Lecture 24
Computing with remote inputs

Setting

- Setting

- Setting
 - \odot Alice wants to compute f(x,y)
 - Alice is given only x. Her friend Bob gets y.

- Setting
 - \odot Alice wants to compute f(x,y)
 - Alice is given only x. Her friend Bob gets y.
 - Least amount of communication to achieve this

- Setting
 - \odot Alice wants to compute f(x,y)
 - Alice is given only x. Her friend Bob gets y.
 - Least amount of communication to achieve this
- Compare with decision tree complexity

- Setting
 - \odot Alice wants to compute f(x,y)
 - Alice is given only x. Her friend Bob gets y.
 - Least amount of communication to achieve this
- Compare with decision tree complexity
 - Trivial upper-bound of |x|

- Setting
 - Alice wants to compute f(x,y)
 - Alice is given only x. Her friend Bob gets y.
 - Least amount of communication to achieve this
- Compare with decision tree complexity
 - Trivial upper-bound of |x|
- Interested in proving lower bounds for various f

PARITY(x,y) = ⊕_i (x_i⊕y_i)

PARITY(x,y) = \bigoplus_i (x_i \oplus y_i)

CC(PARITY) = 1

- PARITY(x,y) = \bigoplus_i (x_i \oplus y_i)

 CC(PARITY) = 1

- PARITY(x,y) = \bigoplus_i (x_i⊕y_i)
 - CC(PARITY) = 1
- - Lower-bound?

- PARITY(x,y) = \bigoplus_i (x_i⊕y_i)
 - CC(PARITY) = 1
- \odot EQ(x,y) = 1 iff x=y
 - Lower-bound?
- \odot DISJ(x,y)=1 iff $x \land y=0^n$

Distributed computing

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit
 - Variants tightly related to circuit complexity

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit
 - Variants tightly related to circuit complexity
- Proving optimality of algorithms and data-structures

We'll consider deterministic protocols

- We'll consider deterministic protocols
- Fixed number of rounds (Alice to Bob, then Bob to Alice), each party sends a fixed number of bits in each round

- We'll consider deterministic protocols
- Fixed number of rounds (Alice to Bob, then Bob to Alice), each party sends a fixed number of bits in each round
 - © Can even consider protocol to have Alice and Bob alternately exchanging single bits (since not considering number of rounds)

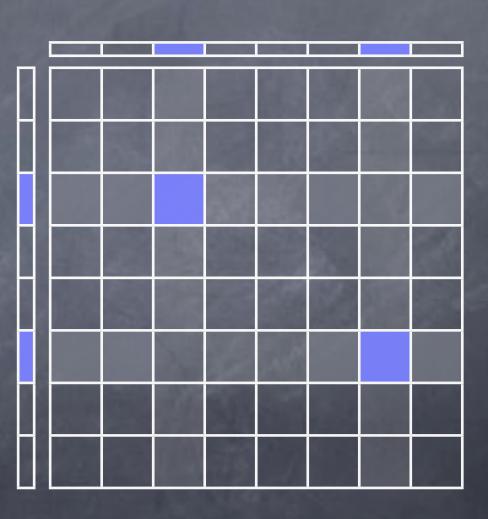
- We'll consider deterministic protocols
- Fixed number of rounds (Alice to Bob, then Bob to Alice), each party sends a fixed number of bits in each round
 - © Can even consider protocol to have Alice and Bob alternately exchanging single bits (since not considering number of rounds)
 - At most doubles the communication complexity

ith message from Alice is a function of her input and previous messages

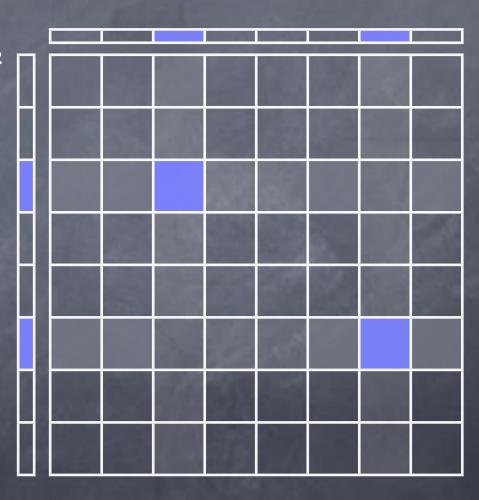
- ith message from Alice is a function of her input and previous messages
- Her output is a function of the final "transcript" and her own input (her "view")

- ith message from Alice is a function of her input and previous messages
- Her output is a function of the final "transcript" and her own input (her "view")
 - Similarly for Bob. His view = transcript + his input

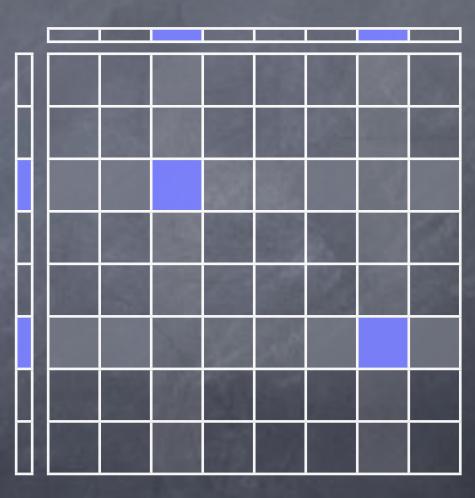
- ith message from Alice is a function of her input and previous messages
- Her output is a function of the final "transcript" and her own input (her "view")
 - Similarly for Bob. His view = transcript + his input
- #transcripts $\le 2^{CC}$. i.e. $CC \ge log(#transcripts)$



