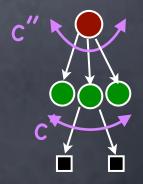
- A modified function has a switched circuit
 - Size stays polynomial even after switching
 - © Computes same function as before but with most variables already set to specific values (a "restriction" of the original function)
 - Still function of many variables
- How to find such a modified function
 - Random restriction











Random restriction. With positive probability:

- Random restriction. With positive probability:
 - can switch bottom levels, staying poly sized

- Random restriction. With positive probability:
 - can switch bottom levels, staying poly sized
 - with high probability for each node just above the leaf level (switching lemma); then union bound

- Random restriction. With positive probability:
 - can switch bottom levels, staying poly sized
 - with high probability for each node just above the leaf level (switching lemma); then union bound
 - computes PARITY for n^{2/3} variables (Chernoff)

- Random restriction. With positive probability:
 - can switch bottom levels, staying poly sized
 - with high probability for each node just above the leaf level (switching lemma); then union bound
 - computes PARITY for n^{2/3} variables (Chernoff)
- Depth d-1, poly-sized circuit family for PARITY

- Random restriction. With positive probability:
 - can switch bottom levels, staying poly sized
 - with high probability for each node just above the leaf level (switching lemma); then union bound
 - computes PARITY for n^{2/3} variables (Chernoff)
- Depth d-1, poly-sized circuit family for PARITY
 - Contradiction: started with minimal depth!

An alternate proof that PARITY ∉ AC⁰

- An alternate proof that PARITY ∉ AC⁰
 - Generalizes to ACC⁰(p) for odd primes p

- An alternate proof that PARITY ∉ AC⁰
 - Generalizes to ACC⁰(p) for odd primes p
- Plan:

- An alternate proof that PARITY ∉ AC⁰
 - Generalizes to ACC⁰(p) for odd primes p
- Plan:
 - Given a circuit C, can find a polynomial s.t.

- An alternate proof that PARITY ∉ AC⁰
 - Generalizes to ACC⁰(p) for odd primes p
- Plan:
 - Given a circuit C, can find a polynomial s.t.
 - Polynomial has "low degree"

- An alternate proof that PARITY ∉ AC⁰
 - Generalizes to ACC⁰(p) for odd primes p
- Plan:
 - Given a circuit C, can find a polynomial s.t.
 - Polynomial has "low degree"
 - Polynomial agrees with C on most inputs

- An alternate proof that PARITY ∉ AC⁰
 - Generalizes to ACC⁰(p) for odd primes p
- Plan:
 - Given a circuit C, can find a polynomial s.t.
 - Polynomial has "low degree"
 - Polynomial agrees with C on most inputs
 - Show that no low degree polynomial can agree with PARITY on that many inputs

Assume circuit has OR, NOT gates

- Assume circuit has OR, NOT gates
 - Replace gates by polynomials (over some field), and compose together into one big polynomial

- Assume circuit has OR, NOT gates
 - Replace gates by polynomials (over some field), and compose together into one big polynomial
 - If we do this faithfully, degree will be large

- Assume circuit has OR, NOT gates
 - Replace gates by polynomials (over some field), and compose together into one big polynomial
 - If we do this faithfully, degree will be large
 - Large enough to evaluate PARITY

- Assume circuit has OR, NOT gates
 - Replace gates by polynomials (over some field), and compose together into one big polynomial
 - If we do this faithfully, degree will be large
 - Large enough to evaluate PARITY
 - So allow polynomials which err on some inputs

- Assume circuit has OR, NOT gates
 - Replace gates by polynomials (over some field), and compose together into one big polynomial
 - If we do this faithfully, degree will be large
 - Large enough to evaluate PARITY
 - So allow polynomials which err on some inputs
 - At each gate will pick polynomial from a distribution

- Assume circuit has OR, NOT gates
 - Replace gates by polynomials (over some field), and compose together into one big polynomial
 - If we do this faithfully, degree will be large
 - Large enough to evaluate PARITY
 - So allow polynomials which err on some inputs
 - At each gate will pick polynomial from a distribution
 - Composed polynomial will be good with prob. > 0

Polynomials for OR, NOT and PARITY

Polynomials for OR, NOT and PARITY

Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)

- Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)
 - If over GF(2), PARITY is just sum (degree 1)!

- Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)
 - If over GF(2), PARITY is just sum (degree 1)!
 - We will work over GF(q), q>2

- Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)
 - If over GF(2), PARITY is just sum (degree 1)!
 - We will work over GF(q), q>2
 - \bigcirc PARITY = $[1-(1-2x_1)(1-2x_2)...(1-2x_n)]/2$ (if $2\neq 0$)

- Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)
 - If over GF(2), PARITY is just sum (degree 1)!
 - We will work over GF(q), q>2
 - \bigcirc PARITY = $[1-(1-2x_1)(1-2x_2)....(1-2x_n)]/2$ (if $2\neq 0$)
 - \odot NOT = 1-x.

- Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)
 - If over GF(2), PARITY is just sum (degree 1)!
 - We will work over GF(q), q>2
 - PARITY = $[1-(1-2x_1)(1-2x_2)....(1-2x_n)]/2$ (if 2≠0)
 - NOT = 1-x.
 - \odot OR = 1- (1- x_1)...(1- x_n)

- Want that PARITY is complex (high degree) while OR, NOT are simple (low degree)
 - If over GF(2), PARITY is just sum (degree 1)!
 - We will work over GF(q), q>2
 - PARITY = $[1-(1-2x_1)(1-2x_2)....(1-2x_n)]/2$ (if 2≠0)
 - NOT = 1-x.
 - \odot OR = 1- (1- x_1)...(1- x_n)
 - But high degree! Need OR to be simple!

© Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field

- © Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field
- If $OR(x_1,...,x_n)=0$ then $p(x_1,...,x_n)=0$

- © Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field
- If $OR(x_1,...,x_n)=0$ then $p(x_1,...,x_n)=0$
- If $OR(x_1,...,x_n)=1$

- © Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field
- If $OR(x_1,...,x_n)=0$ then $p(x_1,...,x_n)=0$
- \circ If $OR(x_1,...,x_n)=1$
 - \circ $Pr_a[a_1x_1 + ... + a_nx_n = 0] \le 1/q$ (why?)

- © Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field
- If $OR(x_1,...,x_n)=0$ then $p(x_1,...,x_n)=0$
- \circ If $OR(x_1,...,x_n)=1$

 - Recall in GF(q), $u^{q-1} = 1$ unless u=0 (since non-0 elements form a group of order q-1 under multiplication)

- © Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field
- If $OR(x_1,...,x_n)=0$ then $p(x_1,...,x_n)=0$
- \circ If $OR(x_1,...,x_n)=1$
 - \circ $Pr_a[a_1x_1 + ... + a_nx_n = 0] \le 1/q$ (why?)
 - Recall in GF(q), $u^{q-1} = 1$ unless u=0 (since non-0 elements form a group of order q-1 under multiplication)
 - \circ i.e. $Pr_a[(a_1x_1 + ... + a_nx_n)^{q-1} = 1] \ge 1-1/q$

- © Consider (random) polynomial $p(x_1,...,x_n) = (a_1x_1 + ... + a_nx_n)^{q-1}$ where a_i are picked at random from the field
- If $OR(x_1,...,x_n)=0$ then $p(x_1,...,x_n)=0$
- \circ If $OR(x_1,...,x_n)=1$
 - \circ $Pr_a[a_1x_1 + ... + a_nx_n = 0] \le 1/q$ (why?)
 - Recall in GF(q), $u^{q-1} = 1$ unless u=0 (since non-0 elements form a group of order q-1 under multiplication)
 - \circ i.e. $Pr_a[(a_1x_1 + ... + a_nx_n)^{q-1} = 1] \ge 1-1/q$
- Can boost probability by doing (exact) OR t times: deg < qt</p>

© OR: a random polynomial of degree $O(\log 1/\epsilon)$, such that it is correct with prob. > 1- ϵ

- © OR: a random polynomial of degree O(log $1/\epsilon$), such that it is correct with prob. > $1-\epsilon$
- Composing gate-polynomials into circuit-polynomial

- © OR: a random polynomial of degree $O(log 1/\epsilon)$, such that it is correct with prob. > 1- ϵ
- Composing gate-polynomials into circuit-polynomial
 - Substitute child polynomials as variables

- © OR: a random polynomial of degree O(log $1/\epsilon$), such that it is correct with prob. > $1-\epsilon$
- Composing gate-polynomials into circuit-polynomial
 - Substitute child polynomials as variables
 - The Degree multiplies: depth d circuit gives deg $O(\log 1/\epsilon)^d$

- © OR: a random polynomial of degree O(log $1/\epsilon$), such that it is correct with prob. > $1-\epsilon$
- Composing gate-polynomials into circuit-polynomial
 - Substitute child polynomials as variables
 - The Degree multiplies: depth d circuit gives deg $O(\log 1/\epsilon)^d$
 - Error adds (by union bound): size s circuit gives error < sε
 </p>

- © OR: a random polynomial of degree O(log $1/\epsilon$), such that it is correct with prob. > 1- ϵ
- Composing gate-polynomials into circuit-polynomial
 - Substitute child polynomials as variables
 - \odot Degree multiplies: depth d circuit gives deg $O(\log 1/\epsilon)^d$
 - Error adds (by union bound): size s circuit gives error < sε</p>

- © OR: a random polynomial of degree O(log $1/\epsilon$), such that it is correct with prob. > $1-\epsilon$
- Composing gate-polynomials into circuit-polynomial
 - Substitute child polynomials as variables
 - \odot Degree multiplies: depth d circuit gives deg $O(\log 1/\epsilon)^d$
 - Error adds (by union bound): size s circuit gives error < sε
 </p>
- - One polynomial, correct on > 3/4 fraction of inputs (why?)

