Lecture 18 AM

P[k]

- P[k]
 - IP[poly] = PSPACE

- P[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization

- P[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization
 - We saw IP protocol for sum-check

- P[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization
 - We saw IP protocol for sum-check
 - IP[const] = AM[const]

- P[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization
 - We saw IP protocol for sum-check
 - IP[const] = AM[const]
 - We saw public coin protocol for Graph Non-Isomorphism

- ø IP[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization
 - We saw IP protocol for sum-check
 - IP[const] = AM[const]
 - We saw public coin protocol for Graph Non-Isomorphism
 - Using 2-universal hash functions

- P[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization
 - We saw IP protocol for sum-check
 - IP[const] = AM[const]
 - We saw public coin protocol for Graph Non-Isomorphism
 - Using 2-universal hash functions
- Today: Collapse of the AM hierarchy

- P[k]
 - IP[poly] = PSPACE
 - IP protocol for TQBF using arithmetization
 - We saw IP protocol for sum-check
 - IP[const] = AM[const]
 - We saw public coin protocol for Graph Non-Isomorphism
 - Using 2-universal hash functions
- Today: Collapse of the AM hierarchy
 - AM[const] = AM[2]

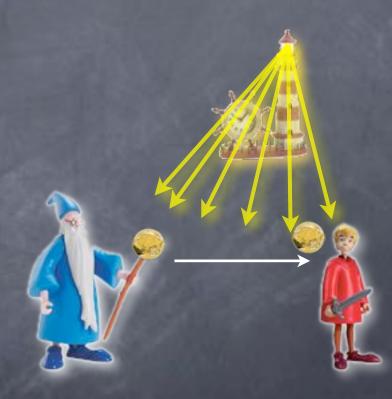
AM[2] (or simply AM)

- AM[2] (or simply AM)
 - Input x

- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon

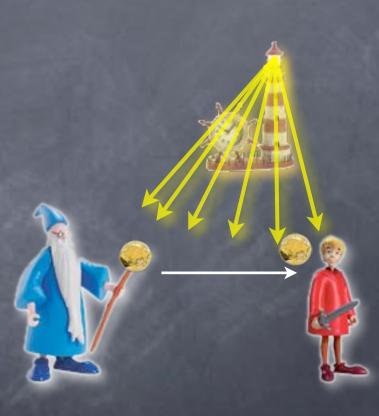
- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon

- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon
 - Unbounded prover Merlin sends a "proof" message a

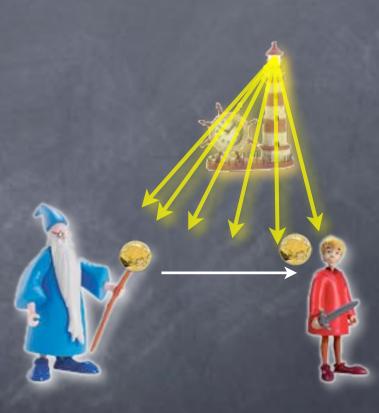


- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon
 - Unbounded prover Merlin sends a "proof" message a
 - Polynomial time verifier Arthur runs a deterministic verification procedure R(x;r,a), and outputs Yes or No

- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon
 - Unbounded prover Merlin sends a "proof" message a
 - Polynomial time verifier Arthur runs a deterministic verification procedure R(x;r,a), and outputs Yes or No
- L is said to have an AM protocol if



- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon
 - Unbounded prover Merlin sends a "proof" message a
 - Polynomial time verifier Arthur runs a deterministic verification procedure R(x;r,a), and outputs Yes or No
- L is said to have an AM protocol if
 - \bullet x \in L \Leftrightarrow max Pr[Yes] > 2/3



- AM[2] (or simply AM)
 - Input x
 - Random coins r come from a beacon
 - Unbounded prover Merlin sends a "proof" message a
 - Polynomial time verifier Arthur runs a deterministic verification procedure R(x;r,a), and outputs Yes or No
- L is said to have an AM protocol if

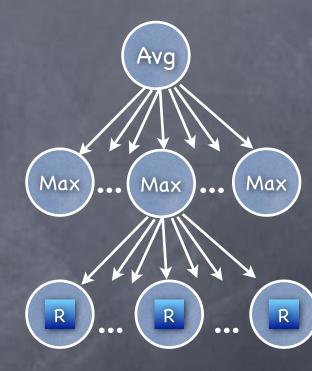


Quantity of interest

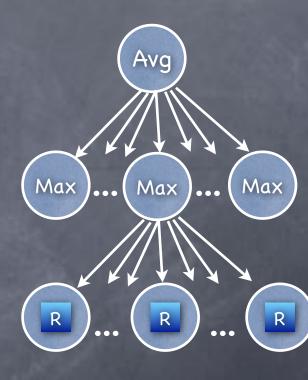
- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes

- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes
 - Evaluate the "Avg-Max tree"

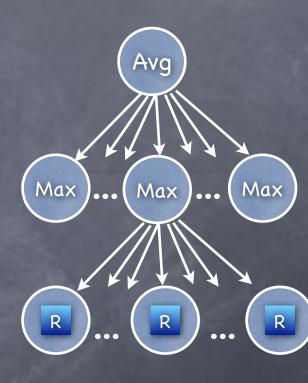
- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes
 - Evaluate the "Avg-Max tree"