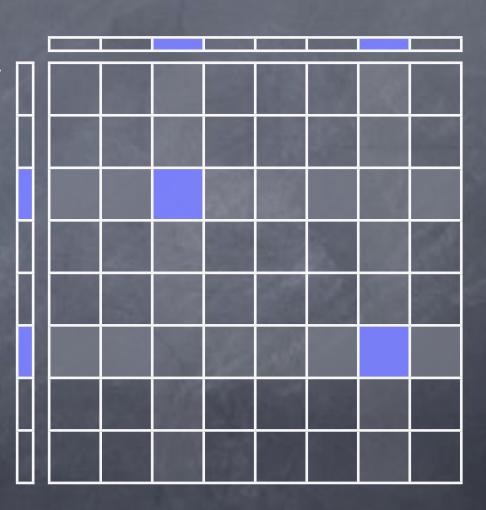
Consider the transcript table



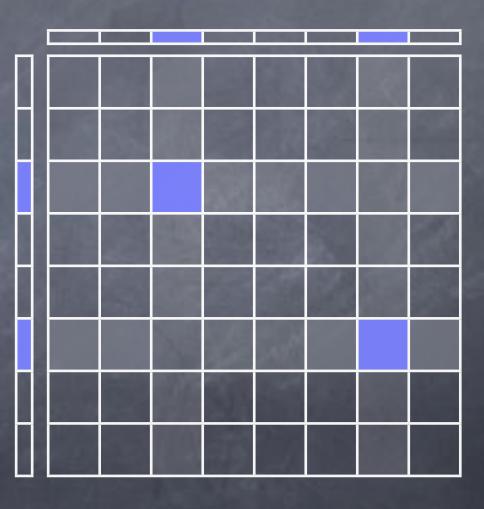
- Consider the transcript table
 - If on (a_1,b_1) and (a_2,b_2) same transcript

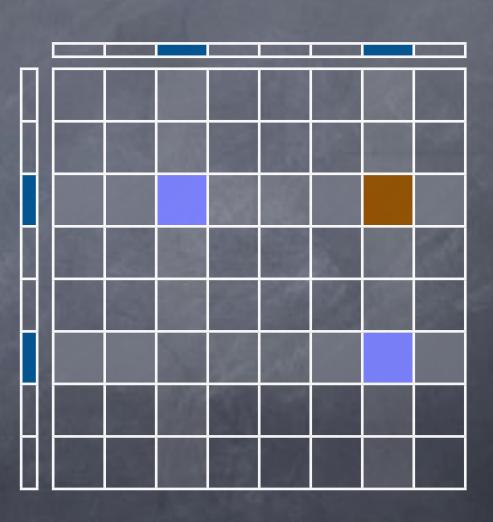


- Consider the transcript table
 - If on (a_1,b_1) and (a_2,b_2) same transcript
 - Then same transcript on (a₁,b₂) also!

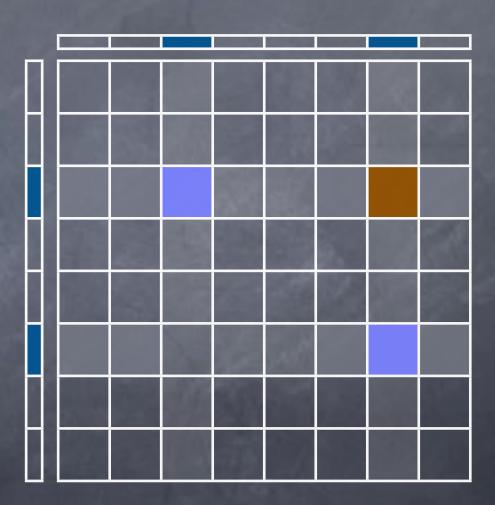


- Consider the transcript table
 - If on (a_1,b_1) and (a_2,b_2) same transcript
 - Then same transcript on (a₁,b₂) also!
 - Alice and Bob never realize the difference through out the protocol

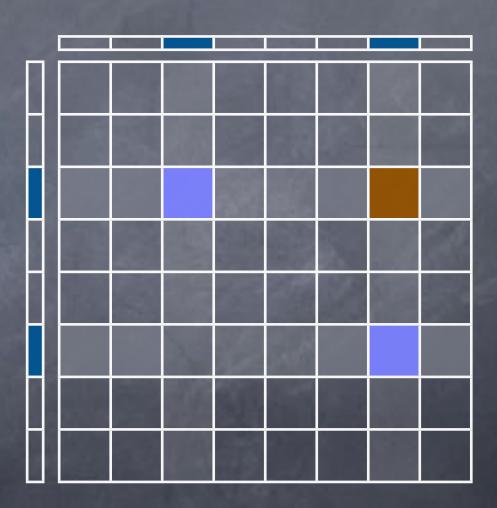




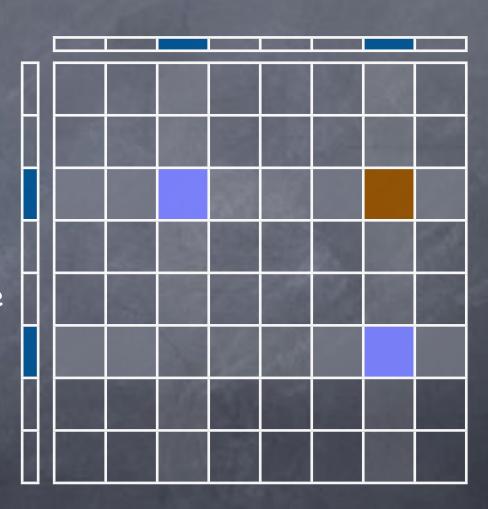
If on (a₁,b₁) and (a₂,b₂) same transcript, then same transcript on (a₁,b₂) also



