Complexity of Counting

Lecture 22

#P: Toda's Theorem

#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

- #P: counting problems of the form $\#R(x) = |\{w: R(x,w)=1\}|$, where R is a polynomial time relation
 - Can be hard: even #CYCLE is not in FP (unless P = NP)

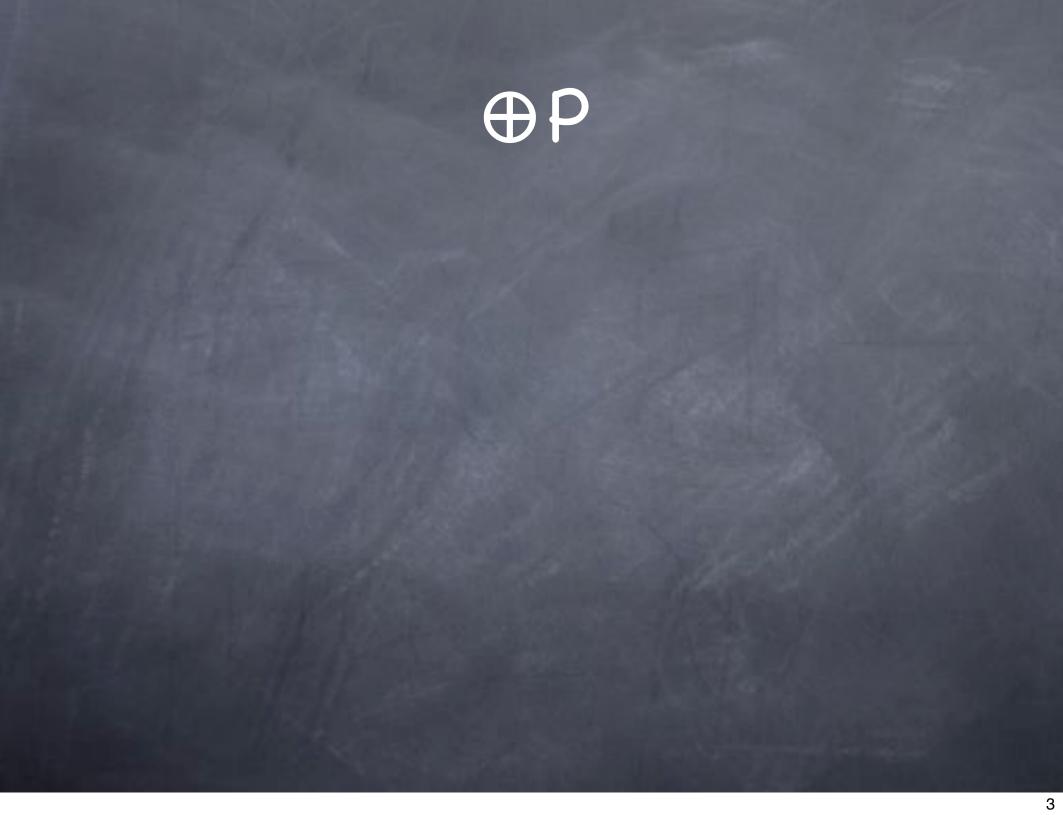
- #P: counting problems of the form #R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation
 - Can be hard: even #CYCLE is not in FP (unless P = NP)

- #P: counting problems of the form $\#R(x) = |\{w: R(x,w)=1\}|$, where R is a polynomial time relation
 - Can be hard: even #CYCLE is not in FP (unless P = NP)
- #P complete problems

- #P: counting problems of the form $\#R(x) = |\{w: R(x,w)=1\}|$, where R is a polynomial time relation
 - Can be hard: even #CYCLE is not in FP (unless P = NP)
- #P complete problems
 - #SAT

- #P: counting problems of the form $\#R(x) = |\{w: R(x,w)=1\}|$, where R is a polynomial time relation
 - Can be hard: even #CYCLE is not in FP (unless P = NP)
- #P complete problems
 - #SAT
 - Permanent

- #P: counting problems of the form $\#R(x) = |\{w: R(x,w)=1\}|$, where R is a polynomial time relation
 - Can be hard: even #CYCLE is not in FP (unless P = NP)
 - \bullet #P \subseteq FP^{PP} (and PP \subseteq P^{#P})
- #P complete problems
 - #SAT
 - Permanent
- Next: Toda's Theorem: PH ⊆ P^{#P} = P^{PP}



⊕P: parity of the number of witnesses

P

- ⊕P: parity of the number of witnesses
 - ø e.g. ⊕SAT. Least significant bit of #SAT.

