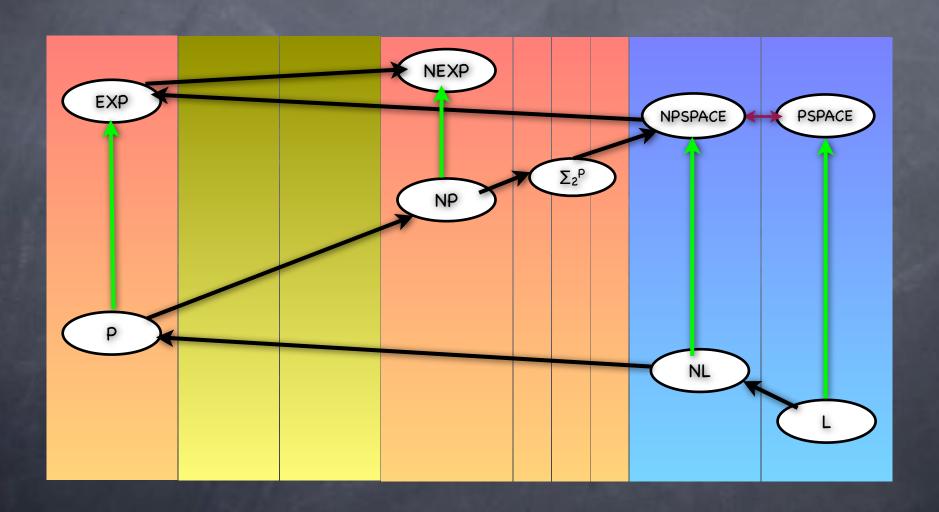
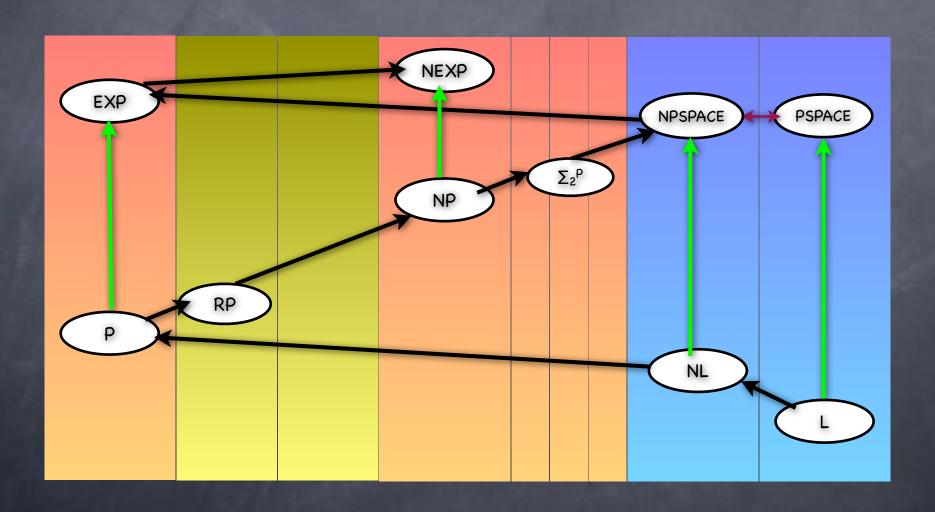
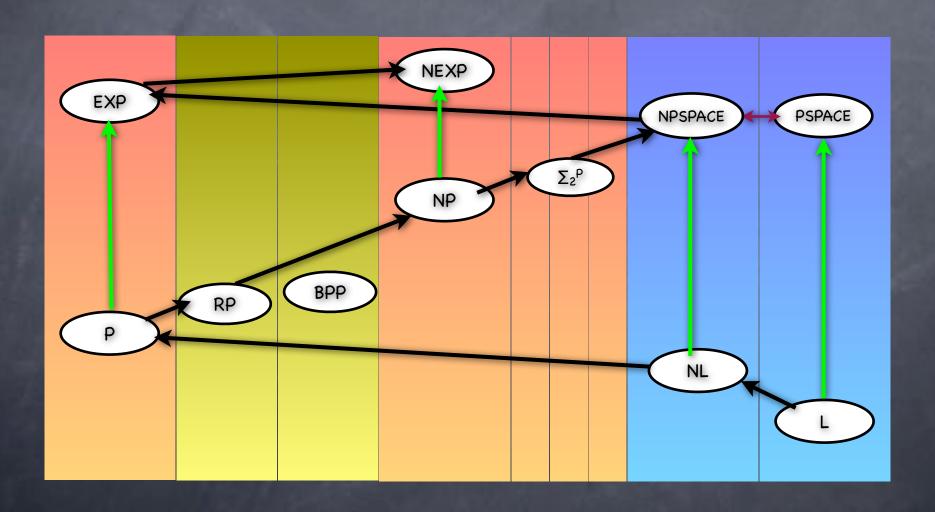
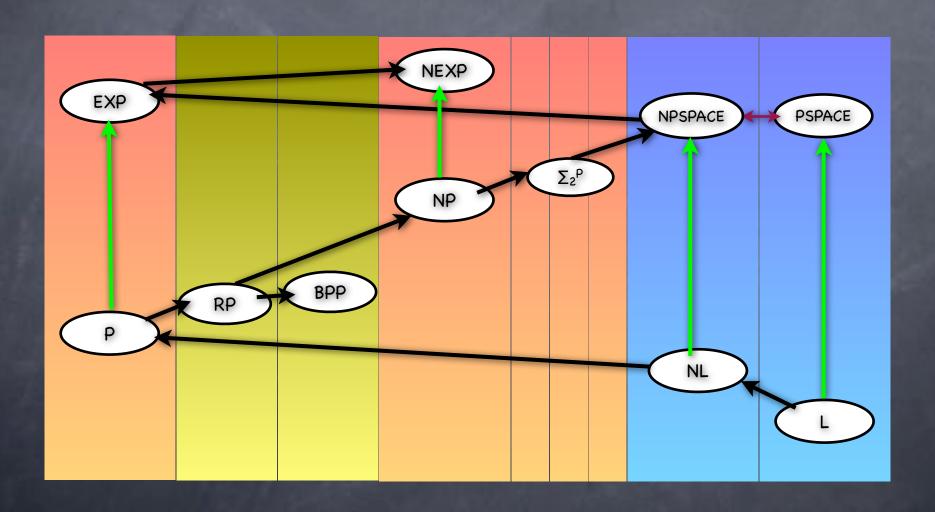
Probabilistic Computation