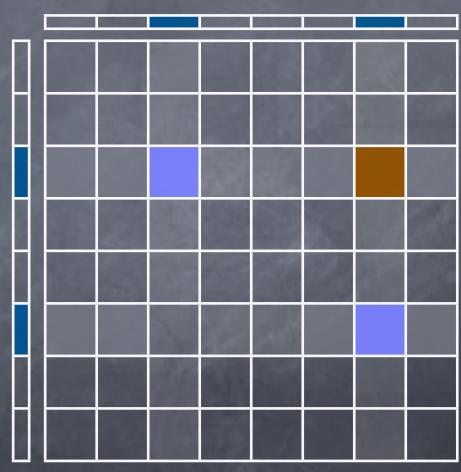
- If on (a₁,b₁) and (a₂,b₂) same transcript, then same transcript on (a₁,b₂) also
- Show a set S of input-pairs that must have distinct transcripts



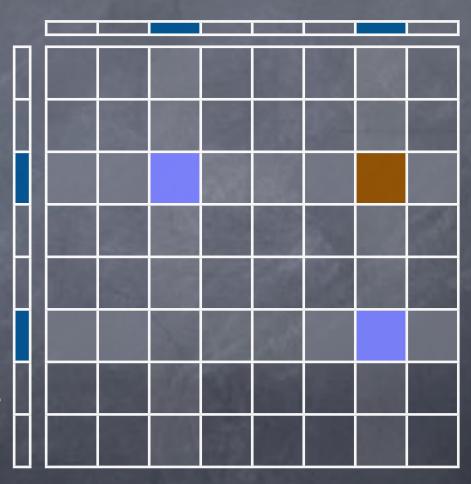
- If on (a₁,b₁) and (a₂,b₂) same transcript, then same transcript on (a₁,b₂) also
- Show a set S of input-pairs that must have distinct transcripts
 - Even though all pairs have same output

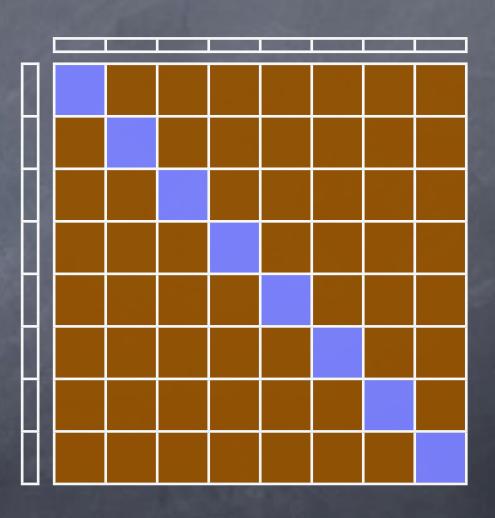


- If on (a₁,b₁) and (a₂,b₂) same transcript, then same transcript on (a₁,b₂) also
- Show a set S of input-pairs that must have distinct transcripts
 - Even though all pairs have same output
 - "Cross" of no two pairs has the same output

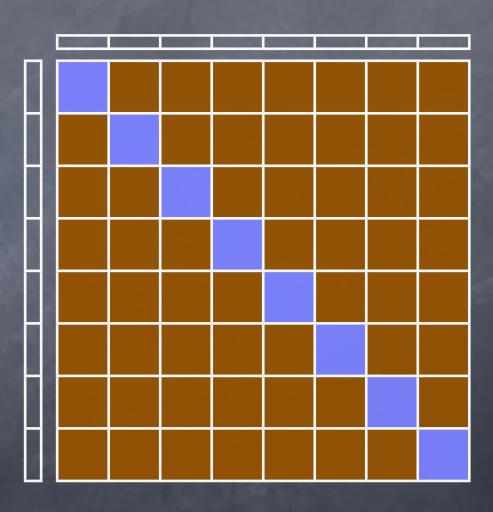


- If on (a₁,b₁) and (a₂,b₂) same transcript, then same transcript on (a₁,b₂) also
- Show a set S of input-pairs that must have distinct transcripts
 - Even though all pairs have same output
 - "Cross" of no two pairs has the same output
- If S is a set of such pairs,
 CC ≥ log(|S|)