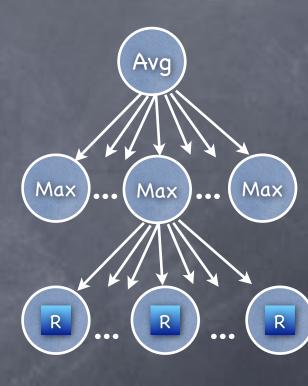
- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes
 - Evaluate the "Avg-Max tree"
 - Leaves: Pr[yes] = 0 or 1, as determined by Arthur's program



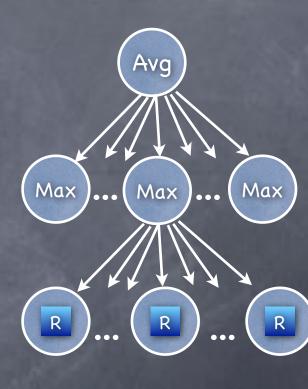
- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes
 - Evaluate the "Avg-Max tree"
 - Leaves: Pr[yes] = 0 or 1, as determined by Arthur's program
 - Max nodes: maximum of children



- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes
 - Evaluate the "Avg-Max tree"
 - Leaves: Pr[yes] = 0 or 1, as determined by Arthur's program
 - Max nodes: maximum of children
 - Avg node: average of children



- Quantity of interest
 - Maximum (over prover strategies) probability (over coins from the beacon) of Arthur saying yes
 - Evaluate the "Avg-Max tree"
 - Leaves: Pr[yes] = 0 or 1, as determined by Arthur's program
 - Max nodes: maximum of children
 - Avg node: average of children
 - Extends to AM[k], with k alternating levels



Recall error reduction in BPP algorithms

- Recall error reduction in BPP algorithms
 - By repeating and taking majority

- Recall error reduction in BPP algorithms
 - By repeating and taking majority
 - Exponential error reduction (by Chernoff bound)

- Recall error reduction in BPP algorithms
 - By repeating and taking majority
 - Exponential error reduction (by Chernoff bound)
- Extends to MA

Soundness Amplification

- Recall error reduction in BPP algorithms
 - By repeating and taking majority
 - Exponential error reduction (by Chernoff bound)
- Extends to MA
 - Given input and any answer from Merlin, to determine Pr[Yes]

Soundness Amplification

- Recall error reduction in BPP algorithms
 - By repeating and taking majority
 - Exponential error reduction (by Chernoff bound)
- Extends to MA
 - Given input and any answer from Merlin, to determine Pr[Yes]
 - Run many independent verifications (using independent random strings from the beacon). Chernoff bound holds.

Soundness Amplification

- Recall error reduction in BPP algorithms
 - By repeating and taking majority
 - Exponential error reduction (by Chernoff bound)
- Extends to MA
 - Given input and any answer from Merlin, to determine Pr[Yes]
 - Run many independent verifications (using independent random strings from the beacon). Chernoff bound holds.
 - Increased the length of the second message

Soundness amplification by sequential repetition/majority

- Soundness amplification by sequential repetition/majority
 - Exponential amplification, just like in MA. But be careful! Not independent executions (Merlin can adapt strategy over the repetitions.) But not a problem!

- Soundness amplification by sequential repetition/majority
 - Exponential amplification, just like in MA. But be careful! Not independent executions (Merlin can adapt strategy over the repetitions.) But not a problem!
 - But increases rounds

- Soundness amplification by sequential repetition/majority
 - Exponential amplification, just like in MA. But be careful! Not independent executions (Merlin can adapt strategy over the repetitions.) But not a problem!
 - But increases rounds
- Soundness amplification without increasing rounds

- Soundness amplification by sequential repetition/majority
 - Exponential amplification, just like in MA. But be careful! Not independent executions (Merlin can adapt strategy over the repetitions.) But not a problem!
 - But increases rounds
- Soundness amplification without increasing rounds
 - Parallel repetition

- Soundness amplification by sequential repetition/majority
 - Exponential amplification, just like in MA. But be careful! Not independent executions (Merlin can adapt strategy over the repetitions.) But not a problem!
 - But increases rounds
- Soundness amplification without increasing rounds
 - Parallel repetition
 - More careful! Merlin's answers (and probability of proof being rejected) in the parallel sessions could be correlated

- Soundness amplification by sequential repetition/majority
 - Exponential amplification, just like in MA. But be careful! Not independent executions (Merlin can adapt strategy over the repetitions.) But not a problem!
 - But increases rounds
- Soundness amplification without increasing rounds
 - Parallel repetition
 - More careful! Merlin's answers (and probability of proof being rejected) in the parallel sessions could be correlated
 - Still turns out to give exponential amplification

MA \(\text{AM} \)

Publishing random test before receiving proof

MA \(\text{AM} \)

- Publishing random test before receiving proof
 - Completeness is no worse

MA AM

- Publishing random test before receiving proof
 - Completeness is no worse
 - If MA soundness error is sufficiently small, can use union bound over all Merlin messages to get that the AM soundness error is still small