- ⊕P: parity of the number of witnesses
 - ø e.g. ⊕SAT. Least significant bit of #SAT.
 - May not be as powerful as PP (or #P)

- P: parity of the number of witnesses
 - ø e.g. ⊕SAT. Least significant bit of #SAT.
 - May not be as powerful as PP (or #P)
 - ⊕P ⊆ P may not imply NP = P

- P: parity of the number of witnesses
 - ø e.g. ⊕SAT. Least significant bit of #SAT.
 - May not be as powerful as PP (or #P)
 - ⊕P ⊆ P may not imply NP = P
 - \odot But it does imply $\underline{NP} \subseteq \underline{RP}$ (even if only $\oplus P \subseteq \underline{RP}$)

- P: parity of the number of witnesses
 - ø e.g. ⊕SAT. Least significant bit of #SAT.
 - May not be as powerful as PP (or #P)
 - ⊕P ⊆ P may not imply NP = P
 - \odot But it does imply $NP \subseteq RP$ (even if only $\oplus P \subseteq RP$)
- Randomized reduction of NP to ⊕P

- ⊕ P: parity of the number of witnesses
 - ø e.g. ⊕SAT. Least significant bit of #SAT.
 - May not be as powerful as PP (or #P)
 - ⊕P ⊆ P may not imply NP = P
 - \odot But it does imply $\underline{NP} \subseteq \underline{RP}$ (even if only $\oplus P \subseteq \underline{RP}$)
- Randomized reduction of NP to ⊕P
 - ø i.e., ⊕P oracle is quite useful to randomized algorithms

Randomized reduction of NP to ⊕P

- Randomized reduction of NP to ⊕P
 - A probabilistic polynomial time algorithm A such that

- Randomized reduction of NP to ⊕P
 - A probabilistic polynomial time algorithm A such that
 - $\phi \ \phi \not\in SAT \Rightarrow Pr[A(\phi) \in \oplus SAT] = 0$

- Randomized reduction of NP to ⊕P
 - A probabilistic polynomial time algorithm A such that

- Randomized reduction of NP to ⊕P
 - A probabilistic polynomial time algorithm A such that
 - - \bullet In fact A(ϕ) will have no satisfying assignment
 - $\phi \ \phi \in SAT \Rightarrow Pr[A(\phi) \in \oplus SAT] \ge \epsilon(n)$

- Randomized reduction of NP to ⊕P
 - A probabilistic polynomial time algorithm A such that
 - - \bullet In fact A(ϕ) will have no satisfying assignment
 - $\phi \ \phi \in SAT \Rightarrow Pr[A(\phi) \in \oplus SAT] \geq \epsilon(n)$
 - With prob. ≥ ε(n), A(φ) will have exactly one satisfying assignment

- Randomized reduction of NP to ⊕P
 - A probabilistic polynomial time algorithm A such that
 - - \bullet In fact A(ϕ) will have no satisfying assignment
 - $\phi \ \phi \in SAT \Rightarrow Pr[A(\phi) \in \oplus SAT] \geq \epsilon(n)$
 - With prob. ≥ ε(n), A(φ) will have exactly one satisfying assignment
- If an RP algorithm for ⊕SAT, then an RP algorithm for SAT

Randomized reduction of SAT to Unique-SAT: A probabilistic polynomial time algorithm A such that

- Randomized reduction of SAT to Unique-SAT: A probabilistic polynomial time algorithm A such that
 - If φ ∈ SAT, with prob. ≥ ε(n), $A_φ$ will have exactly one satisfying assignment. Else $A_φ$ will have none.

- Randomized reduction of SAT to Unique-SAT: A probabilistic polynomial time algorithm A such that
 - If $\phi \in SAT$, with prob. $\geq \epsilon(n)$, A_{ϕ} will have exactly one satisfying assignment. Else A_{ϕ} will have none.
 - Add a filter which will pass exactly one witness (if any): $A_{\phi}(w) = \phi(w)$ and filter(w)

Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - ② Let $N := | \{x \in S | h(x) = 0\} | . Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - Let N := | {x∈S|h(x)=0} |. $Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$
- By inclusion-exclusion: $Pr_h[N≥1] ≥ Σ_x Pr_h[h(x)=0] -Σ_{x>y} Pr_h[h(x)=h(y)=0]$