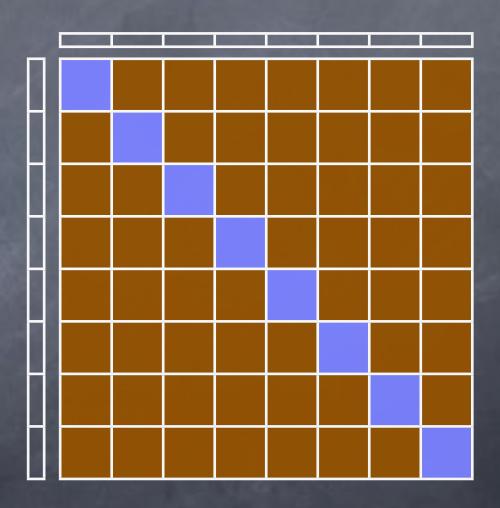




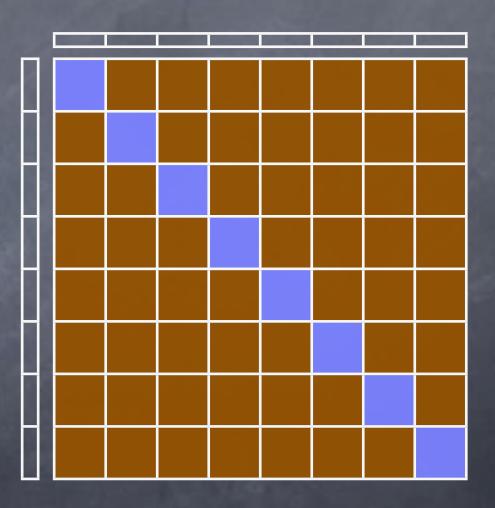
 \circ S = set of all pairs (x,x)



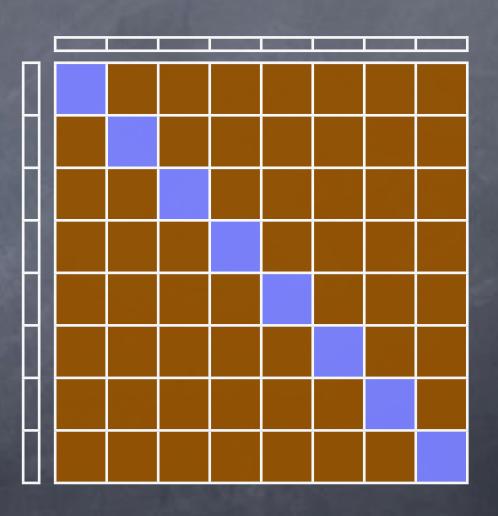
- \circ S = set of all pairs (x,x)
 - \odot CC(EQ) \geq log(|S|) \geq n



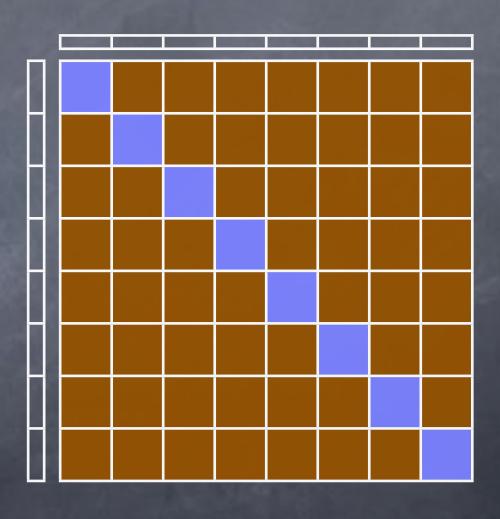
- \circ S = set of all pairs (x,x)
 - \circ $CC(EQ) \ge \log(|S|) \ge n$
- True for any function in which each row and column has exactly one 1



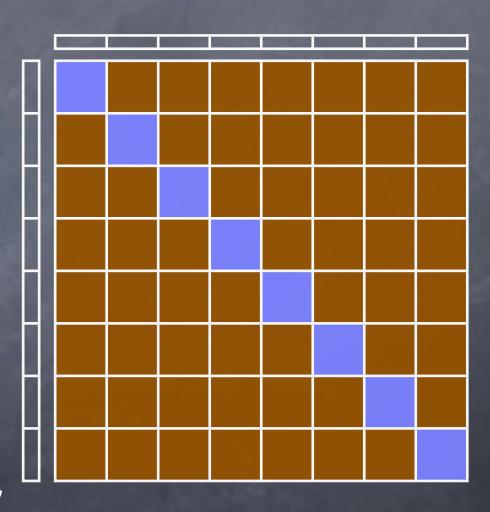
- \odot S = set of all pairs (x,x)
 - \circ $CC(EQ) \ge \log(|S|) \ge n$
- True for any function in which each row and column has exactly one 1
- Other functions too

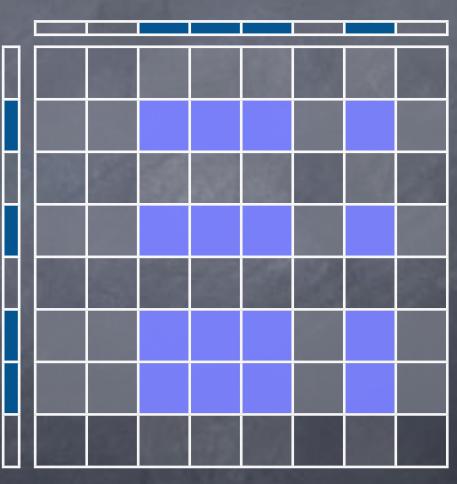


- \circ S = set of all pairs (x,x)
 - \circ $CC(EQ) \ge log(|S|) \ge n$
- True for any function in which each row and column has exactly one 1
- Other functions too
 - \odot e.g.: DISJ(x,y) if $x \land y = 0^n$