Can PARITY also be approximated (i.e., calculated for some large input set S) by a low-degree polynomial?

- Can PARITY also be approximated (i.e., calculated for some large input set S) by a low-degree polynomial?
 - PARITY is essentially $\Pi_{i=1 \text{ to } n}$ x_i, for inputs from {+1,−1}ⁿ

- Can PARITY also be approximated (i.e., calculated for some large input set S) by a low-degree polynomial?
 - PARITY is essentially $\Pi_{i=1 \text{ to } n}$ x_i, for inputs from {+1,−1}ⁿ
 - If can calculate $\Pi_{i=1 \text{ to } n}$ x_i (for $S \subseteq \{+1,-1\}^n$) using degree D, then can calculate (for S) any polynomial using degree D+n/2 polynomial (why?)

- Can PARITY also be approximated (i.e., calculated for some large input set S) by a low-degree polynomial?
 - PARITY is essentially $\Pi_{i=1 \text{ to } n}$ x_i, for inputs from {+1,−1}ⁿ
 - If can calculate $\Pi_{i=1 \text{ to } n} \times_i$ (for $S \subseteq \{+1,-1\}^n$) using degree D, then can calculate (for S) any polynomial using degree D+n/2 polynomial (why?)
 - But if S large, too many polynomials, that are distinct for S

- Can PARITY also be approximated (i.e., calculated for some large input set S) by a low-degree polynomial?
 - PARITY is essentially $\Pi_{i=1 \text{ to } n}$ x_i, for inputs from {+1,−1}ⁿ
 - If can calculate $\Pi_{i=1 \text{ to } n} \times_i$ (for $S \subseteq \{+1,-1\}^n$) using degree D, then can calculate (for S) any polynomial using degree D+n/2 polynomial (why?)
 - But if S large, too many polynomials, that are distinct for S
 - Need D = $\Omega(\sqrt{n})$ to have enough degree D+n/2 polys.

PARITY ∉ ACC(q)°

PARITY $\notin ACC(q)^0$

Given depth d, size s circuit C, there is a polynomial of degree O(log(s))^d which agrees with C on 3/4 of inputs

PARITY $\notin ACC(q)^0$

- Given depth d, size s circuit C, there is a polynomial of degree O(log(s))^d which agrees with C on 3/4 of inputs
 - Using approximate OR polynomials

PARITY $\notin ACC(q)^0$

- Given depth d, size s circuit C, there is a polynomial of degree O(log(s))^d which agrees with C on 3/4 of inputs
 - Using approximate OR polynomials
 - The Even if circuit has Mod_q (boolean) gates: $(x_1+...+x_n)^{q-1}$

PARITY ∉ ACC(q)0

- Given depth d, size s circuit C, there is a polynomial of degree O(log(s))^d which agrees with C on 3/4 of inputs
 - Using approximate OR polynomials
 - The Even if circuit has Mod_q (boolean) gates: $(x_1+...+x_n)^{q-1}$
- \circ PARITY needs degree $\Omega(\sqrt{n})$ polynomial for approximation

PARITY ∉ ACC(q)0

- Given depth d, size s circuit C, there is a polynomial of degree O(log(s))^d which agrees with C on 3/4 of inputs
 - Using approximate OR polynomials
 - The Even if circuit has Mod_q (boolean) gates: $(x_1+...+x_n)^{q-1}$
- \odot PARITY needs degree $\Omega(\sqrt{n})$ polynomial for approximation
- log(s) = $\Omega(\sqrt{n})^{1/d}$ or s = $2^{\Omega(n)^{n}(1/2d)}$: i.e., if depth is constant then size not poly (in fact exponential)

Monotone Circuits

Monotone Circuits

Another restricted class for which strong lower-bounds are known

- Another restricted class for which strong lower-bounds are known
 - Monotone circuits: no NOT gate (and no neg. literal)

- Another restricted class for which strong lower-bounds are known
 - Monotone circuits: no NOT gate (and no neg. literal)
 - For monotonic functions f

- Another restricted class for which strong lower-bounds are known
 - Monotone circuits: no NOT gate (and no neg. literal)
 - For monotonic functions f
 - To show that f has no poly-sized monotone circuit family

- Another restricted class for which strong lower-bounds are known
 - Monotone circuits: no NOT gate (and no neg. literal)
 - For monotonic functions f
 - To show that f has no poly-sized monotone circuit family
 - Still possible that f may have a more efficient nonmonotone circuit family (or even be in P)



