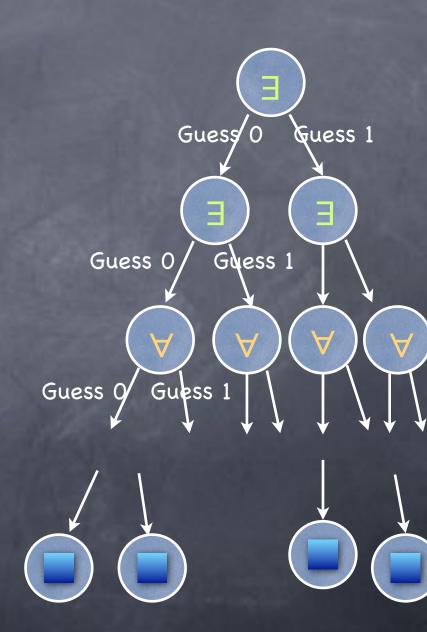
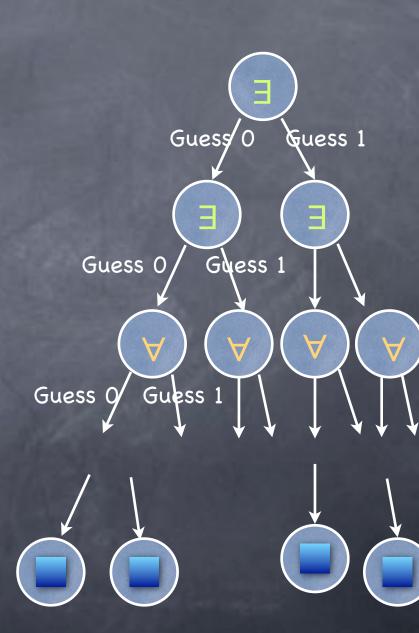
Computational Complexity

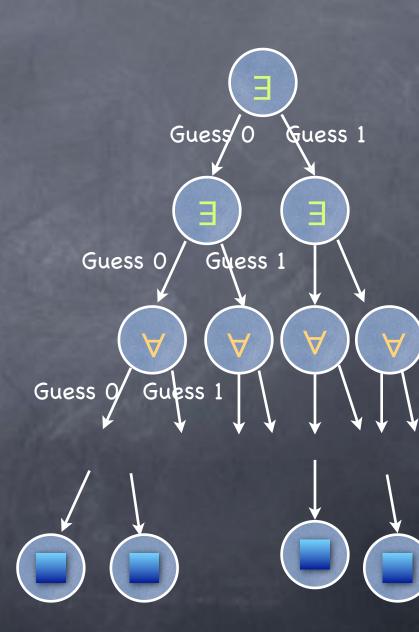
Lecture 9
Alternation
(Continued)



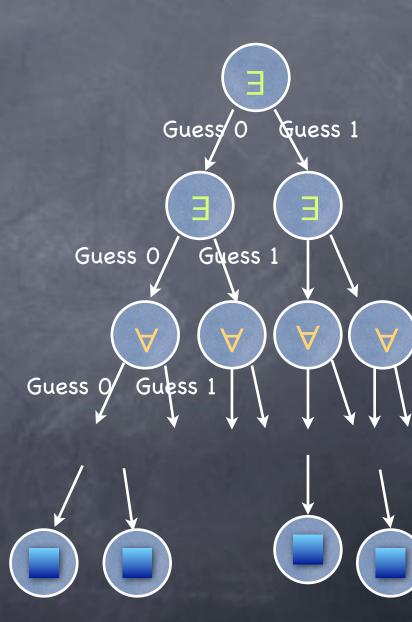
Alternating Turing Machine



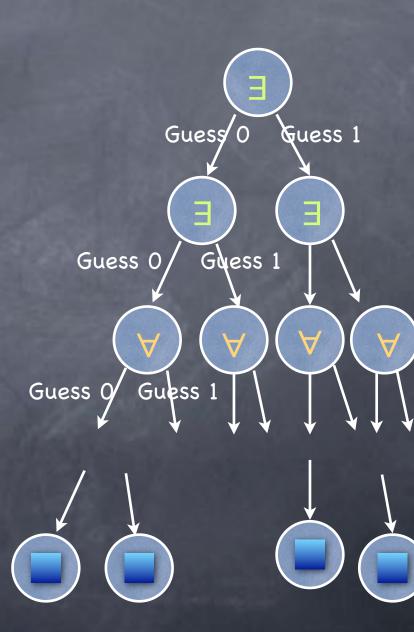
- Alternating Turing Machine
 - At each step, execution can fork into two (like NTM or co-NTM)