MA AM

- Publishing random test before receiving proof
 - Completeness is no worse
 - If MA soundness error is sufficiently small, can use union bound over all Merlin messages to get that the AM soundness error is still small

$MA \subseteq AM$

- Publishing random test before receiving proof
 - Completeness is no worse
 - If MA soundness error is sufficiently small, can use union bound over all Merlin messages to get that the AM soundness error is still small
- Note: Argument similar to why BPP ⊆ P/poly

$MA \subseteq AM$

- Publishing random test before receiving proof
 - Completeness is no worse
 - If MA soundness error is sufficiently small, can use union bound over all Merlin messages to get that the AM soundness error is still small
 - If MA soundness error < 1/2^{m+2}, where m is the length of Merlin's message, AM soundness error < 1/4</p>
- Note: Argument similar to why BPP ⊆ P/poly
- Extends to MAM ⊆ AM

MA AM

- Publishing random test before receiving proof
 - Completeness is no worse
 - If MA soundness error is sufficiently small, can use union bound over all Merlin messages to get that the AM soundness error is still small
 - If MA soundness error < 1/2^{m+2}, where m is the length of Merlin's message, AM soundness error < 1/4</p>
- Note: Argument similar to why BPP ⊆ P/poly
- Extends to MAM ⊆ AM
 - So MAM = AM

Collapse of the AM hierarchy

Collapse of the AM hierarchy

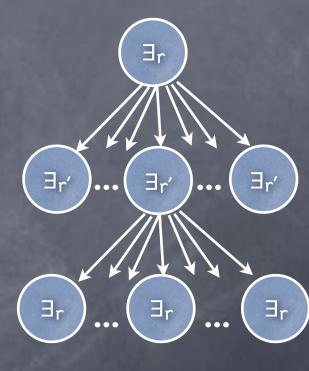
Intuition: Can change any MA sequence to an AM sequence

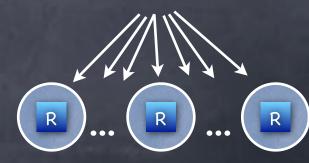
Collapse of the AM hierarchy

- Intuition: Can change any MA sequence to an AM sequence
 - Need a notion of soundness error in each round

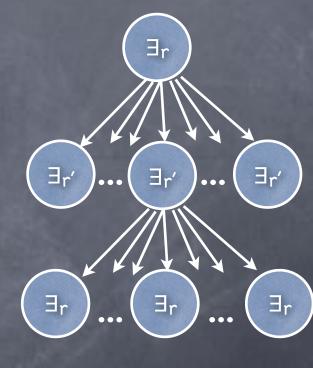
♠ A generalization of ATM, with two thresholds instead of ∃ and ∀

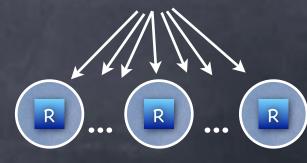
A generalization of ATM, with two
 thresholds instead of ∃ and ∀



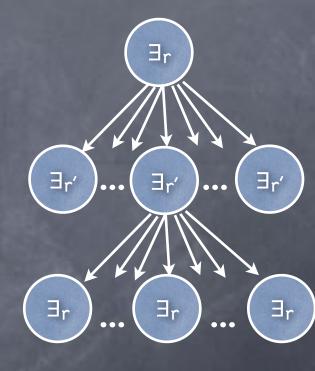


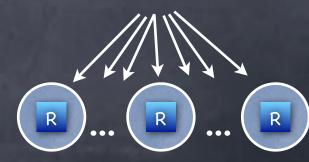
- A generalization of ATM, with two
 thresholds instead of ∃ and ∀
 - ∃r: ≥ (or >) r fraction of children
 are 1?



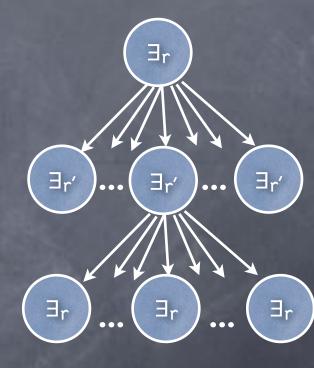


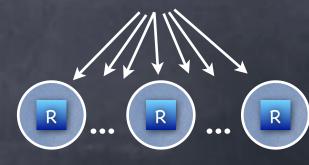
- A generalization of ATM, with two thresholds instead of ∃ and ∀
 - ∃r: ≥ (or >) r fraction of children
 are 1?
 - \odot \exists_0 is \exists , and \exists_1 is \forall



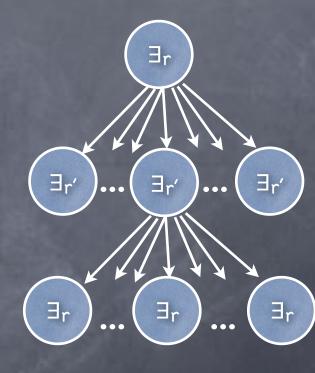


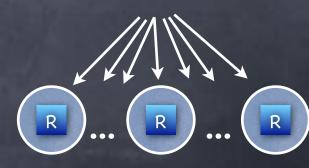
- A generalization of ATM, with two
 thresholds instead of ∃ and ∀
 - ∃r: ≥ (or >) r fraction of children
 are 1?
 - \odot \exists_0 is \exists , and \exists_1 is \forall
 - Leaves R(x;path) = 0 or 1