© CLIQUE_{n,k} does not have poly-sized monotone circuits

- © CLIQUEn,k does not have poly-sized monotone circuits
 - A way to turn a circuit into an approximately correct circuit, gate by gate (AND/OR gate → "approximation gate")

- CLIQUE_{n,k} does not have poly-sized monotone circuits
 - A way to turn a circuit into an approximately correct circuit, gate by gate (AND/OR gate → "approximation gate")
 - Will consider effect of this change on some Yes examples and some No examples

- CLIQUE_{n,k} does not have poly-sized monotone circuits
 - A way to turn a circuit into an approximately correct circuit, gate by gate (AND/OR gate → "approximation gate")
 - Will consider effect of this change on some Yes examples and some No examples
 - Converting each gate to approximation makes only a few extra examples go wrong

- CLIQUE_{n,k} does not have poly-sized monotone circuits
 - A way to turn a circuit into an approximately correct circuit, gate by gate (AND/OR gate → "approximation gate")
 - Will consider effect of this change on some Yes examples and some No examples
 - Converting each gate to approximation makes only a few extra examples go wrong
 - A circuit with only approximation gates errs on a large number of the examples

- CLIQUE_{n,k} does not have poly-sized monotone circuits
 - A way to turn a circuit into an approximately correct circuit, gate by gate (AND/OR gate → "approximation gate")
 - Will consider effect of this change on some Yes examples and some No examples
 - Converting each gate to approximation makes only a few extra examples go wrong
 - A circuit with only approximation gates errs on a large number of the examples
 - Original circuit must have been large

Input sets

- Input sets
 - Yes set: graphs with no edges except a single k-clique.
 No set: complete (k-1)-partite graphs

- Input sets
 - Yes set: graphs with no edges except a single k-clique. No set: complete (k-1)-partite graphs
- Since monotone circuit, we can label each gate with a set of subgraphs which will make the gate's output 1

- Input sets
 - Yes set: graphs with no edges except a single k-clique. No set: complete (k-1)-partite graphs
- Since monotone circuit, we can label each gate with a set of subgraphs which will make the gate's output 1
 - Input gates: edges

- Input sets
 - Yes set: graphs with no edges except a single k-clique. No set: complete (k-1)-partite graphs
- Since monotone circuit, we can label each gate with a set of subgraphs which will make the gate's output 1
 - Input gates: edges
 - OR: take union of the two sets of input-subsets

- Input sets
 - Yes set: graphs with no edges except a single k-clique. No set: complete (k-1)-partite graphs
- Since monotone circuit, we can label each gate with a set of subgraphs which will make the gate's output 1
 - Input gates: edges
 - OR: take union of the two sets of input-subsets
 - AND: take set of pair-wise unions of input-subsets

Approximation gate: output wire labeled by a sample of M cliques of at most t vertices. Value 1 if at least one of those M cliques is present in the graph

- Approximation gate: output wire labeled by a sample of M cliques of at most t vertices. Value 1 if at least one of those M cliques is present in the graph
 - Input gates: edges

- Approximation gate: output wire labeled by a sample of M cliques of at most t vertices. Value 1 if at least one of those M cliques is present in the graph
 - Input gates: edges
 - OR: take union of the two sets of subsets, and "prune" to M subsets

- Approximation gate: output wire labeled by a sample of M cliques of at most t vertices. Value 1 if at least one of those M cliques is present in the graph
 - Input gates: edges
 - OR: take union of the two sets of subsets, and "prune" to M subsets
 - AND: take set of pair-wise unions which are at most t vertices, and "prune" to M subsets

- Approximation gate: output wire labeled by a sample of M cliques of at most t vertices. Value 1 if at least one of those M cliques is present in the graph
 - Input gates: edges
 - OR: take union of the two sets of subsets, and "prune" to M subsets
 - AND: take set of pair-wise unions which are at most t vertices, and "prune" to M subsets
 - Pruning uses "sunflower lemma": find a sunflower and replace petals by core

Converting each gate to approximation makes only a few more examples go wrong

- Converting each gate to approximation makes only a few more examples go wrong
 - Bounding new false positives among No sets and false negatives among Yes sets introduced by pruning

- Converting each gate to approximation makes only a few more examples go wrong
 - Bounding new false positives among No sets and false negatives among Yes sets introduced by pruning
- A circuit with only approximation gates errs on a large number of the examples

- Converting each gate to approximation makes only a few more examples go wrong
 - Bounding new false positives among No sets and false negatives among Yes sets introduced by pruning
- A circuit with only approximation gates errs on a large number of the examples
 - If output identically "No" then errs on entire Yes set.
 Else, output wire's label has some subset X, |X| ≤ t = O(√k),
 and then a constant fraction of No-examples get accepted