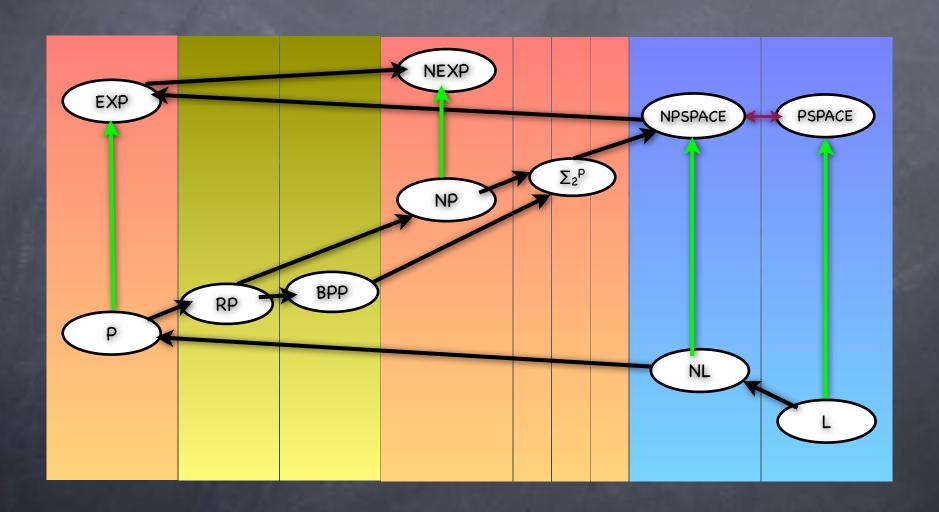
Lecture 14 BPP, ZPP











Some Probabilistic Algorithmic Concepts

Some Probabilistic Algorithmic Concepts

- Sampling to determine some probability
 - © Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate
 - Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.
- Random Walks (for sampling)
 - Monte Carlo algorithms for calculations
 - Reachability tests

Random Walks

Random Walks

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps
- Analyzing a random walk
 - Probability Vector: p
 - Transition probability matrix: M
 - One step of the walk: p' = Mp
 - After t steps: $p^{(t)} = M^t p$

