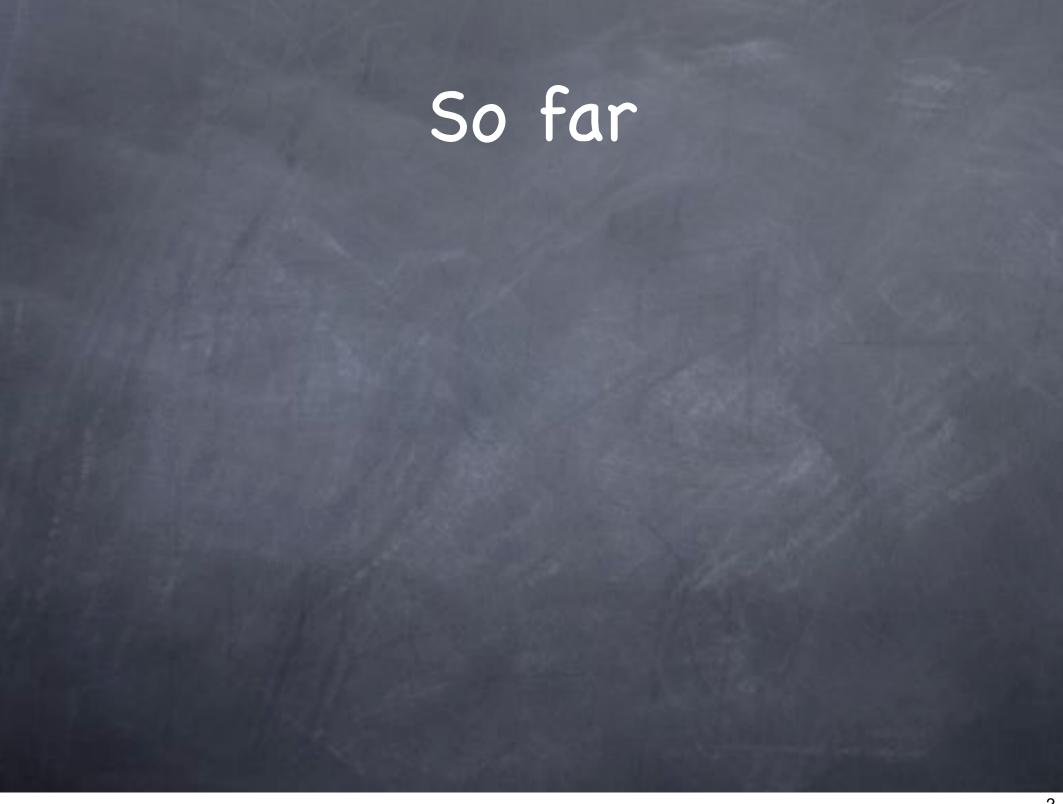
Interactive Proofs

Lecture 19 And Beyond



© IP = PSPACE = AM[poly]

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization
- In fact IP[k] ⊆ AM[k+2] for all k(n)

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization
- In fact IP[k] ⊆ AM[k+2] for all k(n)
 - Using a public-coin set lower-bound proof

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization
- In fact IP[k] ⊆ AM[k+2] for all k(n)
 - Using a public-coin set lower-bound proof

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization
- In fact IP[k] ⊆ AM[k+2] for all k(n)
 - Using a public-coin set lower-bound proof
- - Using MA ⊆ AM and alternate characterization in terms of pairs of complementary ATTMs

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization
- In fact IP[k] ⊆ AM[k+2] for all k(n)
 - Using a public-coin set lower-bound proof
- - Using MA ⊆ AM and alternate characterization in terms of pairs of complementary ATTMs
- Perfect completeness: One-sided-error-AM = AM

- IP = PSPACE = AM[poly]
 - PSPACE enough to calculate max Pr[yes]
 - AM[poly] protocol for TQBF using arithmetization
- In fact IP[k] ⊆ AM[k+2] for all k(n)
 - Using a public-coin set lower-bound proof
- - Using MA ⊆ AM and alternate characterization in terms of pairs of complementary ATTMs
- Perfect completeness: One-sided-error-AM = AM
 - Similar to BPP ⊆ Σ_2 ^P (yields MAM protocol; MAM=AM)

Consider any L with an AM protocol

- Consider any L with an AM protocol
- By perfect completeness:

$$AM \subseteq \Pi_2^P$$

- Consider any L with an AM protocol
- By perfect completeness:
 - ⊗ X∈L ⇒ ∀ YArthur ∃ ZMerlin $R(x, y_{Arthur}, z_{Merlin}) = 1$