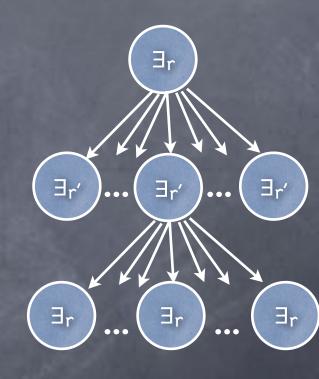


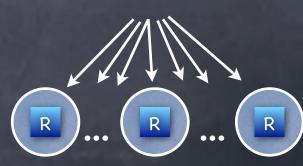
- A generalization of ATM, with two
 thresholds instead of ∃ and ∀
 - ∃r: ≥ (or >) r fraction of children
 are 1?
 - \odot \exists_0 is \exists , and \exists_1 is \forall
 - Leaves R(x;path) = 0 or 1
- Parameters: depth (number of alternations) and size = log(#leaves) (= total length of the "messages")





- A generalization of ATM, with two
 thresholds instead of ∃ and ∀
 - ∃r: ≥ (or >) r fraction of children
 are 1?
 - \odot \exists_0 is \exists , and \exists_1 is \forall
 - Leaves R(x;path) = 0 or 1
- Parameters: depth (number of alternations) and size = log(#leaves) (= total length of the "messages")
 - Will denote as ATTM[k,(r,r'),R] (size and individual degrees implicit)





We will be interested in ATTM[k,(r,r'),R] where

- We will be interested in ATTM[k,(r,r'),R] where
 - One of r, r' is a fraction > 1/2 (called the threshold), and the other is 0 or 1

- We will be interested in ATTM[k,(r,r'),R] where
 - One of r, r' is a fraction > 1/2 (called the threshold), and the other is 0 or 1
 - k is constant, size is polynomial and R is a polynomial time relation

- We will be interested in ATTM[k,(r,r'),R] where
 - One of r, r' is a fraction > 1/2 (called the threshold), and the other is 0 or 1
 - k is constant, size is polynomial and R is a polynomial time relation
- ATTM threshold can also be amplified using "parallel repetition"!

- We will be interested in ATTM[k,(r,r'),R] where
 - One of r, r' is a fraction > 1/2 (called the threshold), and the other is 0 or 1
 - k is constant, size is polynomial and R is a polynomial time relation
- ATTM threshold can also be amplified using "parallel repetition"!
 - Takes threshold from (1/2 + c) to $(1 1/2^n)$

Alternating Threshold TM

- We will be interested in ATTM[k,(r,r'),R] where
 - One of r, r' is a fraction > 1/2 (called the threshold), and the other is 0 or 1
 - k is constant, size is polynomial and R is a polynomial time relation
- ATTM threshold can also be amplified using "parallel repetition"!
 - Takes threshold from (1/2 + c) to $(1 1/2^n)$
 - k unchanged, size increases by a polynomial factor

© Consider M_+ and M_- of the form ATTM[k,(r,0),R] and ATTM[k,(r,1),R°] (where r>1/2)

- © Consider M_+ and M_- of the form ATTM[k,(r,0),R] and ATTM[k,(r,1),R°] (where r>1/2)
- We'll call it a pair of complementary (k,r) ATTMs

- © Consider M_+ and M_- of the form ATTM[k,(r,0),R] and ATTM[k,(r,1),R°] (where r>1/2)
- We'll call it a pair of complementary (k,r) ATTMs
- The For any r>1/2, $\{x \mid M_+(x)=1\}$ and $\{x \mid M_-(x)=1\}$ are disjoint

- © Consider M_+ and M_- of the form ATTM[k,(r,0),R] and ATTM[k,(r,1),R°] (where r>1/2)
- We'll call it a pair of complementary (k,r) ATTMs
- The For any r>1/2, $\{x \mid M_+(x)=1\}$ and $\{x \mid M_-(x)=1\}$ are disjoint
 - $M = ATTM[k,(1-r,1),R^c]$ is the complement of M_+ : $\{x \mid M_+(x)=0\} = \{x \mid M(x)=1\}$

- © Consider M_+ and M_- of the form ATTM[k,(r,0),R] and ATTM[k,(r,1),R°] (where r>1/2)
- We'll call it a pair of complementary (k,r) ATTMs
- The For any r>1/2, $\{x \mid M_+(x)=1\}$ and $\{x \mid M_-(x)=1\}$ are disjoint
 - $M = ATTM[k,(1-r,1),R^c]$ is the complement of M₊: $\{x \mid M_+(x)=0\} = \{x \mid M(x)=1\}$
 - If r > 1-r, M₋ stricter than M: $\{x \mid M_{-}(x)=1\}$ ⊆ $\{x \mid M(x)=1\}$

 \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \bullet $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \bullet $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \bullet $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$
- Exact threshold not critical