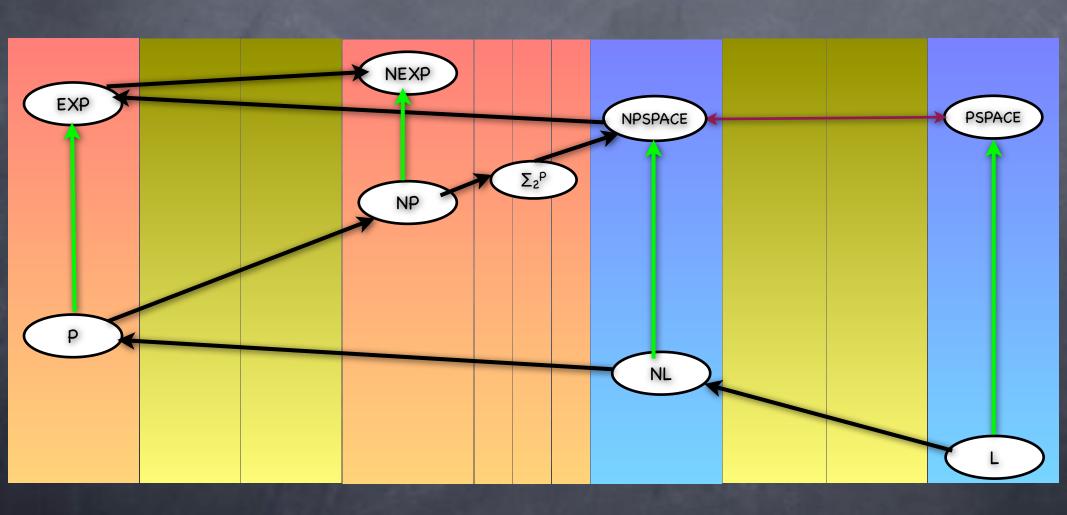
Space-Bounded Probabilistic Computation

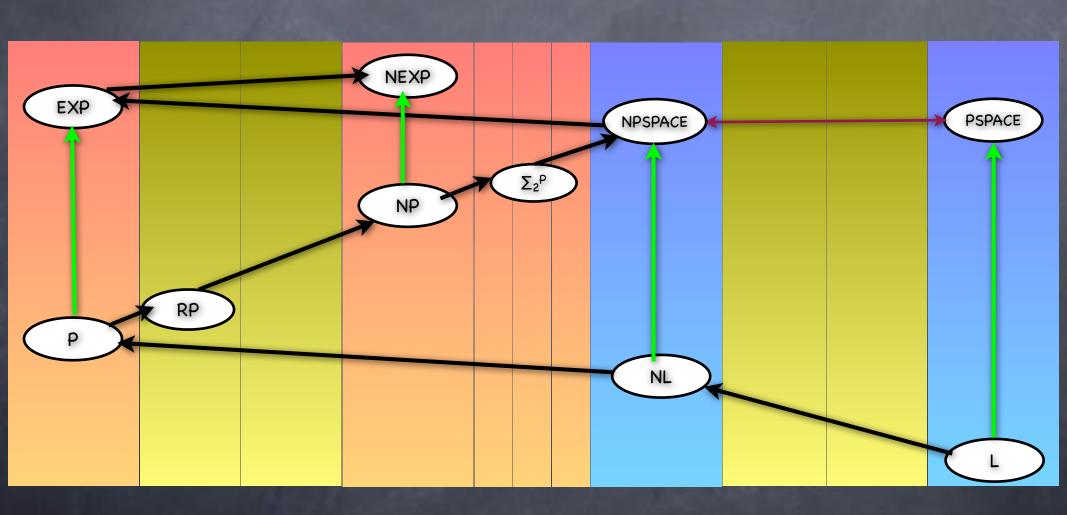
Space-Bounded Probabilistic Computation

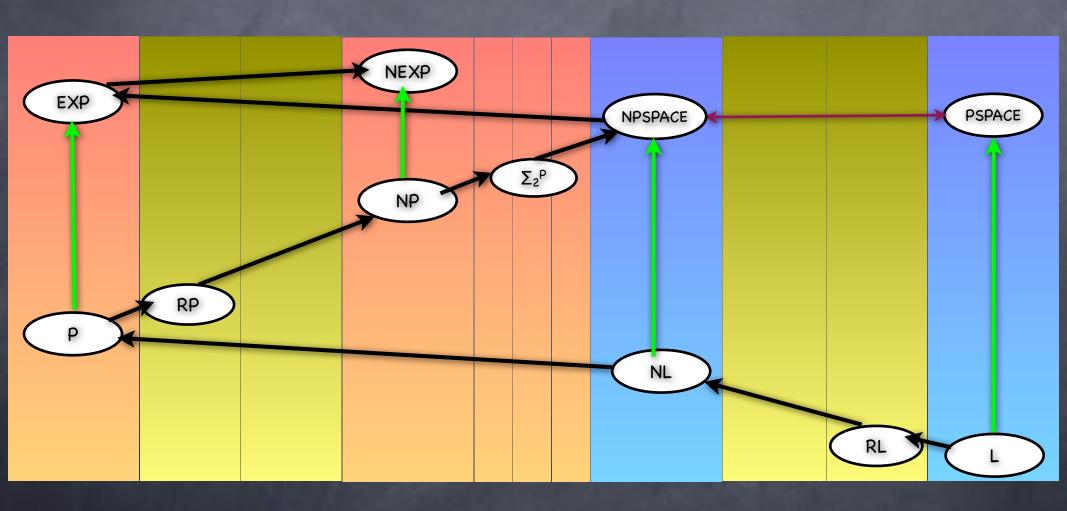
- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
 - Recall NL P (because PATH P)
 - So RL ⊆ P
 - In fact BPL ⊆ P

