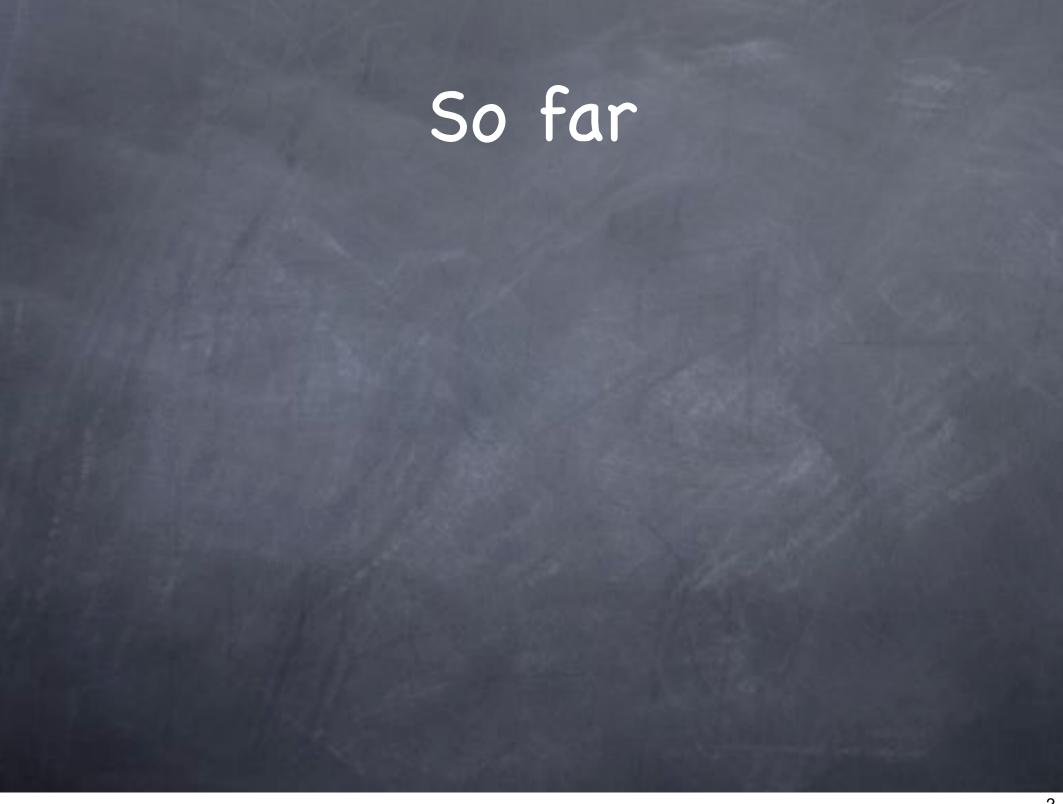
Interactive Proofs

Lecture 17 IP = PSPACE



ø IP

- @ IP
- AM, MA

- @ IP
- AM, MA

- @ IP
- AM, MA

- ø IP
- AM, MA
- Ø GNI ∈ AM
 - Using AM protocol for set lower-bound

- ø IP
- AM, MA
- - Using AM protocol for set lower-bound
 - In fact, IP[k] in AM[k+2]

Recall, IP means IP[poly]

- Recall, IP means IP[poly]

- Recall, IP means IP[poly]
- - Even though prover unbounded, cannot convince poly time verifier of everything

- Recall, IP means IP[poly]
- - Even though prover unbounded, cannot convince poly time verifier of everything
- PSPACE ⊆ IP

- Recall, IP means IP[poly]
- - Even though prover unbounded, cannot convince poly time verifier of everything
- PSPACE ⊆ IP
 - Prover can convince verifier of high complexity statements

Easier direction!