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - Let N := | {x∈S|h(x)=0} |. $Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$
- By inclusion-exclusion: $Pr_h[N≥1] ≥ Σ_x Pr_h[h(x)=0] -Σ_{x>y} Pr_h[h(x)=h(y)=0]$

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - Let N := | {x∈S|h(x)=0} |. $Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$
- By inclusion-exclusion: $Pr_h[N≥1] ≥ Σ_x Pr_h[h(x)=0] -Σ_{x>y} Pr_h[h(x)=h(y)=0]$

(ISI choose 2)p

Hashing for unique preimage

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - Let N := | {x∈S|h(x)=0} |. $Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$
- By inclusion-exclusion: $Pr_h[N≥1] ≥ Σ_x Pr_h[h(x)=0] -Σ_{x>y} Pr_h[h(x)=h(y)=0]$
- By Union-bound: $Pr_h[N \ge 2] \le \Sigma_{x>y} Pr_h[h(x)=h(y)=0]$ (|S| choose 2)p

Hashing for unique preimage

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - Let N := | {x∈S|h(x)=0} |. $Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$
- By inclusion-exclusion: $Pr_h[N≥1] ≥ Σ_x Pr_h[h(x)=0] -Σ_{x>y} Pr_h[h(x)=h(y)=0]$

Hashing for unique preimage

- Let S⊆X be a set of size m. Consider a pair-wise independent hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].
 - Pr_h[h(x)=0] = 1/|R| =: p, and Pr_h[h(x)=h(y)=0] = p². |S|p ∈ [1/4,1/2].
 - Let N := | {x∈S|h(x)=0} |. $Pr_h[N=1] = Pr_h[N≥1] Pr_h[N≥2]$
- By inclusion-exclusion: $Pr_h[N≥1] ≥ Σ_x Pr_h[h(x)=0] -Σ_{x>y} Pr_h[h(x)=h(y)=0]$
- - Prh[N=1] ≥ |S| p 2 (|S| choose 2) p^2 ≥ |S|p (|S|p)² ≥ 3/16

$\oplus P \subseteq RP \Rightarrow NP=RP$

- Randomized reduction of SAT to Unique-SAT: A probabilistic polynomial time algorithm A such that
 - If $\phi \in SAT$, with prob. $\geq \epsilon(n)$, A_{ϕ} will have exactly one satisfying assignment. Else A_{ϕ} will have none.
 - Add a filter which will pass exactly one witness (if any): $A_{\phi}(w) = \phi(w)$ and filter(w)

$\oplus P \subseteq RP \Rightarrow NP=RP$

- Randomized reduction of SAT to Unique-SAT: A probabilistic polynomial time algorithm A such that
 - If $\phi \in SAT$, with prob. $\geq \epsilon(n)$, A_{ϕ} will have exactly one satisfying assignment. Else A_{ϕ} will have none.
 - Add a filter which will pass exactly one witness (if any): $A_{\phi}(w) = \phi(w)$ and filter(w)
 - ø filter(w): a Boolean formula saying h(w)=0. (If using auxiliary variables, i.e., ∃z filter(w,z), use a parsimonious reduction.)

$\oplus P \subseteq RP \Rightarrow NP=RP$

- Randomized reduction of SAT to Unique-SAT: A probabilistic polynomial time algorithm A such that
 - If $\phi \in SAT$, with prob. $\geq \epsilon(n)$, A_{ϕ} will have exactly one satisfying assignment. Else A_{ϕ} will have none.
 - Add a filter which will pass exactly one witness (if any): $A_{\phi}(w) = \phi(w)$ and filter(w)
 - filter(w): a Boolean formula saying h(w)=0. (If using auxiliary variables, i.e., ∃z filter(w,z), use a parsimonious reduction.)
 - If witness n-bit long (|X|={0,1}ⁿ), pick R={0,1}^k, with k random in the range [1,n]

Two steps

- Two steps
 - Randomized reduction of PH to P®P

- Two steps
 - Randomized reduction of PH to P®P
 - Converting the probabilistic guarantee to a deterministic #P statement

∃ For at least one

E

For at least one

 \forall

For all

E

For at least one

 \forall

For all

 \exists_r For at least r fraction

3

For at least one

A

For all

 \exists_r For at least r fraction

3!

For exactly one

3

For at least one

 \forall

For all

 \exists_r For at least r fraction

3!