- Consider any L with an AM protocol
- By perfect completeness:
- And by (any positive) soundness:

- Consider any L with an AM protocol
- By perfect completeness:

And by (any positive) soundness:

- Consider any L with an AM protocol
- By perfect completeness:
- And by (any positive) soundness:
 - X ≠ L ⇒ ∃ YArthur ∀ ZMerlin R(x, YArthur, ZMerlin) = 0
- ø i.e., x∈L \Leftrightarrow ∀y ∃z R(x,y,z) = 1

- Consider any L with an AM protocol
- By perfect completeness:
- And by (any positive) soundness:
 - ⊗ X∉L ⇒ ∃ YArthur ∀ ZMerlin R(x, YArthur, ZMerlin) = 0
- \odot Similarly, MA $\subseteq \Sigma_2^p$

If coNP \subseteq AM, then PH collapses to level 2

- If coNP ⊆ AM, then PH collapses to level 2
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P

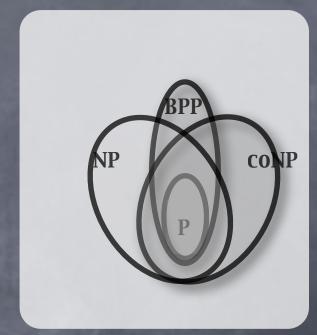
- If coNP ⊆ AM, then PH collapses to level 2
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P
 - \bullet L $\in \Sigma_2^P$: { x| $\exists y (x,y) \in L'$ } where $L' \in conP$

- If coNP \subseteq AM, then PH collapses to level 2
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P
 - \bullet L $\in \Sigma_2^P$: { x| $\exists y (x,y) \in L'$ } where $L' \in conP$
 - MAM protocol for L: Merlin sends y, and then they run an AM protocol for $(x,y) \in L'$

- If coNP \subseteq AM, then PH collapses to level 2
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P
 - \bullet L $\in \Sigma_2^P$: { x| $\exists y (x,y) \in L'$ } where $L' \in conP$
 - MAM protocol for L: Merlin sends y, and then they run an
 AM protocol for (x,y) ∈ L'
 - But MAM = AM

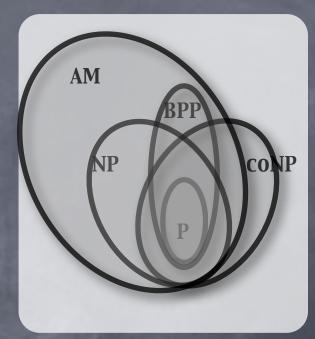
- \odot If coNP \subseteq AM, then PH collapses to level 2
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P
 - \bullet L $\in \Sigma_2^P$: { x| $\exists y (x,y) \in L'$ } where $L' \in conP$
 - lacktriangle MAM protocol for L: Merlin sends y, and then they run an AM protocol for $(x,y) \in L'$
 - But MAM = AM
- ② Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)

- If coNP ⊆ AM, then PH collapses to level 2.
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P
 - \bullet L $\in \Sigma_2^P$: { x| $\exists y (x,y) \in L'$ } where $L' \in conP$



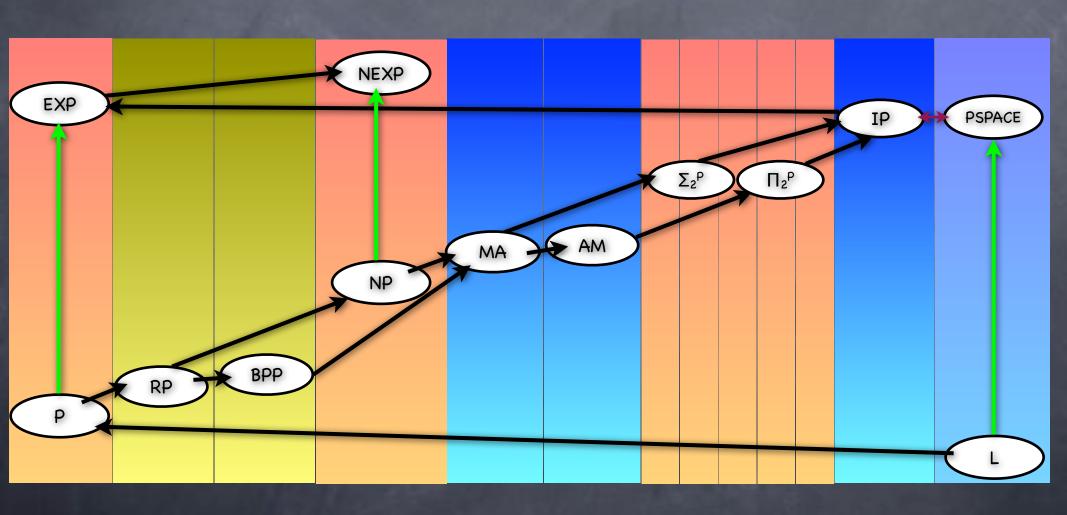
- MAM protocol for L: Merlin sends y, and then they run an AM protocol for $(x,y) \in L'$
 - But MAM = AM
- lacktriangle Corollary: If GI is NP-complete, PH collapses (recall GNI \in AM)