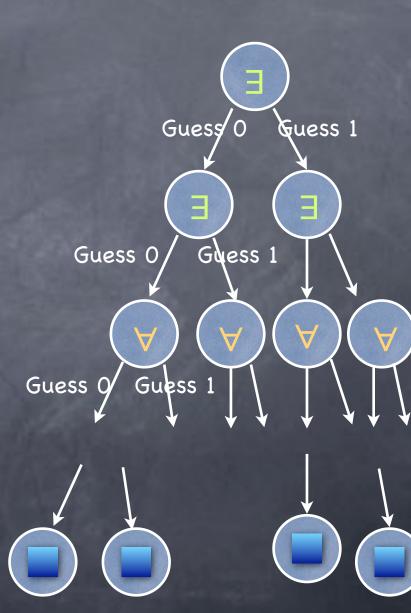
- Alternating Turing Machine
 - At each step, execution can fork into two (like NTM or co-NTM)
- Two kinds of configurations: ∃ and ∀



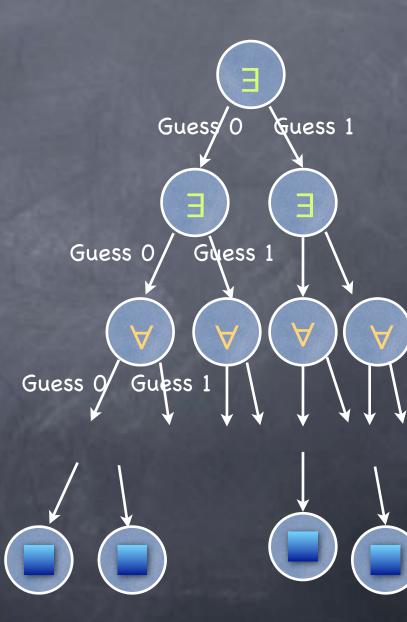
- Alternating Turing Machine
 - At each step, execution can fork into two (like NTM or co-NTM)
- Two kinds of configurations: ∃ and ∀
 - A ∃ configuration is accepting if either child is accepting



- Alternating Turing Machine
 - At each step, execution can fork into two (like NTM or co-NTM)
- Two kinds of configurations: ∃ and ∀
 - A ∃ configuration is accepting if either child is accepting
 - A ∀ configuration is accepting only if both children are accepting



- Alternating Turing Machine
 - At each step, execution can fork into two (like NTM or co-NTM)
- Two kinds of configurations: ∃ and ∀
 - A ∃ configuration is accepting if either child is accepting
 - A ∀ configuration is accepting only if both children are accepting
 - ATM accepts if start config accepts according to this rule



- - AP = PSPACE

- - AP = PSPACE

- - AP = PSPACE
- - AL = P and APSPACE = EXP

To decide, is configuration after t steps accepting

- To decide, is configuration after t steps accepting
 - \circ C(i,j,x): if after i steps, jth cell of config is x

- To decide, is configuration after t steps accepting
 - \circ C(i,j,x): if after i steps, jth cell of config is x
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

- To decide, is configuration after t steps accepting
 - \circ C(i,j,x): if after i steps, jth cell of config is x
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Base case: C(0,j,x) easy to check from input

- To decide, is configuration after t steps accepting
 - \circ C(i,j,x): if after i steps, jth cell of config is x
 - C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
 C(i-1,j+1,c)
 - Base case: C(0,j,x) easy to check from input
 - Naive recursion: Extra O(S) space to store i,j at each level for 2^{O(S)} levels!