For exactly one

 \oplus

For an odd number of

 \circ We have a randomized reduction: ϕ to A_{ϕ} such that

- - ∃_w $\varphi(w) ⇒ ⊕_w A_{\varphi}(w)$ with prob. ≥ ε(n)

QBF to \BF

- \bullet We have a randomized reduction: ϕ to A_{ϕ} such that

QBF to BF

- \bullet We have a randomized reduction: ϕ to A_{ϕ} such that
 - ∃_w $\varphi(w)$ ⇒ ⊕_w A_{\phi}(w) with prob. ≥ ε(n)
 - \bullet \forall_w not $\phi(w) \Rightarrow$ not $\oplus_w A_{\phi}(w)$ (with prob. = 1)
 - i.e., with prob ≥ ε(n), we have $∃_w φ(w) ⇔ ⊕_w A_φ(w)$ (and hence also $∀_w$ not φ(w) ⇔ not $⊕_w A_φ(w)$)

QBF to \BF

- \bullet We have a randomized reduction: ϕ to A_{ϕ} such that

 - i.e., with prob ≥ ε(n), we have $∃_w φ(w) ⇔ ⊕_w A_φ(w)$ (and hence also $∀_w$ not φ(w) ⇔ not $⊕_w A_φ(w)$)
- Reduction works even if φ(w) is a partially quantified Boolean formula

- \bullet We have a randomized reduction: ϕ to A_{ϕ} such that

 - \bullet \forall_{w} not $\phi(w) \Rightarrow$ not $\oplus_{w} A_{\phi}(w)$ (with prob. = 1)
 - i.e., with prob ≥ ε(n), we have $∃_w φ(w) ⇔ ⊕_w A_φ(w)$ (and hence also $∀_w$ not φ(w) ⇔ not $⊕_w A_φ(w)$)
- Reduction works even if φ(w) is a partially quantified Boolean formula
 - © Can all ∃/∀ be removed, by repeating, so that only ⊕ remain?

 \odot Given two boolean formulas $\phi(x)$ and $\psi(y)$, define

- \odot Given two boolean formulas $\varphi(x)$ and $\psi(y)$, define

- \odot Given two boolean formulas $\varphi(x)$ and $\psi(y)$, define
 - - Φ #F_{φ,ψ} = # φ . # ψ

- \odot Given two boolean formulas $\varphi(x)$ and $\psi(y)$, define
 - - Φ #F_{φ,ψ} = # φ . # ψ
 - $F_{\phi+\psi}(x,y,z)$: (z=0,y=0 and $\phi(x)$) or (z=1,x=0 and $\psi(y)$)

- \odot Given two boolean formulas $\varphi(x)$ and $\psi(y)$, define
 - - Φ #F_{φ,ψ} = # φ . # ψ
 - ® $F_{\phi+\psi}(x,y,z)$: (z=0,y=0 and $\phi(x)$) or (z=1,x=0 and $\psi(y)$)
 - Φ #F_{φ+ψ} = #φ + #ψ

- \odot Given two boolean formulas $\varphi(x)$ and $\psi(y)$, define
 - - Φ #F_{φ,ψ} = # φ . # ψ
 - $F_{\phi+\psi}(x,y,z)$: (z=0,y=0 and $\phi(x)$) or (z=1,x=0 and $\psi(y)$)
 - Φ #F_{φ+ψ} = #φ + #ψ

- \odot Given two boolean formulas $\varphi(x)$ and $\psi(y)$, define
 - - Φ #F_{φ,ψ} = # φ . # ψ
 - ® $F_{\phi+\psi}(x,y,z)$: (z=0,y=0 and $\phi(x)$) or (z=1,x=0 and $\psi(y)$)
 - Φ #F_{φ+ψ} = #φ + #ψ
 - Works even if ϕ , ψ are partially quantified boolean formulas

Boolean combinations of QBFs with

quantifiers

- Boolean combinations of QBFs with

 quantifiers
 - a $\textcircled{\oplus}_{x}$ $\phi(x)$ and $\textcircled{\oplus}_{y}$ $\psi(y)$ \Leftrightarrow $\textcircled{\oplus}_{x,y}$ $F_{\phi,\psi}(x,y)$, i.e. $\textcircled{\oplus}_{x,y}$ $\phi(x)$ and $\psi(y)$

- Boolean combinations of QBFs with ⊕ quantifiers
 - $\otimes \oplus_x \phi(x)$ and $\oplus_y \psi(y) \Leftrightarrow \oplus_{x,y} F_{\phi,\psi}(x,y)$, i.e. $\bigoplus_{x,y} \phi(x)$ and $\psi(y)$
 - \bullet not $\oplus_x \phi(x) \Leftrightarrow \oplus_{x,z} F_{\phi+1}(x,z)$. i.e. $\oplus_{x,z} (z=1,x=0)$ or $(z=0,\phi(x))$