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \bullet $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$
- Exact threshold not critical
 - Threshold of (M_+,M_-) can be reduced to any r > 1/2

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \bullet $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$
- Exact threshold not critical
 - Threshold of (M_+,M_-) can be reduced to any r > 1/2
 - @ Reducing threshold enlarges $\{x \mid M_{+}(x)=1\}$ and $\{x \mid M_{-}(x)=1\}$

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \bullet $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$
- Exact threshold not critical
 - Threshold of (M_+,M_-) can be reduced to any r > 1/2
 - @ Reducing threshold enlarges $\{x \mid M_{+}(x)=1\}$ and $\{x \mid M_{-}(x)=1\}$
 - And they stay disjoint

- \odot L is said to have a pair of complementary ATTMs (M₊,M₋) if
 - \otimes $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$
- Exact threshold not critical
 - Threshold of (M_+,M_-) can be reduced to any r > 1/2
 - @ Reducing threshold enlarges $\{x \mid M_{+}(x)=1\}$ and $\{x \mid M_{-}(x)=1\}$
 - And they stay disjoint
 - So they do not change (as they were already a partitioning)

- \odot L is said to have a pair of complementary ATTMs (M_+,M_-) if
 - \otimes $x \in L \Leftrightarrow M_+(x)=1$ and $M_-(x)=0$
- Exact threshold not critical
 - Threshold of (M_+,M_-) can be reduced to any r > 1/2
 - @ Reducing threshold enlarges $\{x \mid M_+(x)=1\}$ and $\{x \mid M_-(x)=1\}$
 - And they stay disjoint
 - So they do not change (as they were already a partitioning)
 - By parallel repetition, can increase threshold to exponentially close to 1, starting from 1/2 + c

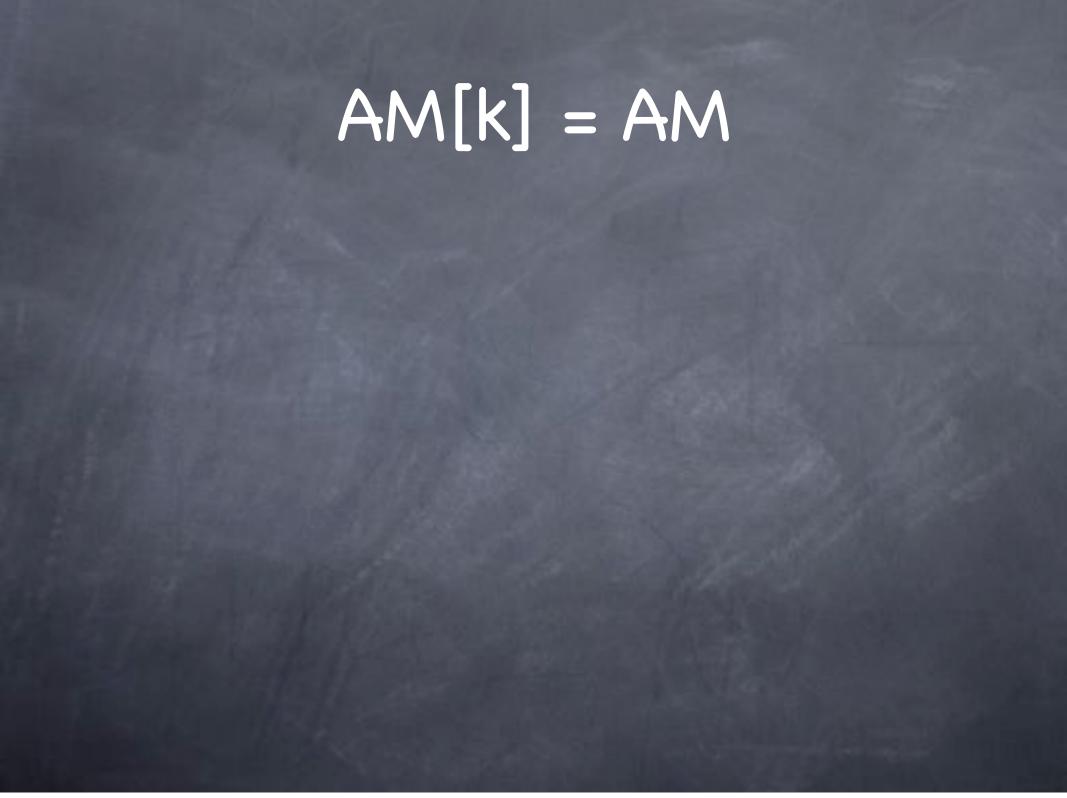
A language L has an AM[k,r] protocol iff L has a pair of complementary (k,r) ATTMs for r>1/2+c

- A language L has an AM[k,r] protocol iff L has a pair of complementary (k,r) ATTMs for r>1/2+c
 - Guarantees on probability of acceptance translated to threshold guarantees, and vice versa

- A language L has an AM[k,r] protocol iff L has a pair of complementary (k,r) ATTMs for r>1/2+c
 - Guarantees on probability of acceptance translated to threshold guarantees, and vice versa
 - ⊕ AM[k,r] protocol → (k,r') ATTM pair: natural conversion works if r > 1-2^{-2k} and r' = 3/4 [Exercise]