- If coNP ⊆ AM, then PH collapses to level 2
 - \odot Will show coNP \subseteq AM \Rightarrow $\Sigma_2^P \subseteq$ AM \subseteq Π_2^P
 - \bullet L $\in \Sigma_2^P$: { x| $\exists y (x,y) \in L'$ } where $L' \in conP$



- MAM protocol for L: Merlin sends y, and then they run an AM protocol for $(x,y) \in L'$
 - But MAM = AM
- ② Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)

Zoo



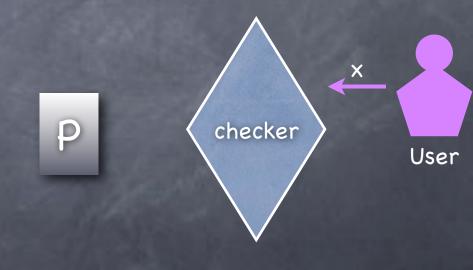
Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently

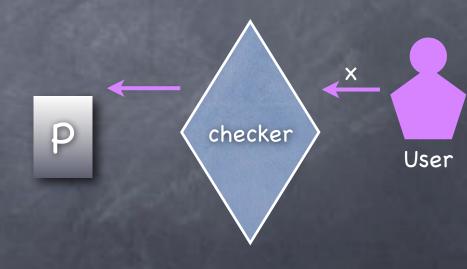
- Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently
 - How do we trust this?

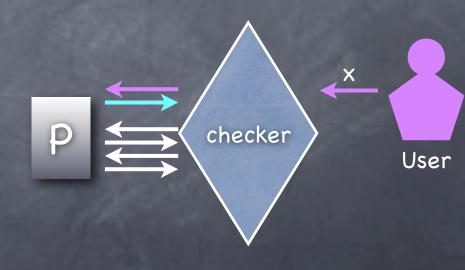
- Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently
 - How do we trust this?
- Vendor: Trust me, this always works

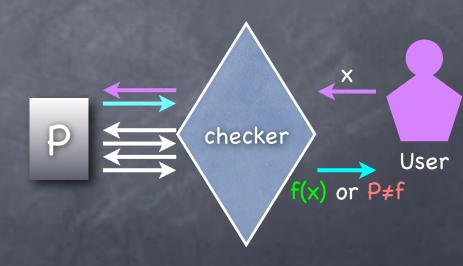
- Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently
 - How do we trust this?
- Vendor: Trust me, this always works
- User: In fact I just care if it works correctly on the inputs I want to solve. Maybe for each input I have, your machine could prove correctness using an IP protocol?

- Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently
 - How do we trust this?
- Vendor: Trust me, this always works
- User: In fact I just care if it works correctly on the inputs I want to solve. Maybe for each input I have, your machine could prove correctness using an IP protocol?
- Vendor: But I don't have a (nano-bio-quantum) implementation of the prover's program...

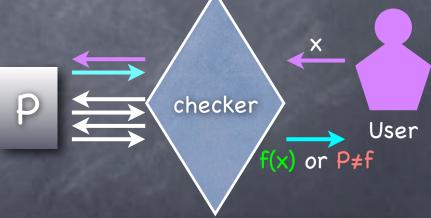




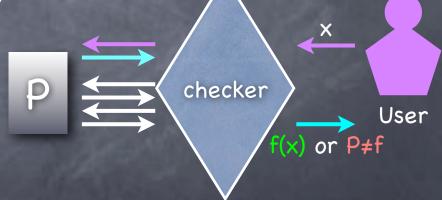




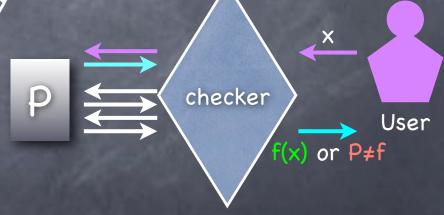
- Program checker
 - On each input, either ensures (w.h.p) that P's output is correct, or finds out that P#f, efficiently