IP PSPACE

- Easier direction!
- Plan: For given input calculate Pr[yes] of honest verifier, maximum over all "prover strategies"

- Easier direction!
- Plan: For given input calculate Pr[yes] of honest verifier, maximum over all "prover strategies"
 - Warm-up: public-coins (i.e., AM[poly])

- Easier direction!
- Plan: For given input calculate Pr[yes] of honest verifier, maximum over all "prover strategies"
 - Warm-up: public-coins (i.e., AM[poly])
 - Could then use the "fact" that IP[poly]=AM[poly]

IP PSPACE

- Easier direction!
- Plan: For given input calculate Pr[yes] of honest verifier, maximum over all "prover strategies"
 - Warm-up: public-coins (i.e., AM[poly])
 - Could then use the "fact" that IP[poly]=AM[poly]
 - Or modify the proof (as we'll do)

AM[poly] \(\simeq \text{PSPACE} \)

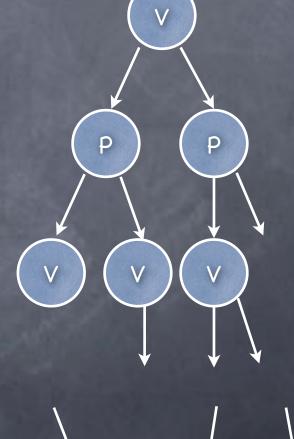
Plan: For given input calculate max Pr[yes] over all "prover strategies"

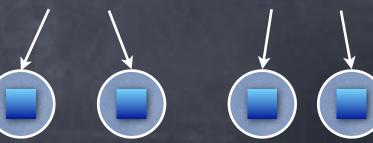
- Plan: For given input calculate max Pr[yes] over all "prover strategies"
 - Assume for convenience (w.l.o.g)
 each message is a single bit and
 P, V alternate

- Plan: For given input calculate max Pr[yes] over all "prover strategies"
 - Assume for convenience (w.l.o.g)
 each message is a single bit and
 P, V alternate
 - Since public-coin, V messages are simply uniform random bits

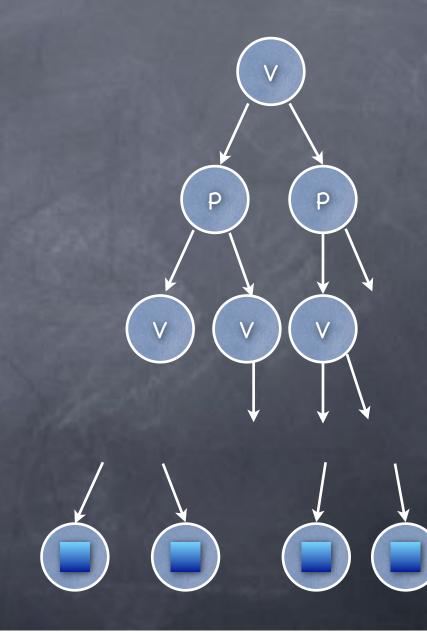
- Plan: For given input calculate max Pr[yes] over all "prover strategies"
 - Assume for convenience (w.l.o.g)
 each message is a single bit and
 P, V alternate
 - Since public-coin, V messages are simply uniform random bits
 - Protocol's configuration tree: path to a node corresponds to the transcript so far

- Plan: For given input calculate max Pr[yes] over all "prover strategies"
 - Assume for convenience (w.l.o.g)
 each message is a single bit and
 P, V alternate
 - Since public-coin, V messages are simply uniform random bits
 - Protocol's configuration tree: path to a node corresponds to the transcript so far



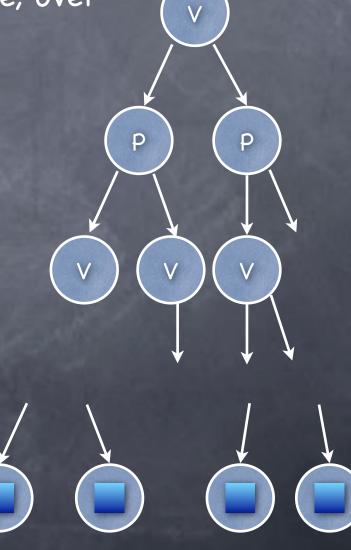


AM[poly] PSPACE



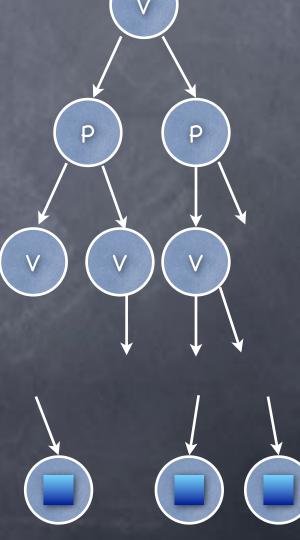
AM[poly] PSPACE

Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]



Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

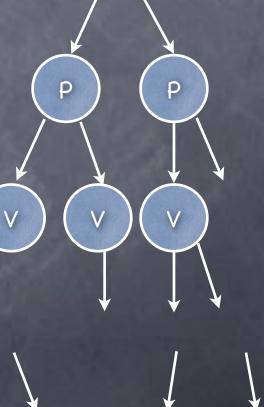
Note that finding the honest prover strategy may require super-PSPACE computation



AM[poly] ⊆ PSPACE

Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

Note that finding the honest prover strategy may require super-PSPACE computation



Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

Note that finding the honest prover strategy may require super-PSPACE computation

Recursively for each node, calculate maximum Pr[yes]

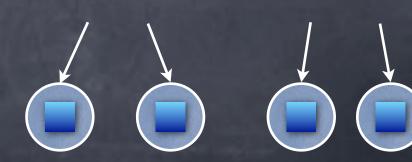
Leaves: Pr[yes] = 0 or 1, determined by running verifier's program

AM[poly] \(\simeq \text{PSPACE} \)

Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

Note that finding the honest prover strategy may require super-PSPACE computation

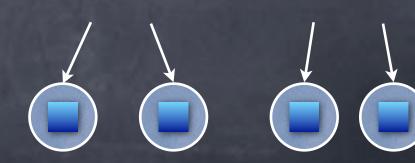
- Leaves: Pr[yes] = 0 or 1, determined by running verifier's program
- P nodes: max of children



Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

Note that finding the honest prover strategy may require super-PSPACE computation

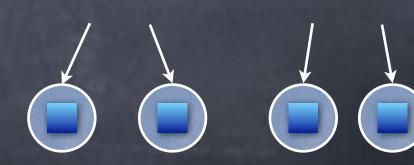
- Leaves: Pr[yes] = 0 or 1, determined by running verifier's program
- P nodes: max of children
- V nodes: average of children

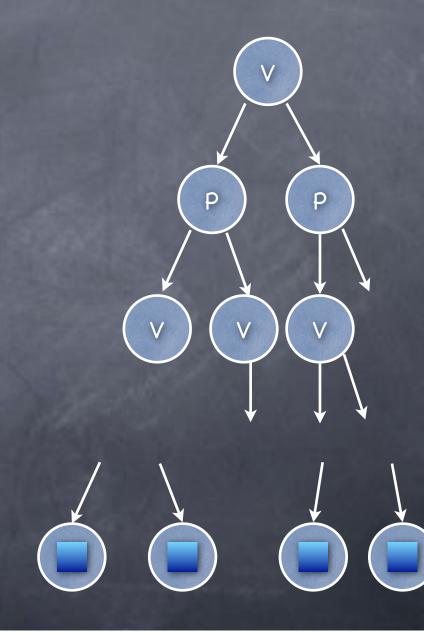


Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

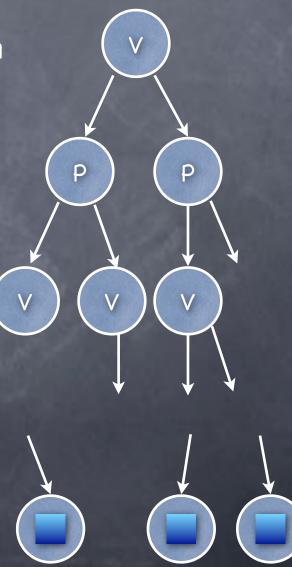
Note that finding the honest prover strategy may require super-PSPACE computation

- Leaves: Pr[yes] = 0 or 1, determined by running verifier's program
- P nodes: max of children
- V nodes: average of children
- In PSPACE: depth polynomial



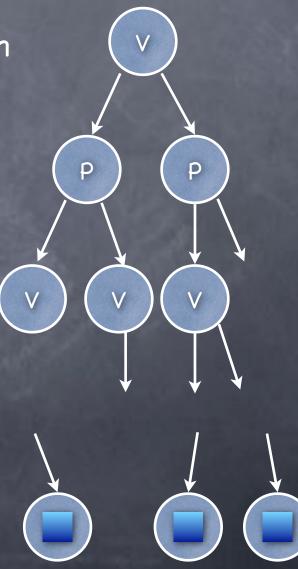


© Calculate max Pr[yes] when prover's strategy can depend only on messages and not private coins