- Boolean combinations of QBFs with ⊕ quantifiers
 - $\bullet \oplus_{x} \phi(x)$ and $\oplus_{y} \psi(y) \Leftrightarrow \oplus_{x,y} F_{\phi,\psi}(x,y)$, i.e. $\oplus_{x,y} \phi(x)$ and $\psi(y)$
 - \bullet not $\oplus_x \phi(x) \Leftrightarrow \oplus_{x,z} F_{\phi+1}(x,z)$. i.e. $\oplus_{x,z} (z=1,x=0)$ or $(z=0,\phi(x))$

Some + arithmetic

- Boolean combinations of QBFs with

 quantifiers
- $\textcircled{\oplus}$ (⊕,∃,∀)-QBF can be converted to the form $\textcircled{\oplus}_z F(z)$, where F is a (∃,∀)-QBF, increasing the size by at most a constant factor, and not changing number of \exists ,∀

QBF to \oplus BF

QBF to \oplus BF

Recall: with prob ≥ ε(n), we have $\exists_w \varphi(w) \Leftrightarrow \bigoplus_w A_{\varphi}(w)$ (and $\forall_w \text{ not } \varphi(w) \Leftrightarrow \text{not } \bigoplus_w A_{\varphi}(w)$)

QBF to #BF

- Recall: with prob $\geq \epsilon(n)$, we have $\exists_w \phi(w) \Leftrightarrow \oplus_w A_{\phi}(w)$ (and $\forall_w \text{ not } \phi(w) \Leftrightarrow \text{not } \oplus_w A_{\phi}(w)$)
- \circ Boosting the probability: $\epsilon(n)$ to 1- $\delta(n)$

QBF to BF

- Recall: with prob $\geq \epsilon(n)$, we have $\exists_w \varphi(w) \Leftrightarrow \bigoplus_w A_{\varphi}(w)$ (and $\forall_w \text{ not } \varphi(w) \Leftrightarrow \text{not } \bigoplus_w A_{\varphi}(w)$)
- \odot Boosting the probability: $\epsilon(n)$ to 1- $\delta(n)$
 - $\oplus_{\mathsf{W}} \mathsf{A}^{\mathsf{I}}_{\varphi}(\mathsf{W}) \text{ or } \oplus_{\mathsf{W}} \mathsf{A}^{\mathsf{2}}_{\varphi}(\mathsf{W}) \text{ or } \dots \text{ or } \oplus_{\mathsf{W}} \mathsf{A}^{\mathsf{t}}_{\varphi}(\mathsf{W})$

QBF to \BF

- Recall: with prob $\geq \epsilon(n)$, we have $\exists_w \phi(w) \Leftrightarrow \oplus_w A_{\phi}(w)$ (and $\forall_w \text{ not } \phi(w) \Leftrightarrow \text{not } \oplus_w A_{\phi}(w)$)
- \odot Boosting the probability: $\epsilon(n)$ to 1- $\delta(n)$
 - - © Can rewrite in the form $\bigoplus_z B_{\varphi}(z)$ where B_{φ} has no \bigoplus

QBF to \BF

- Recall: with prob $\geq \epsilon(n)$, we have $\exists_w \phi(w) \Leftrightarrow \bigoplus_w A_{\phi}(w)$ (and $\forall_w \text{ not } \phi(w) \Leftrightarrow \text{not } \bigoplus_w A_{\phi}(w)$)
- Boosting the probability: ε(n) to 1-δ(n)
 - $\oplus_{\mathsf{w}} \mathsf{A}^{1}_{\varphi}(\mathsf{w}) \text{ or } \oplus_{\mathsf{w}} \mathsf{A}^{2}_{\varphi}(\mathsf{w}) \text{ or } ... \text{ or } \oplus_{\mathsf{w}} \mathsf{A}^{\dagger}_{\varphi}(\mathsf{w})$
 - Can rewrite in the form $⊕_z$ B_φ(z) where B_φ has no ⊕
 - In prenex form $⊕_z$ B_{\phi}(z) has one less ∃/∀ than $∃_w$ \phi(w)