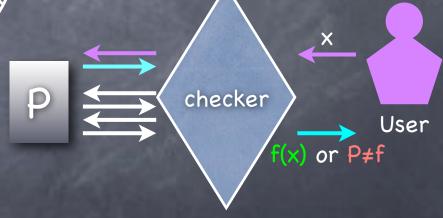
- Program checker
 - On each input, either ensures (w.h.p) that P's output is correct, or finds out that P#f, efficiently
- © Completeness: Vendor need not fear being falsely accused

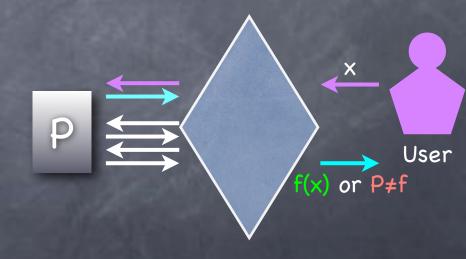


- Program checker
 - On each input, either ensures (w.h.p) that P's output is correct, or finds out that P#f, efficiently
- Completeness: Vendor need not fear being falsely accused
- Soundness: User need not fear using a wrong value as f(x)

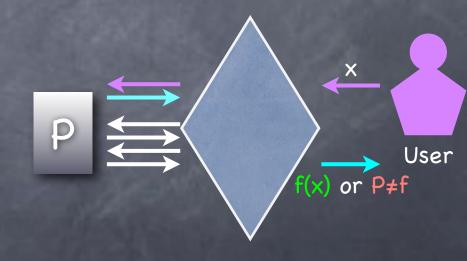


- Program checker
 - On each input, either ensures (w.h.p) that P's output is correct, or finds out that P#f, efficiently
- Completeness: Vendor need not fear being falsely accused
- Soundness: User need not fear using a wrong value as f(x)
- Will consider boolean f (i.e., a language L)

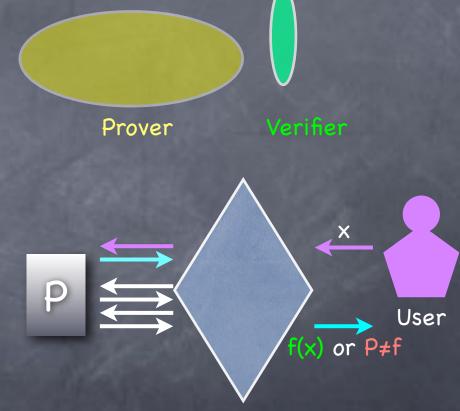




PC for L from IP protocols (for L and L^c)

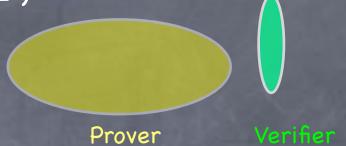


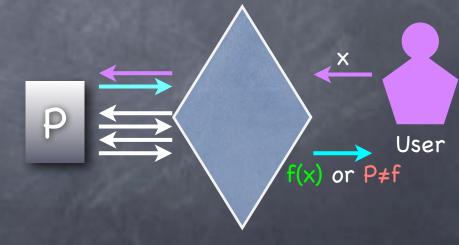
PC for L from IP protocols (for L and L^c)



PC for L from IP protocols (for L and L^c)

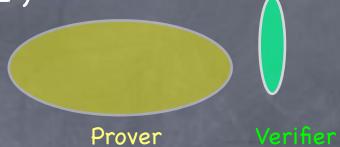
PC must be efficient. Provers may not be

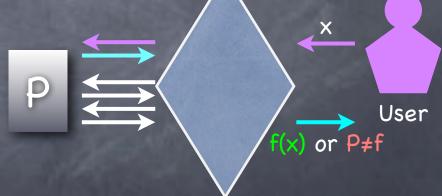




PC for L from IP protocols (for L and L^c)

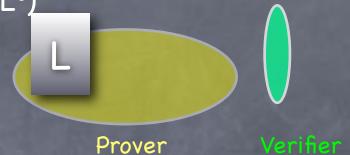
PC must be efficient. Provers may not be

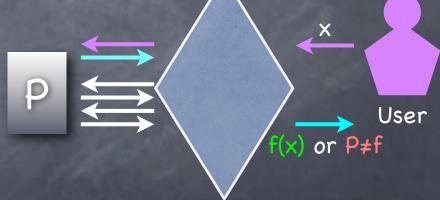




PC for L from IP protocols (for L and L^c)

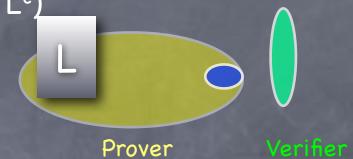
PC must be efficient. Provers may not be