- A language L has an AM[k,r] protocol iff L has a pair of complementary (k,r) ATTMs for r>1/2+c
 - Guarantees on probability of acceptance translated to threshold guarantees, and vice versa
 - ⊕ AM[k,r] protocol → (k,r') ATTM pair: natural conversion works if r > 1-2^{-2k} and r' = 3/4 [Exercise]

- A language L has an AM[k,r] protocol iff L has a pair of complementary (k,r) ATTMs for r>1/2+c
 - Guarantees on probability of acceptance translated to threshold guarantees, and vice versa
 - ⊕ AM[k,r] protocol → (k,r') ATTM pair: natural conversion works if r > 1-2^{-2k} and r' = 3/4 [Exercise]
 - Ø (k,r') ATTM pair → AM[k,r] protocol: natural conversion works if r' > 1-1/4k and r = 3/4 [Exercise]
 - Enough, because we can reduce error (increase thresholds) for both AM protocols and ATTMs



$$AM[k] = AM$$

In terms of ATTM-pairs

AM[k] = AM

- In terms of ATTM-pairs
 - Flipping MA to AM: reduces depth, does not change size, but requires threshold to be reduced from 1 1/2^{m+2} to 3/4

AM[k] = AM

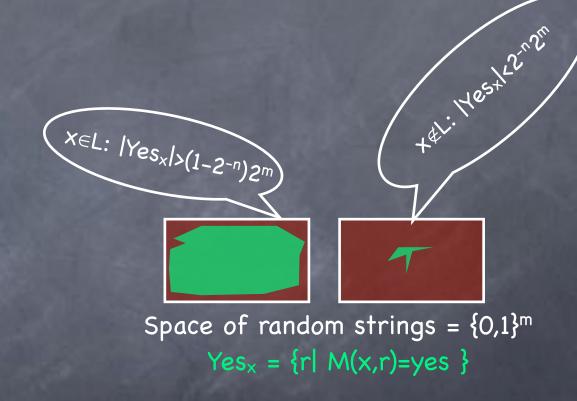
- In terms of ATTM-pairs
 - Flipping MA to AM: reduces depth, does not change size, but requires threshold to be reduced from 1 1/2^{m+2} to 3/4
 - Amplifying again: Threshold increased to 1 1/2^{m+2}, but size increased by a polynomial factor

AM[k] = AM

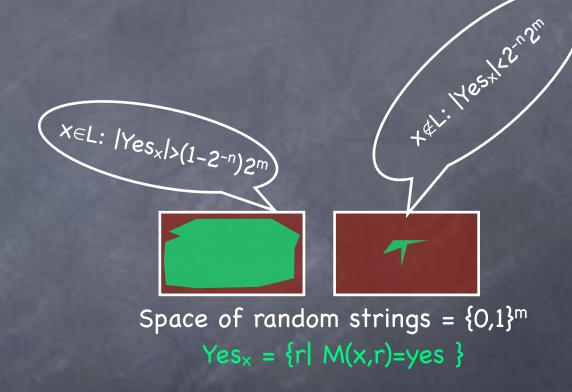
- In terms of ATTM-pairs
 - Flipping MA to AM: reduces depth, does not change size, but requires threshold to be reduced from 1 - 1/2^{m+2} to 3/4
 - Amplifying again: Threshold increased to 1 1/2^{m+2}, but size increased by a polynomial factor
 - Repeat ~k/2 times to reduce to AM[2]

 \odot Recall BPP $\subseteq \Sigma_2^P$

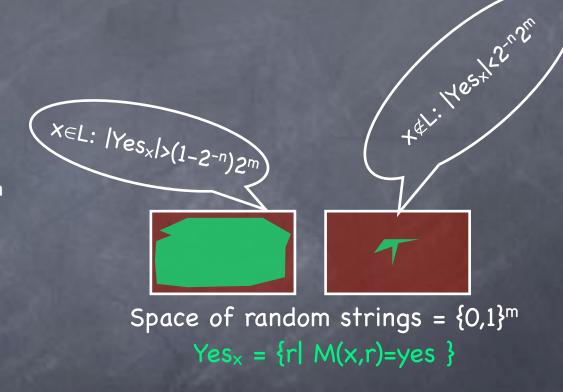
 \bullet Recall BPP $\subseteq \Sigma_2^P$



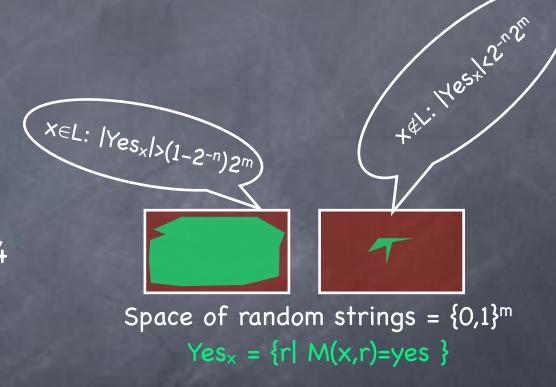
- \odot Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes



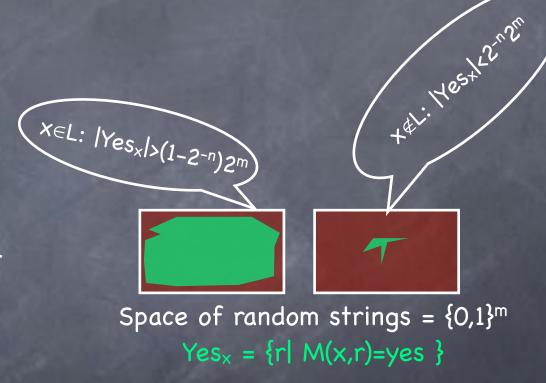
- \bullet Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes
 - \otimes $x \in L \Rightarrow \exists P P(Yes_x) = \{0,1\}^m$



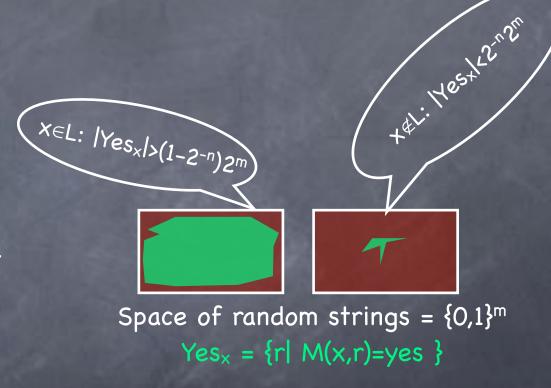
- \bullet Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes



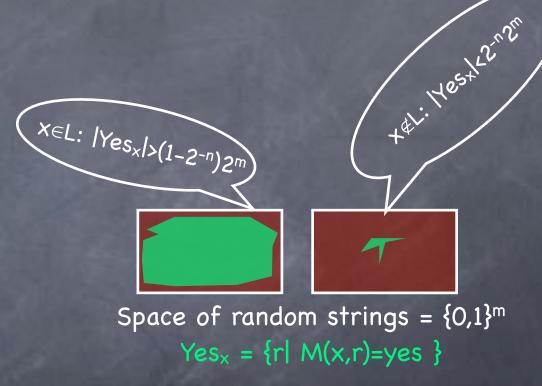
- \odot Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes
- As an MAM protocol



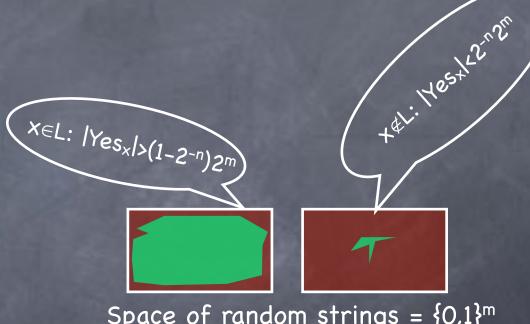
- \circ Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes
- As an MAM protocol
 - Merlin sends P



- \odot Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes
- As an MAM protocol
 - Merlin sends P
 - Arthur picks r ← {0,1}^m

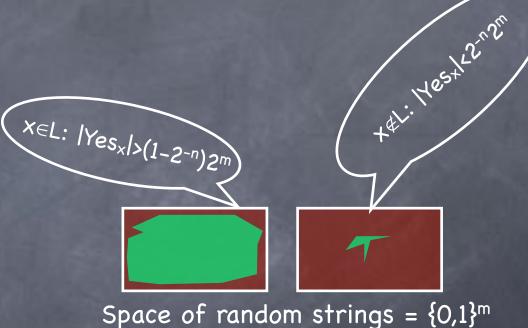


- \odot Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes
- As an MAM protocol
 - Merlin sends P
 - Arthur picks r←{0,1}^m
 - \bullet Merlin sends $s \in Yes_x s.t. r \in P(s)$



Space of random strings = $\{0,1\}^m$ Yes_x = $\{r \mid M(x,r)=yes \}$

- \odot Recall BPP $\subseteq \Sigma_2^P$
 - Using "shifts" of random tapes
- As an MAM protocol
 - Merlin sends P
 - Arthur picks r←{0,1}^m
 - \circ Merlin sends $s \in Yes_x s.t. r \in P(s)$
- One-sided error



Space of random strings = {0,1}^m Yes_x = {r| M(x,r)=yes }

Converting MA protocol to perfectly complete MA

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin

- Converting MA protocol to perfectly complete MA
 - © Consider Yesx,a where a is the message from Merlin

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol
 - Merlin sends a, P

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol
 - Merlin sends a, P
 - Arthur picks r←{0,1}^m

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin

 - \otimes $x \notin L \Rightarrow \forall a, P | P(Yes_{x,a})| < 2^m/4$
- Perfectly complete MA protocol
 - Merlin sends a, P
 - Arthur picks r←{0,1}^m
 - \circ Checks if there exists $s \in P^{-1}(r)$ s.t. $s \in Yes_{x,a}$

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol
 - Merlin sends a, P
 - Arthur picks r←{0,1}^m
 - The Checks if there exists $s \in P^{-1}(r)$ s.t. $s \in Yes_{x,a}$
- Converting AM protocols