ATM to check if C(i,j,x)

- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks

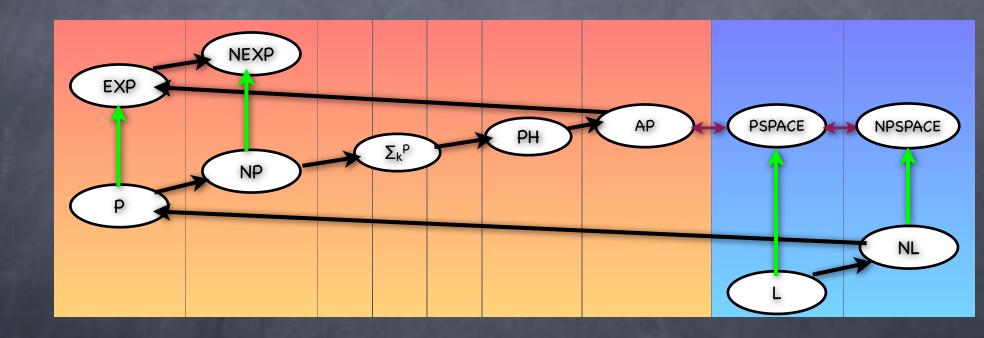
- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - © Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check

- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check
 - Overwrite C(i,j,x) with C(i-1,...) and reuse space

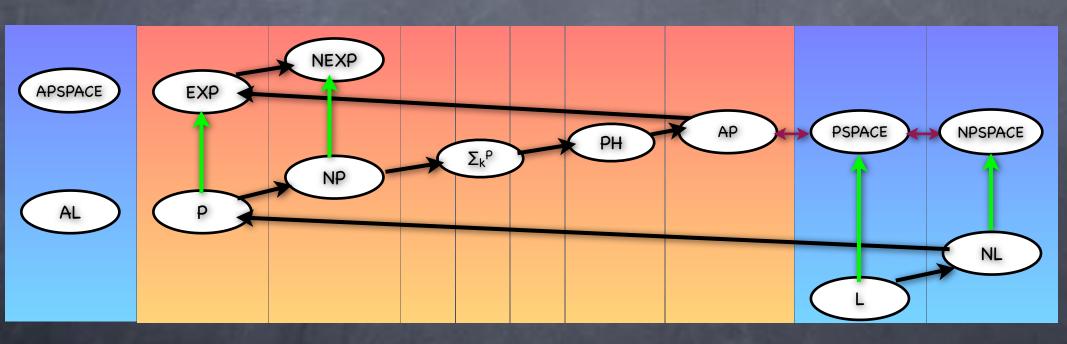
- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - © Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check
 - Overwrite C(i,j,x) with C(i-1,...) and reuse space
 - Stay within the same O(S) space at each level!

- ATM to check if C(i,j,x)
 - \circ C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), for free. No need to use a C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check
 - Overwrite C(i,j,x) with C(i-1,...) and reuse space
 - Stay within the same O(S) space at each level!

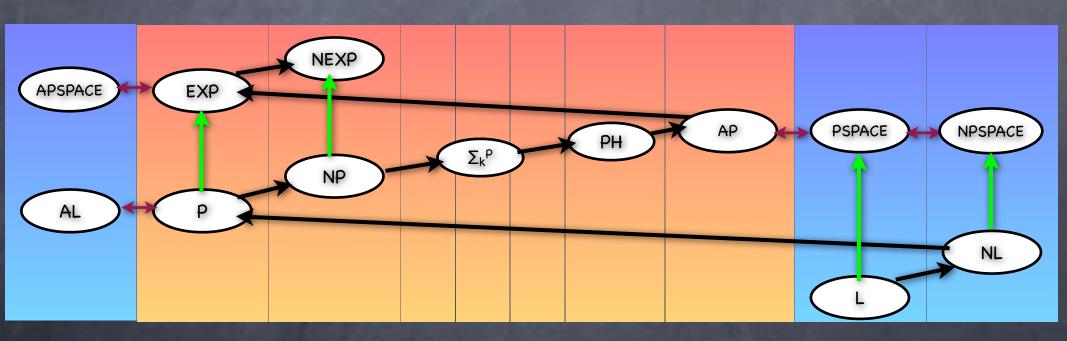
Zoo



Zoo



Zoo



Lecture 10
Non-Uniform Computational Models:
Circuits

Uniform: Same program for all (the infinitely many) inputs

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size
 - Then complexity of building the program and executing the program

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size
 - Then complexity of building the program and executing the program
 - Sometimes will focus on the latter alone

Non-Uniform Computation

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different "program" for each input size
 - Then complexity of building the program and executing the program
 - Sometimes will focus on the latter alone
 - Not entirely realistic if the program family is uncomputable or very complex to compute

Program: TM M and advice strings {A_n}

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n
 - $|A_n| = 2^n$ is sufficient