© Calculate max Pr[yes] when prover's strategy can depend only on messages and not private coins

Maintain the set of consistent random-tapes at each V node



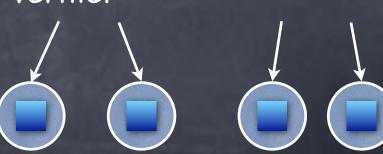
IP PSPACE

Calculate max Pr[yes] when prover's strategy can depend only on messages and not private coins

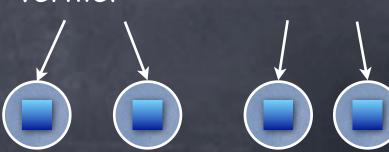
Maintain the set of consistent random-tapes at each V node

© Children of V node not always chosen with 1/2-1/2, probability. Instead weighted by fraction of consistent random-tapes

- Calculate max Pr[yes] when prover's strategy can depend only on messages and not private coins
- Maintain the set of consistent random-tapes at each V node
- © Children of V node not always chosen with 1/2-1/2 probability. Instead weighted by fraction of consistent random-tapes
- Leaves: Pr[yes] determined by running verifier's program on all consistent random-tapes of verifier



- Calculate max Pr[yes] when prover's strategy can depend only on messages and not private coins
- Maintain the set of consistent random-tapes at each V node
- © Children of V node not always chosen with 1/2-1/2/ probability. Instead weighted by fraction of consistent random-tapes
- Leaves: Pr[yes] determined by running verifier's program on all consistent random-tapes of verifier
- P nodes: max of children



- Calculate max Pr[yes] when prover's strategy can depend only on messages and not private coins
- Maintain the set of consistent random-tapes at each V node
- Children of V node not always chosen with 1/2-1/2 probability. Instead weighted by fraction of consistent random-tapes
- Leaves: Pr[yes] determined by running verifier's program on all consistent random-tapes of verifier
- P nodes: max of children
- V nodes: (weighted) average of children

PSPACE \(\subseteq \text{IP} \)

Enough to show an IP protocol for TQBF

- Enough to show an IP protocol for TQBF
 - For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership

- Enough to show an IP protocol for TQBF
 - For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership
- Recall TQBF

PSPACE IP

- Enough to show an IP protocol for TQBF
 - For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership
- Recall TQBF
 - Decide whether a QBF is true or not

- Enough to show an IP protocol for TQBF
 - For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership
- Recall TQBF
 - Decide whether a QBF is true or not
 - @ QBF: Q_1x_1 Q_2x_2 ... Q_nx_n $F(x_1,...,x_n)$ for quantifiers Q_i and a formula F on boolean variables

A Boolean formula as a polynomial

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - O and 1 (identities of addition and multiplication) instead of True and False

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - O and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector \underline{b} and corresponding 0-1 vector \underline{x} we have $F(\underline{b}) = P(\underline{x})$

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - O and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector \underline{b} and corresponding 0-1 vector \underline{x} we have $F(\underline{b}) = P(\underline{x})$
 - NOT: (1-x); AND: x.y

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - O and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector \underline{b} and corresponding 0-1 vector \underline{x} we have $F(\underline{b}) = P(\underline{x})$
 - NOT: (1-x); AND: x.y
 - OR (as NOT of AND of NOT): 1 (1-x).(1-y)

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - O and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector \underline{b} and corresponding 0-1 vector \underline{x} we have $F(\underline{b}) = P(\underline{x})$
 - NOT: (1-x); AND: x.y
 - OR (as NOT of AND of NOT): 1 (1-x).(1-y)
 - Exercise: Arithmetize x=y (now!). Degree? Size?