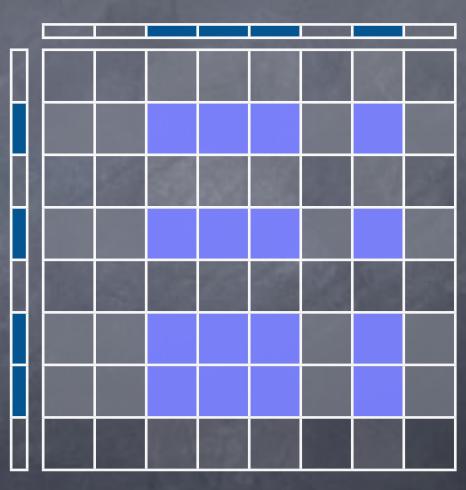


- \circ S = set of all pairs (x,x)
 - \odot CC(EQ) \geq log(|S|) \geq n
- True for any function in which each row and column has exactly one 1
- Other functions too
 - \odot e.g.: DISJ(x,y) if $x \wedge y = 0^n$
 - \circ S = set of complementary pairs, (x,¬x)

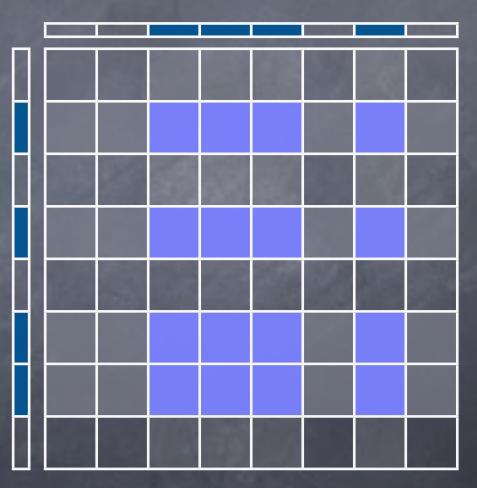




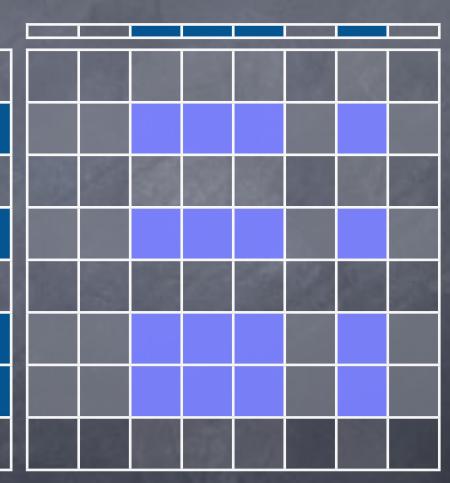
Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$



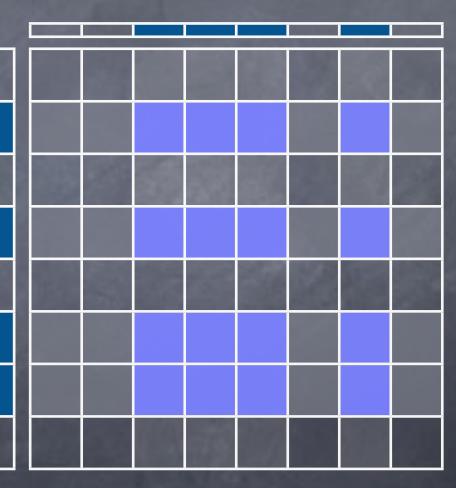
- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
- Monochromatic: same f-value

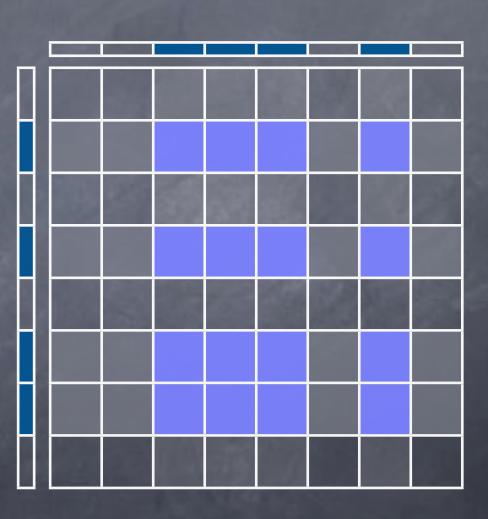


- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
- Monochromatic: same f-value
- Recall: for any protocol, set of all input-pairs with the same transcript is a rectangle

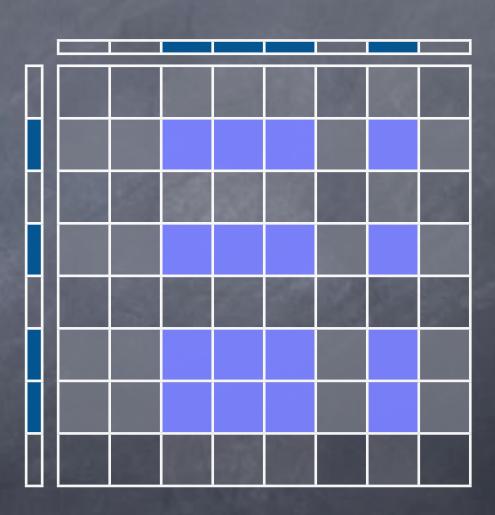


- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
- Monochromatic: same f-value
- Recall: for any protocol, set of all input-pairs with the same transcript is a rectangle
- For protocol to be correct, the rectangles should be monochromatic