QBF to \oplus BF

- Recall: with prob $\geq \epsilon(n)$, we have $\exists_w \phi(w) \Leftrightarrow \overline{\oplus_w A_{\phi}(w)}$ (and $\forall_w \text{ not } \phi(w) \Leftrightarrow \text{not } \oplus_w A_{\phi}(w)$)
- Boosting the probability: ε(n) to 1-δ(n)
 - $\oplus_{\mathsf{w}} \mathsf{A}^{1}_{\varphi}(\mathsf{w}) \text{ or } \oplus_{\mathsf{w}} \mathsf{A}^{2}_{\varphi}(\mathsf{w}) \text{ or } \dots \text{ or } \oplus_{\mathsf{w}} \mathsf{A}^{\dagger}_{\varphi}(\mathsf{w})$
 - Can rewrite in the form $⊕_z$ B_φ(z) where B_φ has no ⊕
 - In prenex form $⊕_z$ B_{\phi}(z) has one less ∃/∀ than $∃_w$ \phi(w)
- If we start from $\bigoplus_{x \ni_w} \varphi(w,x)$ we get equivalent (with probability $1-\delta(n)$) $\bigoplus_{x \bigoplus_z} B_{\varphi}(z,x)$

QBF to \oplus BF

- Recall: with prob $\geq \epsilon(n)$, we have $\exists_w \phi(w) \Leftrightarrow \overline{\oplus_w A_{\phi}(w)}$ (and $\forall_w \text{ not } \phi(w) \Leftrightarrow \text{not } \oplus_w A_{\phi}(w)$)
- \odot Boosting the probability: $\epsilon(n)$ to 1- $\delta(n)$
 - $\oplus_{\mathsf{w}} \mathsf{A}^{1}_{\varphi}(\mathsf{w}) \text{ or } \oplus_{\mathsf{w}} \mathsf{A}^{2}_{\varphi}(\mathsf{w}) \text{ or ... or } \oplus_{\mathsf{w}} \mathsf{A}^{\dagger}_{\varphi}(\mathsf{w})$
 - Can rewrite in the form $⊕_z$ B_φ(z) where B_φ has no ⊕
 - In prenex form $⊕_z B_φ(z)$ has one less ∃/∀ than $∃_w φ(w)$
- If we start from $\bigoplus_{x \ni_w} \varphi(w,x)$ we get equivalent (with probability $1-\delta(n)$) $\bigoplus_{x \bigoplus_z} B_{\varphi}(z,x)$
 - By repeating, QBF can be converted to the form $\bigoplus_z F(z)$ where F is unquantified, equivalent with prob. close to 1

Two steps

- Two steps
 - Randomized reduction of PH to P⊕P

- Two steps
 - Randomized reduction of PH to P^{⊕P}
 - TQBF instance ψ to \oplus SAT instance ϕ_{ψ}

- Two steps
 - Randomized reduction of PH to P⊕P
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - $\bullet \ \psi \Rightarrow \oplus \phi_{\psi} \text{ w.p. } > 2/3; \ \neg \psi \Rightarrow \neg \oplus \phi_{\psi} \text{ (w.p. 1)}$

- Two steps
 - Randomized reduction of PH to P^{⊕P}
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - $\bullet \ \psi \Rightarrow \oplus \phi_{\psi} \text{ w.p. } > 2/3; \ \neg \psi \Rightarrow \neg \oplus \phi_{\psi} \text{ (w.p. 1)}$
 - Converting the probabilistic guarantee to a deterministic #P calculation

- Two steps
 - Randomized reduction of PH to P⊕P
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - $\bullet \ \psi \Rightarrow \oplus \phi_{\psi} \text{ w.p. } > 2/3; \ \neg \psi \Rightarrow \neg \oplus \phi_{\psi} \text{ (w.p. 1)}$
 - Converting the probabilistic guarantee to a deterministic #P calculation
 - \bullet ψ s.t. $\neg \oplus \phi_{\psi} \Rightarrow \#\theta_{\psi} = 0 \pmod{N}$

- Two steps
 - Randomized reduction of PH to P⊕P
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - Converting the probabilistic guarantee to a deterministic #P calculation
 - Φ ψ s.t. ¬⊕ $φ_ψ$ ⇒ # $θ_ψ$ = 0 (mod N)
 - Φ ψ s.t. $⊕φ_{Ψ}$ w.p. > 2/3 ⇒ # $θ_{Ψ}$ ≠ 0 (mod N)