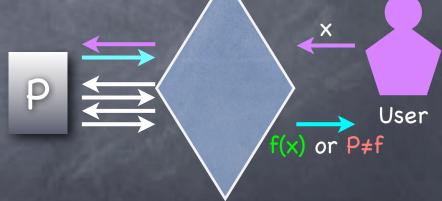




PC for L from IP protocols (for L and L^c)

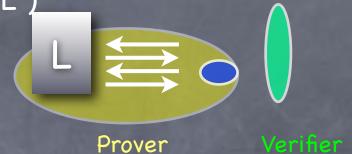
PC must be efficient. Provers may not be

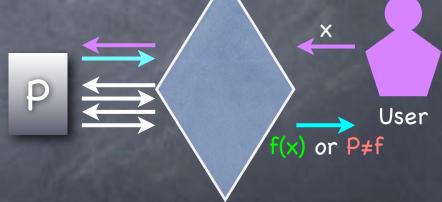




PC for L from IP protocols (for L and L^c)

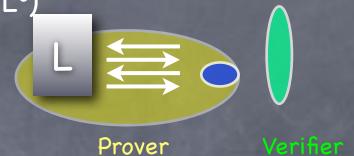
PC must be efficient. Provers may not be

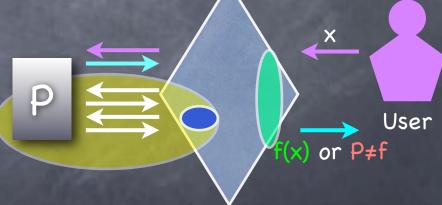




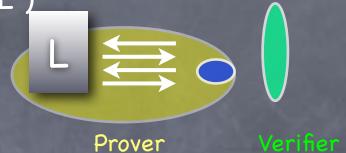
PC for L from IP protocols (for L and L^c)

PC must be efficient. Provers may not be

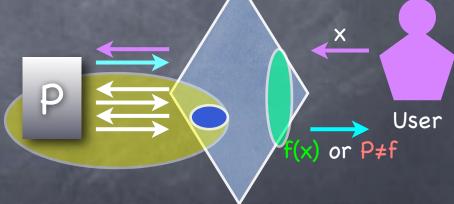




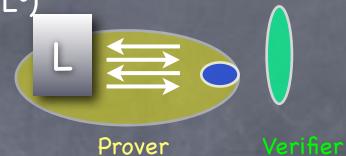
- PC for L from IP protocols (for L and L^c)
 - PC must be efficient. Provers may not be



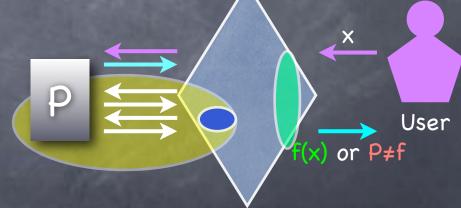
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
 - Retains completeness and soundness



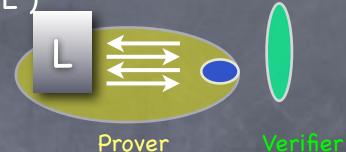
- PC for L from IP protocols (for L and L^c)
 - PC must be efficient. Provers may not be



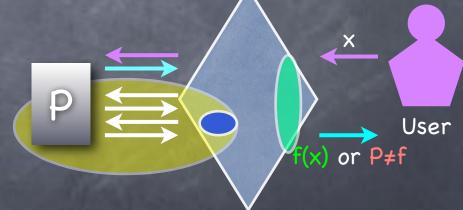
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
 - Retains completeness and soundness
- e.g. For PSPACE-complete L (why?)



- PC for L from IP protocols (for L and L^c)
 - PC must be efficient. Provers may not be



- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
 - Retains completeness and soundness
- e.g. For PSPACE-complete L (why?)
- How about Graph Isomorphism?