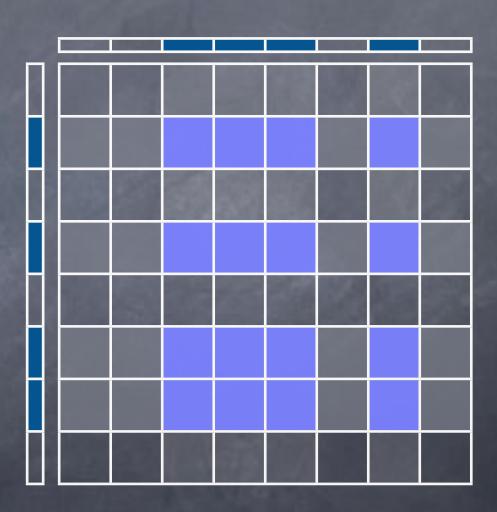




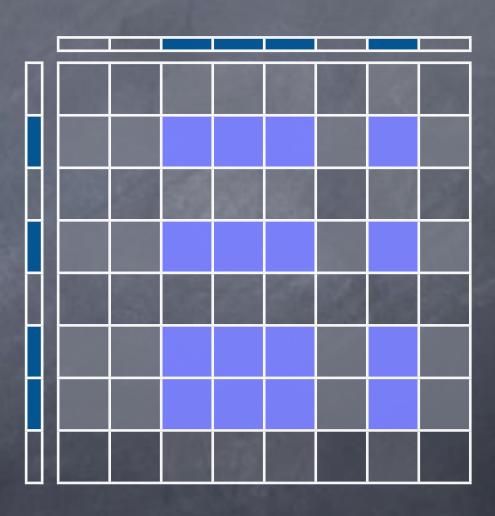
For protocol to be correct, same-transcript rectangles should be monochromatic



- For protocol to be correct, same-transcript rectangles should be monochromatic
- Find the least number of monochromatic rectangles that can tile the function, χ(f)

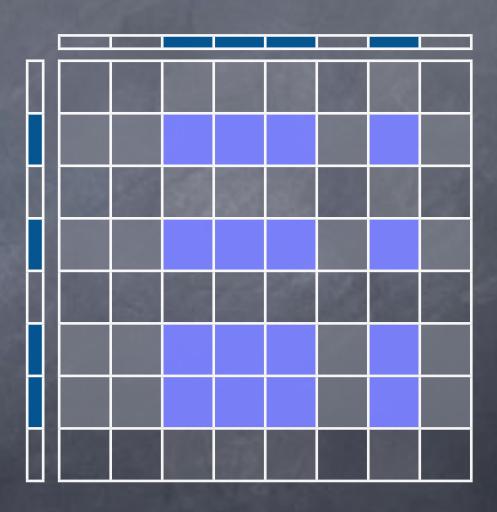


- For protocol to be correct, same-transcript rectangles should be monochromatic
- Find the least number of monochromatic rectangles that can tile the function, χ(f)



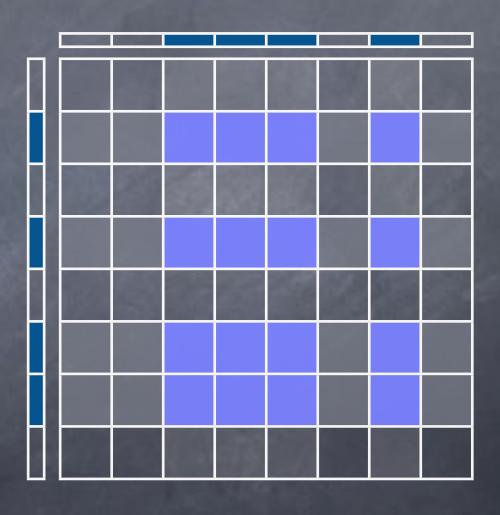
- For protocol to be correct, same-transcript rectangles should be monochromatic
- Find the least number of monochromatic rectangles that can tile the function, χ(f)

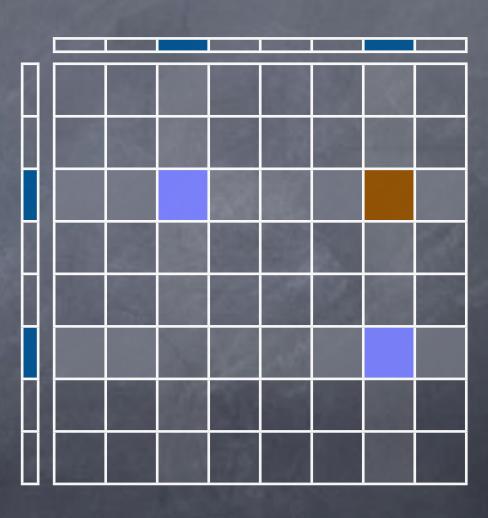
 - \circ $CC(f) \ge \log(\chi(f))$



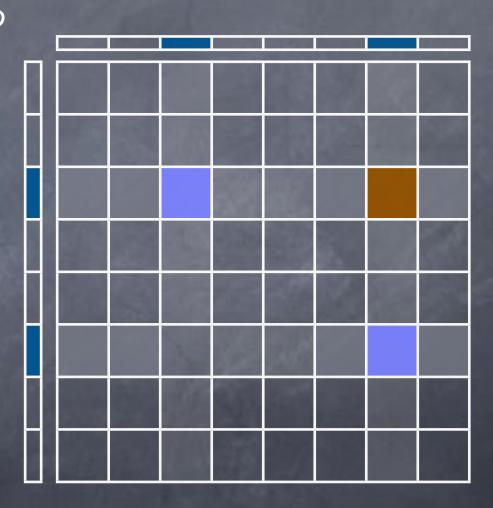
- For protocol to be correct, same-transcript rectangles should be monochromatic
- Find the least number of monochromatic rectangles that can tile the function, χ(f)