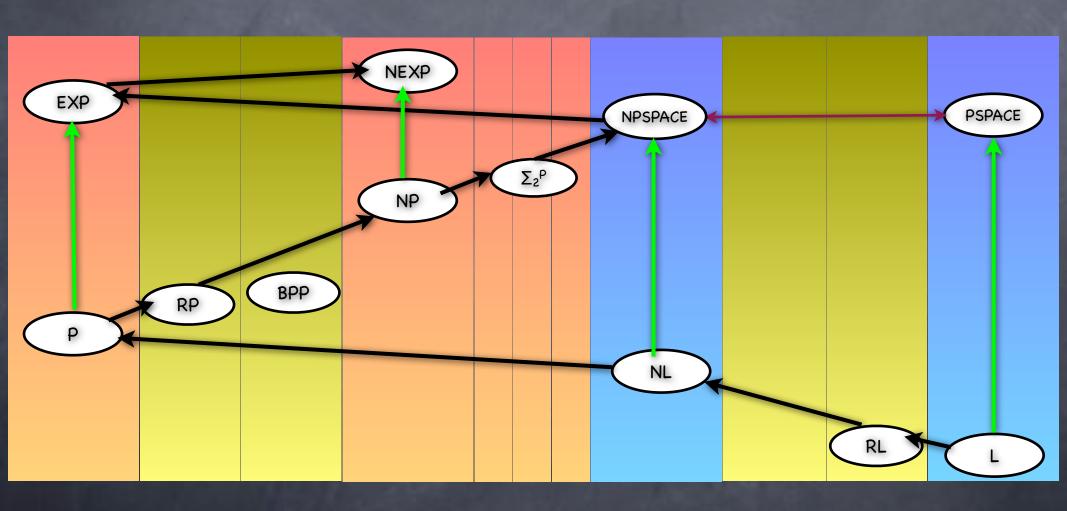
BPL P

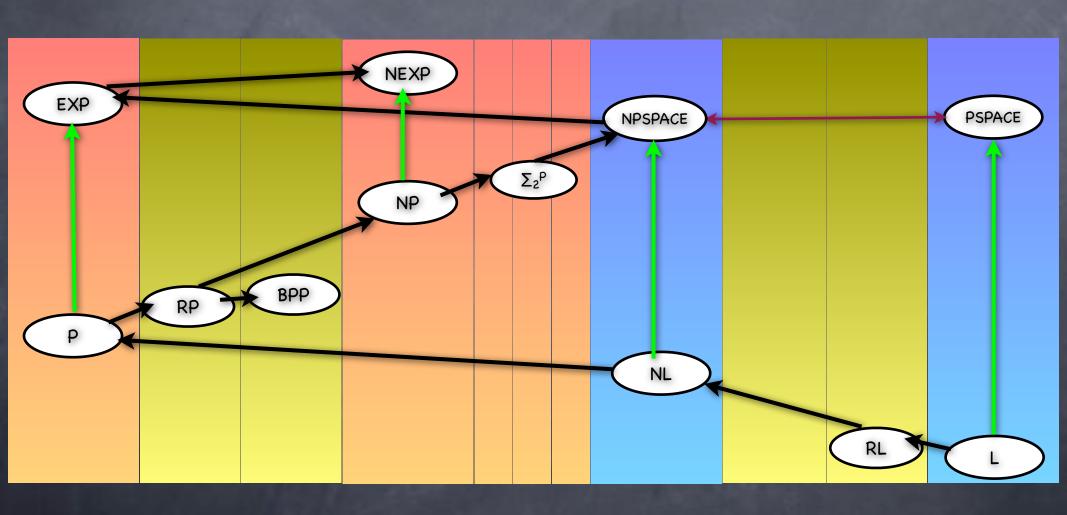
- Consider the BPL algorithm, on input x, as a random walk over states
 - Construct the transition matrix M
 - Size of graph is poly(n), probability values are 0, 0.5 and 1
 - \odot Calculate M^t for t = max running time = poly(n)
 - Accept if (M[†] p_{start})_{accept} > 2/3