If $P(G_0,G_1)$ says $G_0 ≡ G_1$, try to extract the isomorphism

- If $P(G_0,G_1)$ says $G_0 ≡ G_1$, try to extract the isomorphism
 - @ Pick a node v in G_0 . For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$

- If $P(G_0,G_1)$ says $G_0 ≡ G_1$, try to extract the isomorphism
 - \odot Pick a node v in G_0 . For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$
 - If P says no for all u in G₁, report "P bad"

- If $P(G_0,G_1)$ says $G_0 ≡ G_1$, try to extract the isomorphism
 - \odot Pick a node v in G_0 . For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$
 - If P says no for all u in G₁, report "P bad"
 - Else remember $v \mapsto u$, and recurse on $(G_0 \setminus v, G_1 \setminus u)$

- If $P(G_0,G_1)$ says $G_0 ≡ G_1$, try to extract the isomorphism
 - \odot Pick a node v in G_0 . For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$
 - If P says no for all u in G₁, report "P bad"
 - Else remember $v \mapsto u$, and recurse on $(G_0 \setminus v, G_1 \setminus u)$
 - \odot On finding isomorphism, verify and output $G_0 = G_1$

- If $P(G_0,G_1)$ says $G_0 ≡ G_1$, try to extract the isomorphism
 - \odot Pick a node v in G_0 . For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$
 - If P says no for all u in G₁, report "P bad"

 - \odot On finding isomorphism, verify and output $G_0 = G_1$
- Note: An IP protocol (i.e., an NP proof) for GI, where prover is in P^{GI}

If P(G₀,G₁) says G₀ ≠ G₁, test P similar to in IP protocol for GNI (coke from can/bottle)

- If P(G₀,G₁) says G₀ ≠ G₁, test P similar to in IP protocol for GNI (coke from can/bottle)
 - Det H = $\pi(G_b)$ where π is a random permutation and b = 0 or 1 at random

- If P(G₀,G₁) says G₀ ≠ G₁, test P similar to in IP protocol for GNI (coke from can/bottle)
 - Let H = $\pi(G_b)$ where π is a random permutation and b = 0 or 1 at random
 - \circ Run P(G₀,H) many times

- If P(G₀,G₁) says G₀ ≠ G₁, test P similar to in IP protocol for GNI (coke from can/bottle)
 - Let H = $\pi(G_b)$ where π is a random permutation and b = 0 or 1 at random
 - \circ Run P(G₀,H) many times
 - If P says G_0 = H exactly whenever b=0, output G_0 ≠ G_1

- If P(G₀,G₁) says G₀ ≠ G₁, test P similar to in IP protocol for GNI (coke from can/bottle)
 - Let H = $\pi(G_b)$ where π is a random permutation and b = 0 or 1 at random
 - \circ Run P(G₀,H) many times
 - If P says G_0 = H exactly whenever b=0, output G_0 ≠ G_1
 - Else output "Bad P"

Program Checking for GI

- If P(G₀,G₁) says G₀ ≠ G₁, test P similar to in IP protocol for GNI (coke from can/bottle)
 - Det H = $\pi(G_b)$ where π is a random permutation and b = 0 or 1 at random
 - \circ Run P(G₀,H) many times
 - If P says G_0 = H exactly whenever b=0, output G_0 ≠ G_1
 - Else output "Bad P"
- Note: Prover in the IP protocol for GNI is in PGI

Interrogate multiple provers separately

- Interrogate multiple provers separately
 - Provers can't talk to each other during the interrogation (but can agree on a strategy a priori)

- Interrogate multiple provers separately
 - Provers can't talk to each other during the interrogation (but can agree on a strategy a priori)
 - Verifier cross-checks answers from the provers

- Interrogate multiple provers separately
 - Provers can't talk to each other during the interrogation (but can agree on a strategy a priori)
 - Verifier cross-checks answers from the provers
 - 2 provers as good as k provers

- Interrogate multiple provers separately
 - Provers can't talk to each other during the interrogation (but can agree on a strategy a priori)
 - Verifier cross-checks answers from the provers
 - 2 provers as good as k provers
 - MIP = NEXP

- Interrogate multiple provers separately
 - Provers can't talk to each other during the interrogation (but can agree on a strategy a priori)
 - Verifier cross-checks answers from the provers
 - 2 provers as good as k provers
 - MIP = NEXP
 - Parallel repetition theorem highly non-trivial!

Prover submits a (very long) written proof

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject
- PCP[r,q]: length of proof 2^r, number of queries q

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject
- PCP[r,q]: length of proof 2^r, number of queries q
- Intuitively, in MIP, the provers cannot change their strategy (because one does not know what the other sees), so must stick to a prior agreed up on strategy

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject
- PCP[r,q]: length of proof 2^r, number of queries q
- Intuitively, in MIP, the provers cannot change their strategy (because one does not know what the other sees), so must stick to a prior agreed up on strategy
 - Which will be the written proof

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject
- PCP[r,q]: length of proof 2^r, number of queries q
- Intuitively, in MIP, the provers cannot change their strategy (because one does not know what the other sees), so must stick to a prior agreed up on strategy
 - Which will be the written proof
 - PCP[poly,poly] = MIP = NEXP

NP = PCP[log,const]

- NP = PCP[log,const]
 - PCP is only poly long (just like usual NP certificate)

- NP = PCP[log,const]
 - PCP is only poly long (just like usual NP certificate)
 - But verifier reads only constantly many bits!