 - \circ CC(f) \geq log(χ (f))
- How to lower-bound $\chi(f)$?

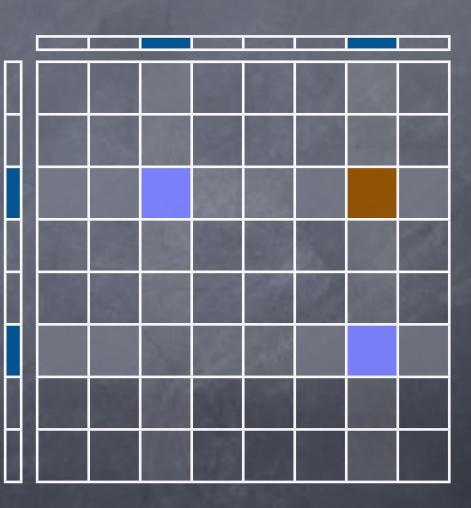




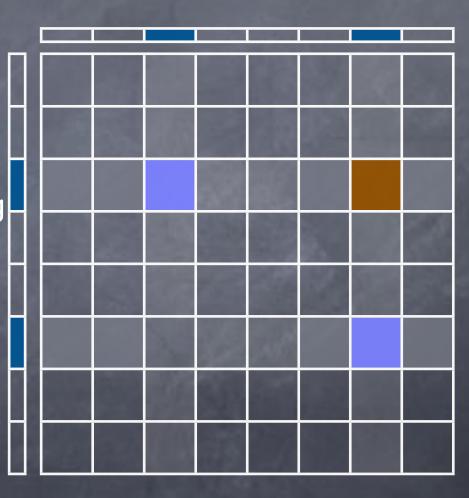
If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling



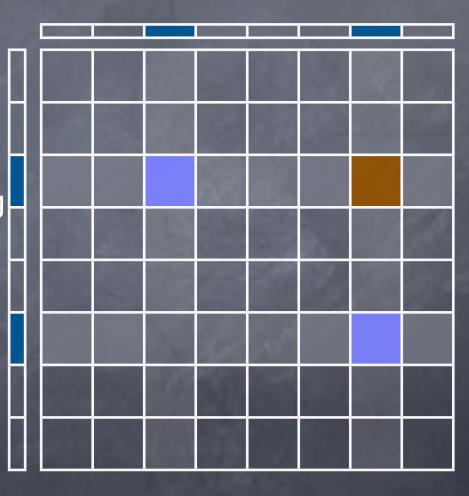
- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
 - ∞ $\chi(f)$ ≥ |S| for every fooling set S



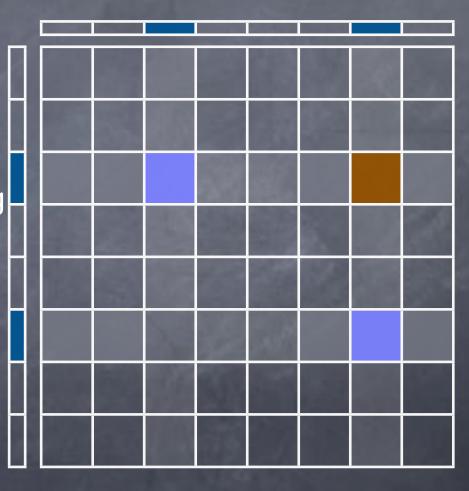
- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
- Rank lower-bound



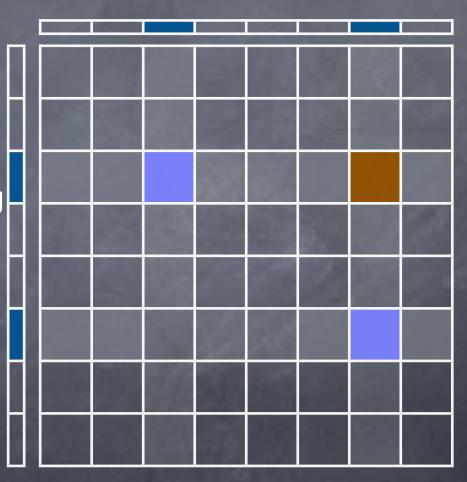
- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
 - ∞ χ(f) ≥ |S| for every fooling set S
- Rank lower-bound



- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
 - ∞ χ(f) ≥ |S| for every fooling set S
- Rank lower-bound
- Discrepancy lower-bound



- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
- Rank lower-bound
- Discrepancy lower-bound



Rank of a matrix

- Rank of a matrix
 - Maximum number of linearly independent rows (or equivalently, columns)