Converting the probabilistic guarantee to a deterministic #P calculation

- Converting the probabilistic guarantee to a deterministic #P calculation
 - \bullet ψ s.t. $\neg \oplus \phi_{\psi} \Rightarrow \#\theta_{\psi} = 0 \pmod{N}$

- Converting the probabilistic guarantee to a deterministic #P calculation

 - Φ ψ s.t. $⊕φ_{Ψ}$ w.p. > 2/3 ⇒ # $θ_{Ψ}$ ≠ 0 (mod N)

- Converting the probabilistic guarantee to a deterministic #P calculation

 - Φ Ψ s.t. ΦΦΨ w.p. > 2/3 \Rightarrow #θΨ \neq 0 (mod N)
- Attempt 1: let φ_ψ^r be the formula generated using random tape r. To determine if ψ is such that number of random tapes r for which $\oplus φ_ψ$ ^r holds is 0 or > (2/3)2^m

- Converting the probabilistic guarantee to a deterministic #P calculation

 - Φ Ψ s.t. ΦΦΨ w.p. > 2/3 \Rightarrow #θΨ \neq 0 (mod N)
- ^② Attempt 1: let $φ_{\psi}^{r}$ be the formula generated using random tape r. To determine if ψ is such that number of random tapes r for which $Φφ_{\psi}^{r}$ holds is 0 or > (2/3)2^m
 - \bullet Enough to compute $\#_r \oplus \phi_{\psi}^r$

- Converting the probabilistic guarantee to a deterministic #P calculation

 - Φ ψ s.t. $⊕φ_ψ$ w.p. > 2/3 ⇒ # $θ_ψ ≠ 0 (mod N)$
- Attempt 1: let φ_ψ^r be the formula generated using random tape r. To determine if ψ is such that number of random tapes r for which $\oplus φ_ψ$ ^r holds is 0 or > (2/3)2^m
 - \bullet Enough to compute $\#_r \oplus \phi_{\psi}^r$
 - But ⊕ $φ_ψ^r$ may not be in P (though $φ_ψ^r(x)$ is in P)

Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ^r(x)$

- Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ$ ^r(x)
 - But ⊕φ is #φ mod 2

- Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ^r(x)$
 - But ⊕φ is #φ mod 2
- \bullet Plan: Create $\phi' = T(\phi)$, such that

- Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ$ ^r(x)
 - But ⊕φ is #φ mod 2
- \bullet Plan: Create $\phi' = T(\phi)$, such that
 - For each r, ¬⊕_xφ ⇒ #_xφ' = 0 mod N

- Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ^r(x)$
 - But ⊕φ is #φ mod 2
- \bullet Plan: Create $\phi' = T(\phi)$, such that
 - For each r, ¬⊕_xφ ⇒ #_xφ' = 0 mod N
 - For each r, ⊕_xφ ⇒ #_xφ' = -1 mod N

- Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ$ ^r(x)
 - But ⊕φ is #φ mod 2
- \bullet Plan: Create $\phi' = T(\phi)$, such that
 - For each r, ¬⊕_xφ ⇒ $\#_x$ φ' = 0 mod N
 - For each r, ⊕_xφ ⇒ #_xφ' = -1 mod N
 - N > 2^m so that for $(2/3).2^m$ < R ≤ 2^m we have R.(-1) ≠ 0 mod N

- Attempt 2: If ⊕_xφ_ψ^r = #_xφ_ψ^r then enough to compute the number of (x,r) such that $φ_ψ$ ^r(x)
 - But ⊕φ is #φ mod 2
- \bullet Plan: Create $\phi' = T(\phi)$, such that
 - For each r, ¬⊕_xφ ⇒ $\#_x$ φ' = 0 mod N
 - For each r, ⊕_xφ ⇒ #_xφ' = -1 mod N
 - N > 2^m so that for $(2/3).2^m$ < R ≤ 2^m we have R.(-1) ≠ 0 mod N
 - **②** Let $\theta_{\psi}(x,r) = T(\phi_{\psi}^{r})(x)$. Use # θ_{ψ} mod N to check if w.h.p. ⊕φ

Remains to do: Given φ , create φ' such that for N=2^{2^k}, where k = O(log m)

- Remains to do: Given φ , create φ' such that for N=2^{2^k}, where k = O(log m)

- Remains to do: Given φ, create φ' such that for N=2^{2^k}, where k = O(log m)

Remains to do: Given φ, create φ' such that for N=2^{2^k}, where k = O(log m)