- NP = PCP[log,const]
 - PCP is only poly long (just like usual NP certificate)
 - But verifier reads only constantly many bits!
 - Extensively useful in proving "hardness of approximation" results for optimization problems

- NP = PCP[log,const]
 - PCP is only poly long (just like usual NP certificate)
 - But verifier reads only constantly many bits!
 - Extensively useful in proving "hardness of approximation" results for optimization problems
 - Also useful in certain cryptographic protocols

Interactive Proof for membership in L

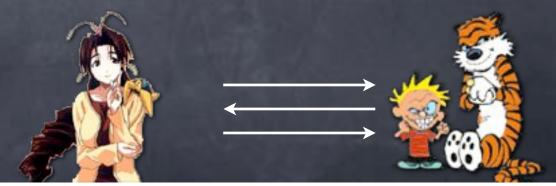
- Interactive Proof for membership in L
 - Complete and Sound

- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

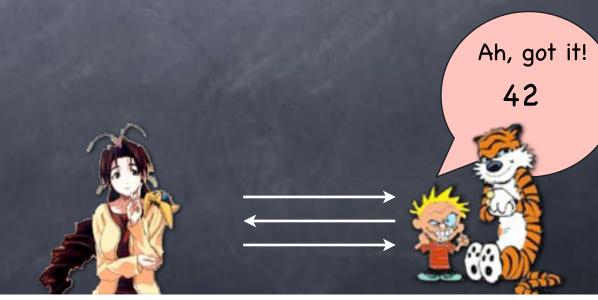
- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

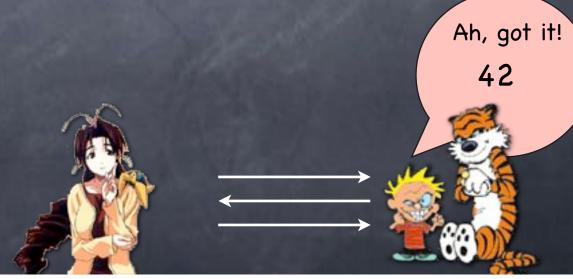
- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L



- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

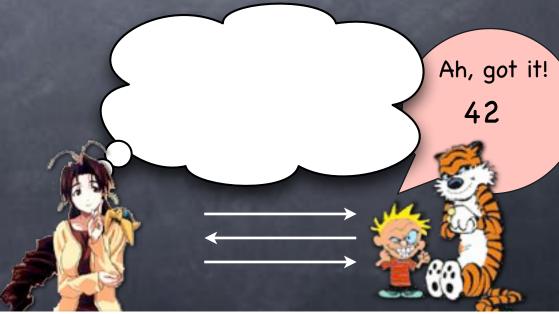


- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L
 - Verifier's view could have been "simulated"



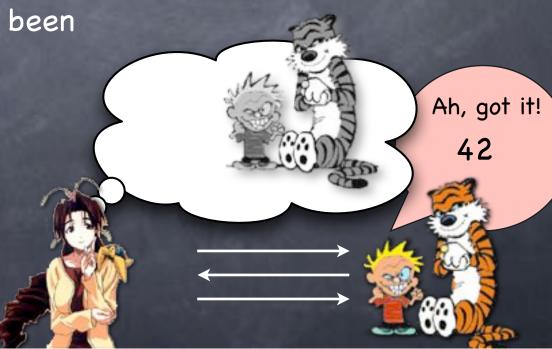
- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

Verifier's view could have been "simulated"



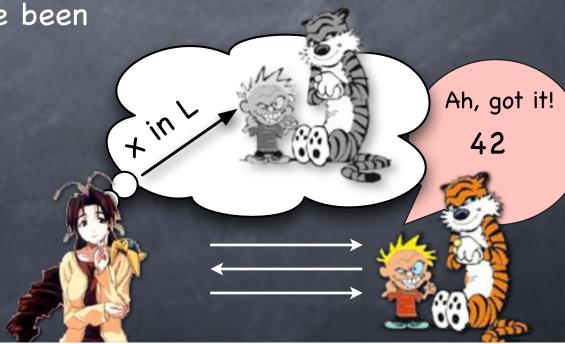
- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

Verifier's view could have been "simulated"