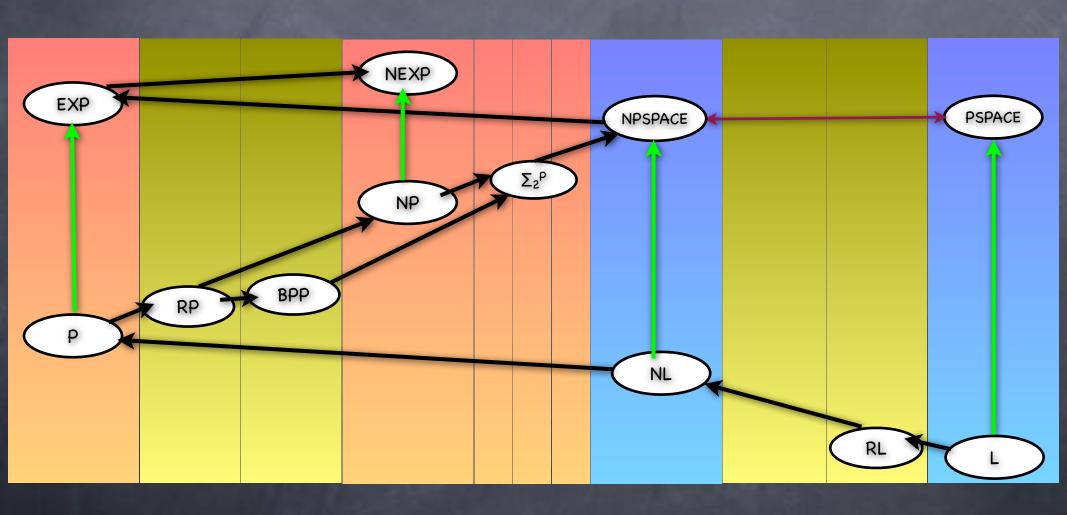


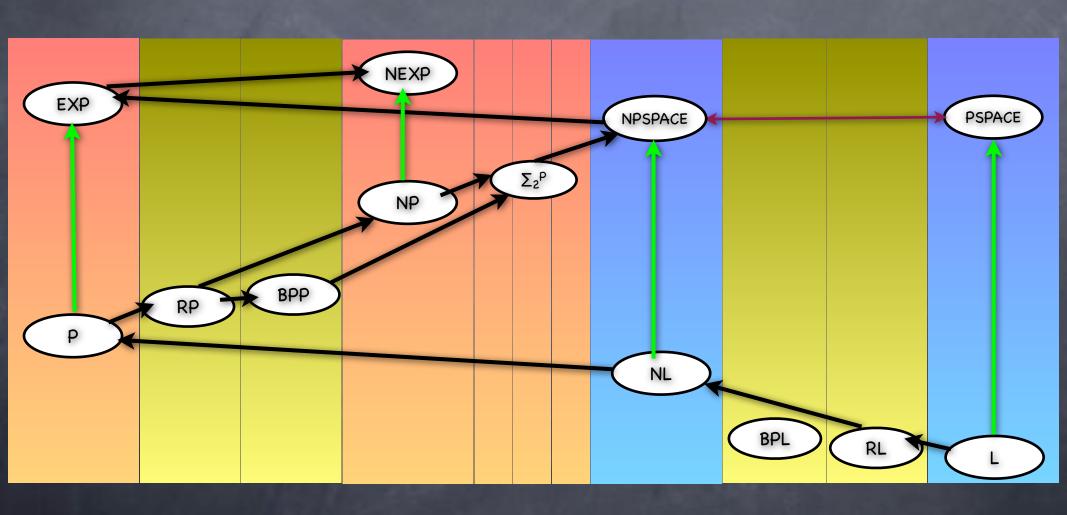


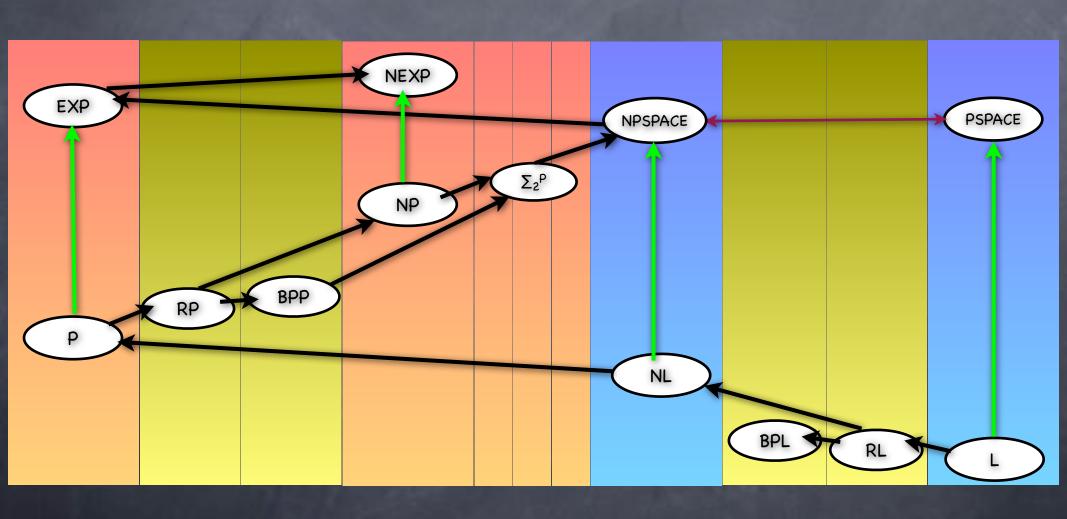


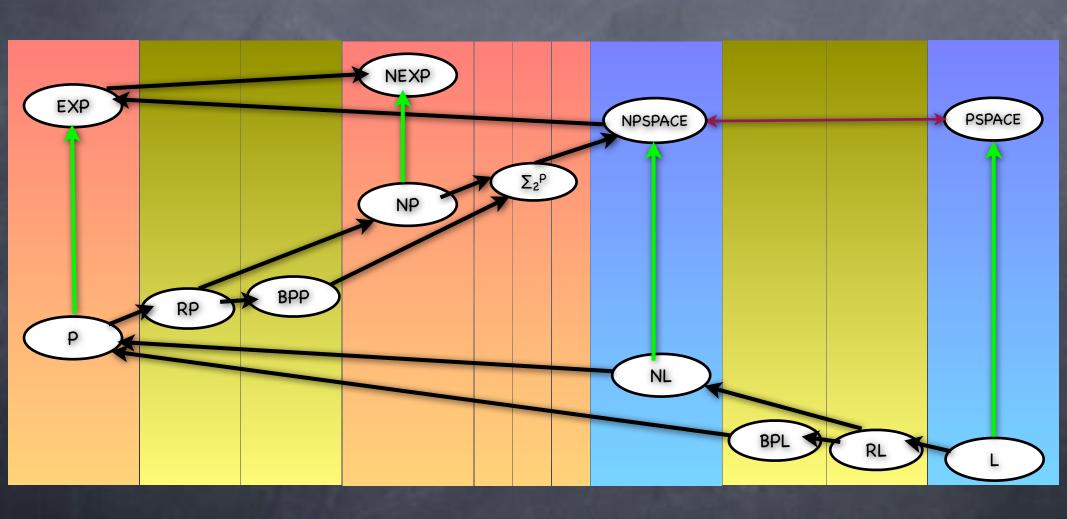












Expected Running Time

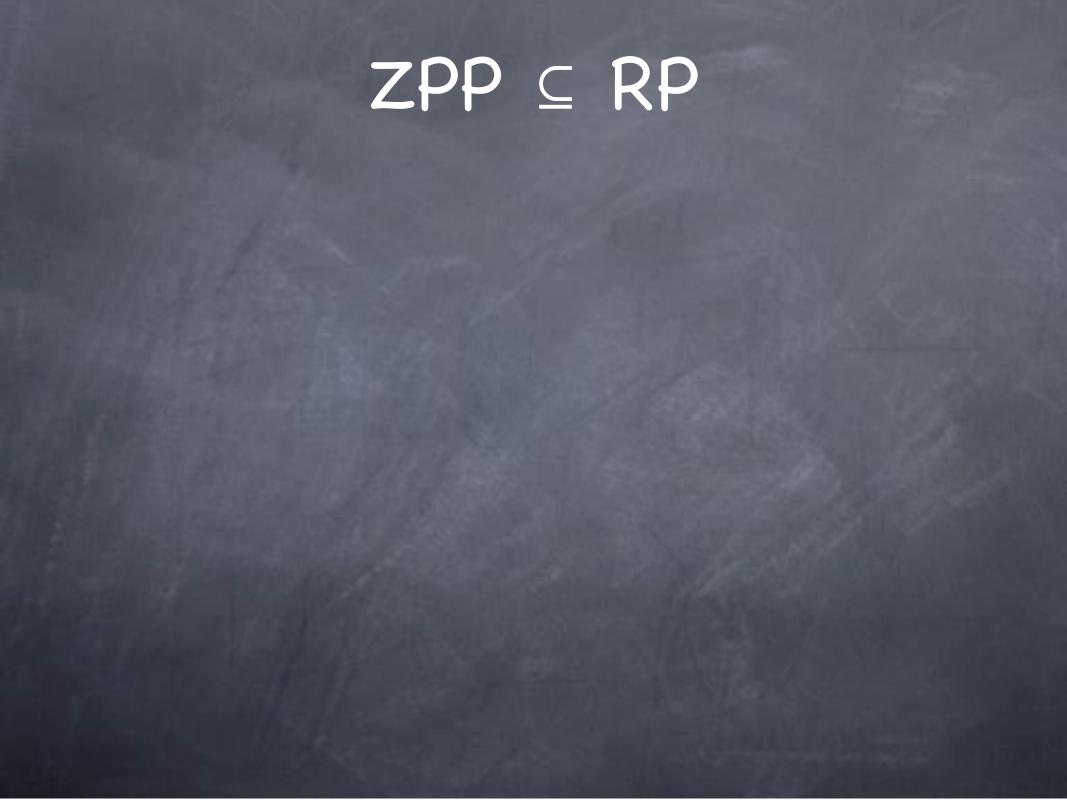
Expected Running Time

- Running time is a random variable too
 - As is the outcome of yes/no
- May ask for running time to be polynomial only in expectation, or with high probability
- Las Vegas algorithms: only expected running time is polynomial; but when it terminates, it produces the correct answer
 - Zero error probability

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes O(n log n) time.)
- Procedure Find-element(L,k) to find kth smallest element in list L