- Rank of a matrix
 - Maximum number of linearly independent rows (or equivalently, columns)
 - Linear independence: operations in a field

- Rank of a matrix
 - Maximum number of linearly independent rows (or equivalently, columns)
 - Linear independence: operations in a field
- Rank-r matrix: after row & column reductions D_(mxn) diagonal, with r 1's, rest 0's. M = UDV

Rank(M)

- Rank of a matrix
 - Maximum number of linearly independent rows (or equivalently, columns)
 - Linear independence: operations in a field
- Rank-r matrix: after row & column reductions D_(mxn) diagonal, with r 1's, rest 0's. M = UDV

Rank(M)

- Rank of a matrix
 - Maximum number of linearly independent rows (or equivalently, columns)
 - Linear independence: operations in a field
- Rank-r matrix: after row & column reductions D_(mxn) diagonal, with r 1's, rest 0's. M = UDV
- Rank(M) ≤ r, iff M can be written as sum of ≤ r rank 1 matrices
 - \bullet M = UDV = $\Sigma_{i \le r}$ D_{ii} U_{i(mx1)} V_{i(1xn)} = $\Sigma_{i \le r}$ B_i, where Rank(B_i)=1

If M = $\Sigma_{i ≤ r}$ B_i with Rank(B_i)=1, then Rank(M) ≤ r

- If M = Σ_{i≤r} B_i with Rank(B_i)=1, then Rank(M) ≤ r
- M_f = Σ_{i≤χ(f)} Tile_i, where Tile_i has a monochromatic rectangle and 0's elsewhere

- If M = Σ_{i≤r} B_i with Rank(B_i)=1, then Rank(M) ≤ r
- - Rank(Tile_i)=1

- If M = $\Sigma_{i ≤ r}$ B_i with Rank(B_i)=1, then Rank(M) ≤ r
- M_f = Σ_{i≤χ(f)} Tile_i, where Tile_i has a monochromatic rectangle and 0's elsewhere
 - Rank(Tile_i)=1
 - Rank(M_f) ≤ χ (f)

- If M = Σ_{i≤r} B_i with Rank(B_i)=1, then Rank(M) ≤ r
- M_f = Σ_{i≤χ(f)} Tile_i, where Tile_i has a monochromatic rectangle and 0's elsewhere
 - Rank(Tile_i)=1
 - Rank(M_f) ≤ χ (f)
- \circ $CC(f) \ge \log(\chi(f)) \ge \log(Rank(M_f))$

Discrepancy of a 0-1 matrix

- Discrepancy of a 0-1 matrix
 - max "imbalance" in any rectangle

- Discrepancy of a 0-1 matrix
 - max "imbalance" in any rectangle
 - Imbalance = | #1's #0's |

- Discrepancy of a 0-1 matrix
 - max "imbalance" in any rectangle
 - Imbalance = | #1's #0's |
 - \odot Disc(M) = 1/(mn) max_{rect} imbalance(rect)

- Discrepancy of a 0-1 matrix
 - max "imbalance" in any rectangle
 - Imbalance = | #1's #0's |
 - \odot Disc(M) = 1/(mn) max_{rect} imbalance(rect)

- Discrepancy of a 0-1 matrix
 - max "imbalance" in any rectangle
 - Imbalance = | #1's #0's |
 - \odot Disc(M) = 1/(mn) max_{rect} imbalance(rect)
- - Disc(M_f) ≥ 1/(mn) (size of largest monochromatic tile)

- Discrepancy of a 0-1 matrix
 - max "imbalance" in any rectangle
 - Imbalance = | #1's #0's |
 - \odot Disc(M) = 1/(mn) max_{rect} imbalance(rect)
- $\propto \chi(f) \geq 1/Disc(M_f)$
 - Disc(M_f) ≥ 1/(mn) (size of largest monochromatic tile)

CC(f) ≥ log(#transcripts)

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$
 - Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$
 - Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, 1/Disc

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$
 - **8** Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, 1/Disc

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$
 - **8** Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, 1/Disc

 - 1/Discrepancy lower-bounds can be very loose

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$
 - Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, 1/Disc

 - 1/Discrepancy lower-bounds can be very loose
 - \odot Conjecture: Rank(M_f) (and hence fooling set) is fairly tight

- CC(f) ≥ log(#transcripts)
 - Tiling Lower-bound: #transcripts ≥ $\chi(f)$
 - Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, 1/Disc

 - 1/Discrepancy lower-bounds can be very loose
 - \odot Conjecture: Rank(M_f) (and hence fooling set) is fairly tight
 - \circ i.e., $CC(f) = O(polylog(Rank(M_f)))$

Randomized protocols: significant savings in expectation

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess
- Multi-party: Input split across multiple parties. Broadcast channels for communication.

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess
- Multi-party: Input split across multiple parties. Broadcast channels for communication.
 - Number on the forehead version

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess
- Multi-party: Input split across multiple parties. Broadcast channels for communication.
 - Number on the forehead version
- Non-boolean output

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess
- Multi-party: Input split across multiple parties. Broadcast channels for communication.
 - Number on the forehead version
- Non-boolean output
- Multi-valued functions: agree on one value

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess
- Multi-party: Input split across multiple parties. Broadcast channels for communication.
 - Number on the forehead version
- Non-boolean output
- Multi-valued functions: agree on one value
- Different costs: asymmetric communication, average-case complexity