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol
 - Merlin sends a, P
 - Arthur picks r←{0,1}^m
 - © Checks if there exists $s \in P^{-1}(r)$ s.t. $s \in Yes_{x,a}$
- Converting AM protocols

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol
 - Merlin sends a, P
 - Arthur picks r←{0,1}^m
 - © Checks if there exists $s \in P^{-1}(r)$ s.t. $s \in Yes_{x,a}$
- Converting AM protocols

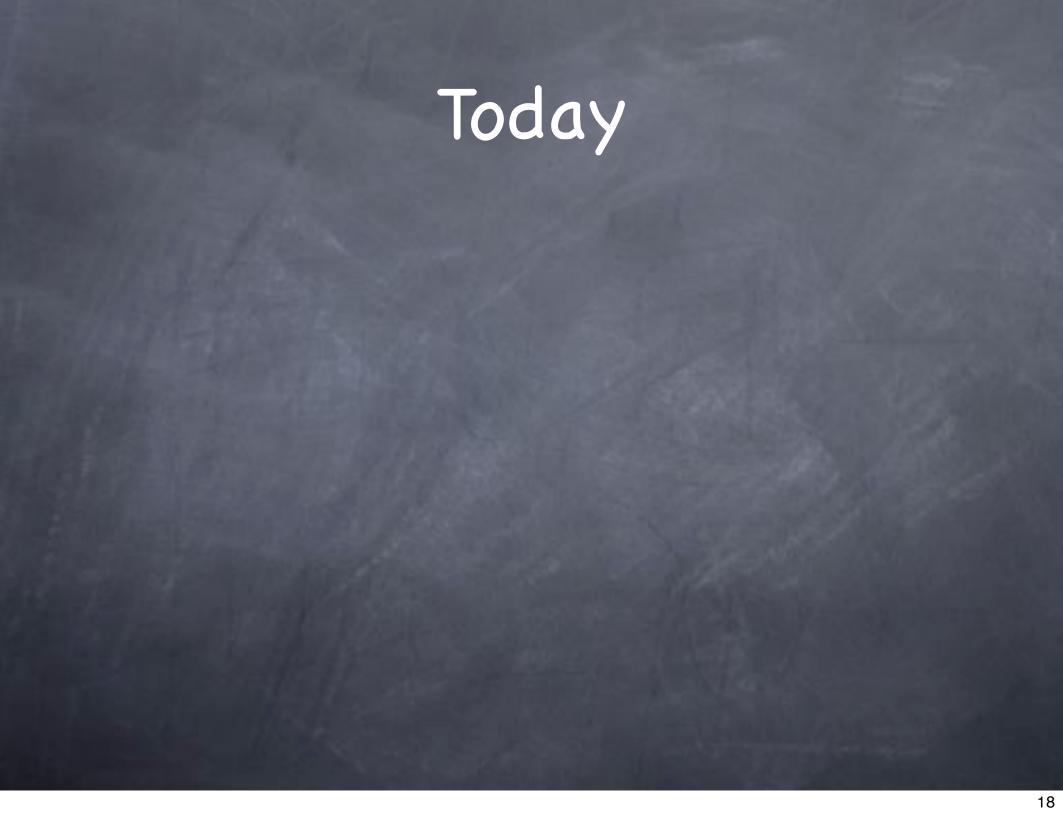
 - A one-sided error MAM protocol: (P, r, a)

- Converting MA protocol to perfectly complete MA
 - Consider Yesx,a where a is the message from Merlin
- Perfectly complete MA protocol
 - Merlin sends a, P
 - Arthur picks r←{0,1}^m
 - The Checks if there exists $s \in P^{-1}(r)$ s.t. $s \in Yes_{x,a}$
- Converting AM protocols

 - A one-sided error MAM protocol: (P, r, a)
 - But MAM = AM (and preserves completeness)

Therefore requiring perfect completeness does not change the classes MA or AM

- Therefore requiring perfect completeness does not change the classes MA or AM
 - Contrast with RP vs. BPP



 $MA \subseteq AM. MAM = AM.$

- $MA \subseteq AM. MAM = AM.$

- $MA \subseteq AM. MAM = AM.$
- - Using alternate characterization in terms of pairs of complementary ATTMs

- $MA \subseteq AM. MAM = AM.$
- \bigcirc AM[k] = AM for k \ge 2
 - Using alternate characterization in terms of pairs of complementary ATTMs
- one-sided-error-AM = AM

- $MA \subseteq AM. MAM = AM.$
- - Using alternate characterization in terms of pairs of complementary ATTMs
- one-sided-error-AM = AM
- Coming up:

- $MA \subseteq AM. MAM = AM.$
- $AM[k] = AM for k \ge 2$
 - Using alternate characterization in terms of pairs of complementary ATTMs
- one-sided-error-AM = AM
- Coming up:
 - A little more of AM (and where it fits into the zoo)

- $MA \subseteq AM. MAM = AM.$
- - Using alternate characterization in terms of pairs of complementary ATTMs
- one-sided-error-AM = AM
- Coming up:
 - A little more of AM (and where it fits into the zoo)
 - Some other concepts in interactive proofs