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - O and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector \underline{b} and corresponding 0-1 vector \underline{x} we have $F(\underline{b}) = P(\underline{x})$
 - NOT: (1-x); AND: x.y
 - OR (as NOT of AND of NOT): 1 (1-x).(1-y)
 - Exercise: Arithmetize x=y (now!). Degree? Size?
 - © Can always use a polynomial linear in each variable since $x^n=x$ for x=0 and x=1

A QBF as a polynomial

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula F, polynomial P

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula F, polynomial P
 - $\exists x \ F(x) \rightarrow P(0) + P(1) > 0 \ (i.e., \Sigma_{x=0,1} \ P(x) > 0)$

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula F, polynomial P

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula F, polynomial P

$$⊗$$
 ∀x F(x) → P(0).P(1) > 0 (i.e., $Π_{x=0,1}$ P(x) > 0)

Extends to more quantifiers: i.e., if F(x) is a QBF above

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula F, polynomial P

- ⊗ ∀x F(x) → P(0).P(1) > 0 (i.e., $Π_{x=0,1}$ P(x) > 0)
- Extends to more quantifiers: i.e., if F(x) is a QBF above
 - So, how do you arithmetize ∃x∀y G(x,y) and ∀y∃x G(x,y)?

- A QBF as a polynomial
 - TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula F, polynomial P

- ⊗ ∀x F(x) → P(0).P(1) > 0 (i.e., $Π_{x=0,1}$ P(x) > 0)
- Extends to more quantifiers: i.e., if F(x) is a QBF above
 - So, how do you arithmetize ∃x∀y G(x,y) and ∀y∃x G(x,y)?

For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n) > 0$, where Q_i are Σ or Π , and P is a (multi-linear) polynomial

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x1=0,1)}$ $Q_{2(x2=0,1)}$... $Q_{n(xn=0,1)}$ $P(x_1,...,x_n) > 0$, where Q_i are Σ or Π , and P is a (multi-linear) polynomial
- \odot Instead suppose all Q_i are Σ

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n) > 0$, where Q_i are Σ or Π , and P is a (multi-linear) polynomial
- \odot Instead suppose all Q_i are Σ
 - Counts number of satisfying assignments to an (unquantified) boolean formula F

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n) > 0$, where Q_i are Σ or Π , and P is a (multi-linear) polynomial
- $\ensuremath{\mathfrak{G}}$ Instead suppose all Q_i are Σ
 - Counts number of satisfying assignments to an (unquantified) boolean formula F
 - Proving > 0 is trivial

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x1=0,1)}$ $Q_{2(x2=0,1)}$... $Q_{n(xn=0,1)}$ $P(x_1,...,x_n) > 0$, where Q_i are Σ or Π , and P is a (multi-linear) polynomial
- $\ensuremath{\mathfrak{G}}$ Instead suppose all Q_i are Σ
 - Counts number of satisfying assignments to an (unquantified) boolean formula F
 - Proving > 0 is trivial
 - Consider proving = K (will be useful in the general case)

Sum-check protocol

To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P

Sum-check protocol only oracle access to p

To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P

- To prove: $\Sigma_{x_1}...\Sigma_{x_n} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - For n>0: Let $R(X) := \sum_{x_2} \sum_{x_n} P(X, x_2, ..., x_n)$

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - For n>0: Let $R(X) := \sum_{x_2...\sum_{x_n}} P(X,x_2,...,x_n)$

Sum-check protocol (Verifier has access to p

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - For n>0: Let $R(X) := \sum_{x_2...\sum_{x_n}} P(X,x_2,...,x_n)$

 - R has only one variable and degree at most d

Sum-check protocol (Verifier has access to protocol)

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - For n>0: Let $R(X) := \sum_{x_2...\sum_{x_n}} P(X,x_2,...,x_n)$

R has only one variable and degree at most d

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - For n>0: Let $R(X) := \sum_{x_2...\sum_{x_n}} P(X,x_2,...,x_n)$

- R has only one variable and degree at most d
- Prover sends T=R (as d+1 coefficients) to verifier

Sum-check protocol (only oracle decess to p

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - For n>0: Let $R(X) := \sum_{x_2...\sum_{x_n}} P(X,x_2,...,x_n)$

 - R has only one variable and degree at most d
 - Prover sends T=R (as d+1 coefficients) to verifier