 - Pick random element x in L. Scan L; divide it into L_{>x} (elements > x) and L_{<x} (elements < x); also determine position m of x in L.</p>
 - If m = k, return x. If m > k, call Find-element(L_{⟨x},k), else call Find-element(L_{>x},k-m)
- Correctness obvious. Expected running time?

- Expected running time (worst case over all lists of size n, and all k) be T(n)
- Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).
- T(n) \leq cn + $1/n [\Sigma_{n>j>k}T(j) + \Sigma_{0<j<k}T(n-j)]$
- ▼ T(n) ≤ cn + 1/n.4c[Σ_{j>k} j + Σ_{j<k}(n-j)] by inductive hypothesis
- - T(n) ≤ cn + 3cn as required

- Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)
- ZPTIME(T): class of languages decided by a zeroerror probabilistic TM, with expected running time at most T
- ZPP = ZPTIME(poly)



ZPP RP

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much

 - Markov's inequality
 - Pr[error] changes by at most 1/a if truncated after a times expected running time

$RP \cap co-RP \subseteq ZPP$

$RP \cap co-RP \subseteq ZPP$

- \odot If L \in RP \cap co-RP a ZPP algorithm for L:
 - Run both RP and coRP algorithms
 - If former says yes or latter says no, output that answer
 - Else, i.e., if former says no and latter yes, repeat
 - Expected number of repeats = O(1)



Today

- Zoo
 - BPL ⊆ P
- Expected running time
- Zero-Error probabilistic computation