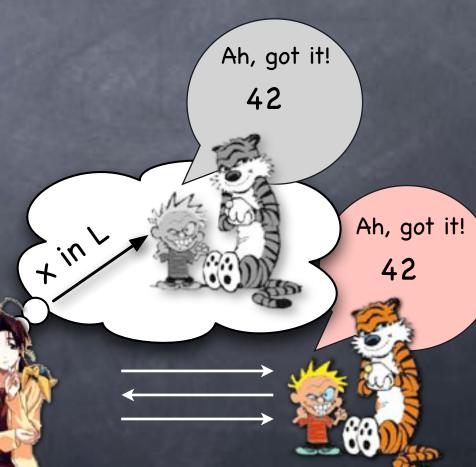
- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

Verifier's view could have been "simulated"

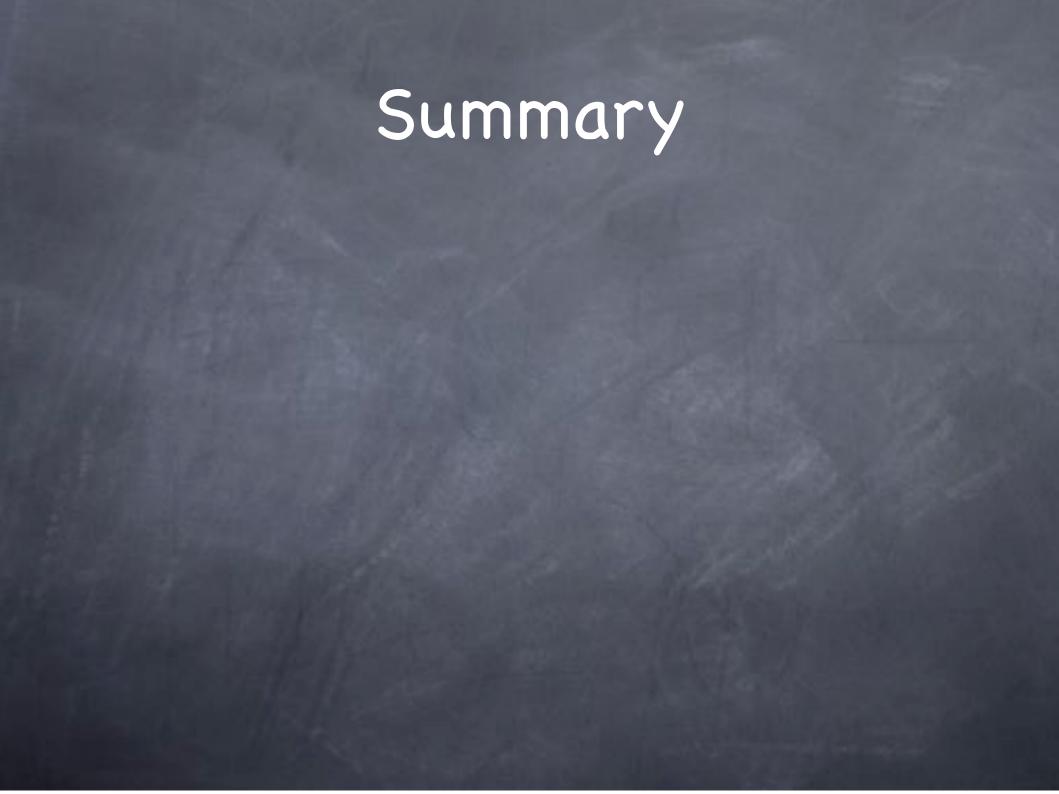


- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L

Verifier's view could have been "simulated"



- Interactive Proof for membership in L
 - Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L
 - Verifier's view could have been "simulated"
 - For every adversarial strategy, there exists a simulation strategy



Interactive Protocols

- Interactive Protocols
 - Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness

- Interactive Protocols
 - Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
 - Zoo: MA and AM, between 1st and 2nd levels of PH

- Interactive Protocols
 - Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
 - Zoo: MA and AM, between 1st and 2nd levels of PH
- Other related concepts

- Interactive Protocols
 - Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
 - Zoo: MA and AM, between 1st and 2nd levels of PH
- Other related concepts
 - MIP, PCP, ZK proofs

- Interactive Protocols
 - Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
 - Zoo: MA and AM, between 1st and 2nd levels of PH
- Other related concepts
 - MIP, PCP, ZK proofs
- Understanding power of interaction/non-determinism and randomness

- Interactive Protocols
 - Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
 - Zoo: MA and AM, between 1st and 2nd levels of PH
- Other related concepts
 - MIP, PCP, ZK proofs
- Understanding power of interaction/non-determinism and randomness
 - Useful in "hardness of approximation", in cryptography, ...