Only E, no M

Sum-check protocol (only oracle access to a

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Note: to evaluate need to add up 2ⁿ values
 - Base case: n=0. Verifier will simply use oracle access to P.
 - \bullet For n>0: Let $R(X) := \Sigma_{x2}...\Sigma_{xn} P(X,x_2,...,x_n)$

 - R has only one variable and degree at most d
 - Prover sends T=R (as d+1 coefficients) to verifier
 - Verifier checks K = T(0) + T(1). Still needs to check T=R

To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Verifier wants to check $T(X) = R(X) := \sum_{x_2} \sum_{x_n} P(X, x_2, ..., x_n)$

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - The Verifier wants to check $T(X) = R(X) := \sum_{x_2...\sum_{x_n}} P(X,x_2,...,x_n)$
 - Picks random field element a (large enough field)

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Verifier wants to check $T(X) = R(X) := \sum_{x_2} \sum_{x_n} P(X, x_2, ..., x_n)$
 - Picks random field element a (large enough field)
 - Asks prover to prove that T(a) = R(a) = Σ_{x2}...Σ_{xn} P(a,x₂,...,x_n)

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Verifier wants to check $T(X) = R(X) := \sum_{x_2} \sum_{x_n} P(X, x_2, ..., x_n)$
 - Picks random field element a (large enough field)
 - Asks prover to prove that T(a) = R(a) = Σ_{x2}...Σ_{xn} P(a,x₂,...,x_n)
 - Recurse on $P_1(x_2,...,x_n) = P(a,x_2,...,x_n)$ of one variable less

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - Verifier wants to check $T(X) = R(X) := \sum_{x_2} \sum_{x_n} P(X, x_2, ..., x_n)$
 - Picks random field element a (large enough field)
 - Asks prover to prove that $T(a) = R(a) = \Sigma_{x2}...\Sigma_{xn} P(a,x_2,...,x_n)$
 - Recurse on $P_1(x_2,...,x_n) = P(a,x_2,...,x_n)$ of one variable less
 - i.e., Recurse to prove $\Sigma_{x2}...\Sigma_{xn} P_1(x_2,...,x_n) = T(a)$

- To prove: $\Sigma_{x1}...\Sigma_{xn} P(x_1,...,x_n) = K$ for some degree d polynomial P
 - The Verifier wants to check $T(X) = R(X) := \sum_{x_2,..., \sum_{x_n}} P(X,x_2,...,x_n)$
 - Picks random field element a (large enough field)
 - Asks prover to prove that T(a) = R(a) = Σ_{x2}...Σ_{xn} P(a,x₂,...,x_n)
 - Recurse on $P_1(x_2,...,x_n) = P(a,x_2,...,x_n)$ of one variable less
 - \odot i.e., Recurse to prove $\Sigma_{x2}...\Sigma_{xn} P_1(x_2,...,x_n) = T(a)$
 - Note: P_1 has degree at most d; verifier has oracle access to P_1 (as it knows a, and has oracle access to P)

Why does sum-check protocol work?

- Why does sum-check protocol work?
 - Instead of checking T(X) = R(X), simply checks (recursively) if T(a)=R(a) for a single random a in the field

- Why does sum-check protocol work?
 - T(a)=R(a) for a single random a in the field

Why does sum-check protocol work?

- \odot Instead of checking T(X) = R(X), simply checks (recursively) if T(a)=R(a) for a single random a in the field
 - Completeness is obvious

- Why does sum-check protocol work?
- \odot Instead of checking T(X) = R(X), simply checks (recursively) if T(a)=R(a) for a single random a in the field
 - Completeness is obvious
 - Soundness: Since T(X) and R(X) are of degree d, if $T \neq R$, at most d points where they agree

Why does sum-check protocol work?

- \odot Instead of checking T(X) = R(X), simply checks (recursively) if T(a)=R(a) for a single random a in the field
 - Completeness is obvious
 - Soundness: Since T(X) and R(X) are of degree d, if $T \neq R$, at most d points where they agree
 - Error (picking a bad a), with probability ≤ d/p, where field is of size p

- Sum-check protocol Can't afford one check Why does sum-check protocol work?