• Initially true for $N = 2(2^{2^i}, i=0)$

- @ Remains to do: Given φ , create φ' such that for N=2^{2^k}, where k = O(log m)
- Initially true for $N = 2(2^{2^i}, i=0)$

- Remains to do: Given φ, create φ' such that for N=2^{2^k}, where k = O(log m)
- Initially true for $N = 2(2^{2^i}, i=0)$
 - - #φ_i = -1 mod $2^{2^{i}}$ implies ϕ_{i+1} = -1 mod $2^{2^{i+1}}$ (for i≥0)

- Remains to do: Given φ, create φ' such that for N=2^{2^k}, where k = O(log m)
- Initially true for $N = 2(2^{2^i}, i=0)$
 - - $φ = -1 \mod 2^{2^i} \text{ implies } φ_{i+1} = -1 \mod 2^{2^i+1} \text{ (for } i≥0\text{)}$
 - © Clearly $\#\phi_i = 0 \mod 2^{2^i}$ implies $\phi_{i+1} = 0 \mod 2^{2^i+1}$

PH ⊆ P^{#P}

PH ⊆ P^{#P}

Summary:

- Summary:
 - First, randomized reduction of PH to P⊕P

- Summary:
 - First, randomized reduction of PH to P⊕P
 - $\ensuremath{\mathfrak{G}}$ TQBF instance ψ to $\oplus SAT$ instance ϕ_{ψ}

- Summary:
 - First, randomized reduction of PH to P⊕P
 - $\ensuremath{\mathfrak{O}}$ TQBF instance ψ to $\oplus SAT$ instance ϕ_ψ
 - $\bullet \ \psi \Rightarrow \oplus \phi_{\psi} \text{ w.p. } > 2/3; \ \neg \psi \Rightarrow \neg \oplus \phi_{\psi} \text{ (w.p. 1)}$

- Summary:
 - First, randomized reduction of PH to P⊕P
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - Converting the probabilistic guarantee to a deterministic #P calculation

- Summary:
 - First, randomized reduction of PH to P⊕P
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - Converting the probabilistic guarantee to a deterministic #P calculation

PH ⊆ P^{#P}

- Summary:
 - First, randomized reduction of PH to P⊕P
 - \odot TQBF instance ψ to \oplus SAT instance ϕ_{ψ}
 - Converting the probabilistic guarantee to a deterministic #P calculation
 - Φ ψ s.t. ¬⊕ $φ_ψ$ ⇒ # $θ_ψ$ = 0 (mod N)
 - Φ ψ s.t. $⊕φ_{Ψ}$ w.p. > 2/3 ⇒ # $θ_{Ψ}$ ≠ 0 (mod N)

 α α approximation of f: estimate f(x) within a factor α

- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ

- \circ α -approximation of f: estimate f(x) within a factor α
- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ
- #CYCLE is hard to even approximate unless P=NP

- \circ α -approximation of f: estimate f(x) within a factor α
- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ
- #CYCLE is hard to even approximate unless P=NP
 - If P=NP, every problem in #P can be "well approximated"

- \circ α -approximation of f: estimate f(x) within a factor α
- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ
- #CYCLE is hard to even approximate unless P=NP
 - If P=NP, every problem in #P can be "well approximated"
- Permanent has an FPRAS

- \circ α -approximation of f: estimate f(x) within a factor α
- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ
- #CYCLE is hard to even approximate unless P=NP
 - If P=NP, every problem in #P can be "well approximated"
- Permanent has an FPRAS
 - For any ε, δ > 0, α -approximation for α = 1-ε in time poly(n, log 1/ε, log 1/δ)

- \circ α -approximation of f: estimate f(x) within a factor α
- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ
- #CYCLE is hard to even approximate unless P=NP
 - If P=NP, every problem in #P can be "well approximated"
- Permanent has an FPRAS
 - For any ε, δ > 0, α -approximation for α = 1-ε in time poly(n, log 1/ε, log 1/δ)
 - Technique: Monte Carlo Markov Chain (MCMC)

- \circ α -approximation of f: estimate f(x) within a factor α
- @ Randomized approximation ("PAC"): answer is within a factor α with probability at least 1- δ
- #CYCLE is hard to even approximate unless P=NP
 - If P=NP, every problem in #P can be "well approximated"
- Permanent has an FPRAS
 - For any ε, δ > 0, α -approximation for α = 1-ε in time poly(n, log 1/ε, log 1/δ)
 - Technique: Monte Carlo Markov Chain (MCMC)
 - Very useful for sampling. Turns out counting ≈ sampling!