 - \odot Instead of checking T(X) = R(X), simply checks (recursively) if T(a)=R(a) for a single random a in the field
 - Completeness is obvious
 - Soundness: Since T(X) and R(X) are of degree d, if $T \neq R$, at most d points where they agree
 - Error (picking a bad a), with probability ≤ d/p, where field is of size p
 - Also possible error in recursive step (despite good a)

Why does sum-check protocol work?

- \odot Instead of checking T(X) = R(X), simply checks (recursively) if T(a)=R(a) for a single random a in the field
 - Completeness is obvious
 - Soundness: Since T(X) and R(X) are of degree d, if $T \neq R$, at most d points where they agree
 - Error (picking a bad a), with probability ≤ d/p, where field is of size p
 - Also possible error in recursive step (despite good a)
 - At most nd/p if n variables. Can take p exponential.

For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: $Q_1 \times 1 \dots Q_n \times n$ P(x₁,...,xn) = K

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: $Q_1 \times 1$... $Q_n \times n$ P(x₁,...,xn) = K
- Problem with generalizing sum-check protocol: the univariate poly $R(X) := Q_{2 \times 2}... Q_{n \times n} P(X, X_2, ..., X_n)$ has exponential degree. Verifier can't read T(X)=R(X)

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: Q₁ x₁... Qn xn P(x₁,...,xn) = K
- Problem with generalizing sum-check protocol: the univariate poly $R(X) := Q_{2 \times 2}... Q_{n \times n} P(X, X_2, ..., X_n)$ has exponential degree. Verifier can't read T(X)=R(X)
- Instead of T, can work with "linearization" of T. Roughly:

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: Q₁ x₁... Qn xn P(x₁,...,xn) = K
- Problem with generalizing sum-check protocol: the univariate poly $R(X) := Q_{2 \times 2}... Q_{n \times n} P(X, X_2, ..., X_n)$ has exponential degree. Verifier can't read T(X)=R(X)
- Instead of T, can work with "linearization" of T. Roughly:
 - \circ Prover sends L(X) = (T(1)-T(0)) X + T(0)

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: Q₁ x₁... Qn xn P(x₁,...,xn) = K
- Problem with generalizing sum-check protocol: the univariate poly $R(X) := Q_{2 \times 2}... Q_{n \times n} P(X, X_2, ..., X_n)$ has exponential degree. Verifier can't read T(X)=R(X)
- Instead of T, can work with "linearization" of T. Roughly:

 - Verifier picks random a, and asks prover to show R'(a) = L(a)

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: $Q_1 \times 1$... $Q_n \times n$ P(x₁,...,xn) = K
- Problem with generalizing sum-check protocol: the univariate poly $R(X) := Q_{2 \times 2}... Q_{n \times n} P(X, X_2, ..., X_n)$ has exponential degree. Verifier can't read T(X)=R(X)
- Instead of T, can work with "linearization" of T. Roughly:
 - Prover sends L(X) = (T(1)-T(0)) X + T(0)
 - Verifier picks random a, and asks prover to show R'(a) = L(a)

- For a protocol for TQBF: Give a protocol for proving that $Q_{1(x_1=0,1)}$ $Q_{2(x_2=0,1)}$... $Q_{n(x_1=0,1)}$ $P(x_1,...,x_n)$ > 0, where Q_i are Σ or Π and P is a multi-linear polynomial
 - In fact a protocol to prove: Q₁ x₁... Qn xn P(x₁,...,xn) = K
- Problem with generalizing sum-check protocol: the univariate poly $R(X) := Q_{2 \times 2}... Q_{n \times n} P(X, X_2, ..., X_n)$ has exponential degree. Verifier can't read T(X)=R(X)
- Instead of T, can work with "linearization" of T. Roughly:
 - Prover sends L(X) = (T(1)-T(0)) X + T(0)
 - Verifier picks random a, and asks prover to show R'(a) = L(a)
 - Verifier checks (as appropriate) L(1).L(0) = K or L(1)+L(0) = K

ø IP = PSPACE

- ø IP = PSPACE
- Protocol is public-coin

- ø IP = PSPACE
- Protocol is public-coin
 - IP = AM[poly] = PSPACE

- IP = PSPACE
- Protocol is public-coin
 - ø IP = AM[poly] = PSPACE
- Protocol has perfect completeness