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n
 - $|A_n|=2^n$ is sufficient
 - But {A_n} can be uncomputable (even if just one bit long)

- Program: TM M and advice strings {A_n}
 - M given A_{|x|} along with x
 - An can be the program for inputs of size n
 - $|A_n|=2^n$ is sufficient
 - But {A_n} can be uncomputable (even if just one bit long)
 - e.g. advice to decide undecidable unary languages

DTIME(T)/a

- DTIME(T)/a
 - Languages decided by a TM in time T(n) using non-uniform advice of length a(n)

- DTIME(T)/a
 - Languages decided by a TM in time T(n) using non-uniform advice of length a(n)

- DTIME(T)/a
 - Languages decided by a TM in time T(n) using non-uniform advice of length a(n)

P/log (or even DTIME(1)/1) has undecidable languages

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
 - So P/log cannot be contained in any of the uniform complexity classes

- P/log (or even DTIME(1)/1) has undecidable languages
 - 👨 e.g. unary undecidable languages
 - So P/log cannot be contained in any of the uniform complexity classes
- P/log contains P

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
 - So P/log cannot be contained in any of the uniform complexity classes
- P/log contains P
 - Does P/log or P/poly contain NP?

Recall finding witness for an NP language is Turing reducible to deciding the language

Recall

Search using Decision

- Suppose given "oracles" for deciding all NP languages, can we easily find certificates?
 - Yes! So, if decision easy (decision-oracles realizable), then search is easy too!
- \circ Say, given x, need to find w s.t. $(x,w) \in L'$ (if such w exists)
 - consider L_1 in NP: $(x,y) \in L_1$ iff $\exists z \text{ s.t. } (x,yz) \in L'$. (i.e., can y be a prefix of a certificate for x).
 - @ Query L_1 -oracle with (x,0) and (x,1). If $\exists w$, one of the two must be positive: say $(x,0) \in L_1$; then first bit of w be 0.
 - \odot For next bit query L₁-oracle with (x,00) and (x,01)

Recall

Search using Decision

- Suppose given "oracles" for deciding all NP languages, can we easily find certificates?
 - Yes! So, if decision easy (decision-oracles research is easy too!
- \circ Say, given x, need to find w s.t. $(x,w) \in L'$ (if sy
- Use L₂ so that (x,z,pad) in L₂ iff (x,z) in L₁. Can query L₂ with same size instances
- ø consider L₁ in NP: (x,y) ∈ L₁ iff ∃z s.t. (x,yz) ∈ L¹. (i.e., can y
 be a prefix of a certificate for x).
- @ Query L_1 -oracle with (x,0) and (x,1). If $\exists w$, one of the two must be positive: say $(x,0) \in L_1$; then first bit of w be 0.
- \odot For next bit query L₁-oracle with (x,00) and (x,01)

Recall finding witness for an NP language is Turing reducible to deciding the language

- Recall finding witness for an NP language is Turing reducible to deciding the language
- If NP ⊆ P/log, then for each L in NP, there is a poly-time
 TM with log advice which can <u>find</u> witness (via self-reduction)

- Recall finding witness for an NP language is Turing reducible to deciding the language
- If NP ⊆ P/log, then for each L in NP, there is a poly-time
 TM with log advice which can <u>find</u> witness (via self-reduction)
- Guess advice (poly many), and for each guessed advice, run the TM and see if it finds witness

- Recall finding witness for an NP language is Turing reducible to deciding the language
- If NP ⊆ P/log, then for each L in NP, there is a poly-time
 TM with log advice which can <u>find</u> witness (via self-reduction)
- Guess advice (poly many), and for each guessed advice, run the TM and see if it finds witness
- If no advice worked (one of them was correct), then input not in language

$$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$$

$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$

 \odot Will show $\Pi_2^P = \Sigma_2^P$

$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^P$

- \odot Will show $\Pi_2^P = \Sigma_2^P$
- © Consider L = $\{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi_2^P$ where $L' = \{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in NP$

$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^p$

- Will show $\Pi_2^P = \Sigma_2^P$
- © Consider L = $\{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi_2^P$ where $L' = \{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in NP$
 - If NP \subseteq P/poly then consider M with advice $\{A_n\}$ which finds witness for L': i.e. if $(x,w_1) \in L'$, then $M(x,w_1;A_n)$ outputs a witness w_2 s.t. $F(x,w_1,w_2)$

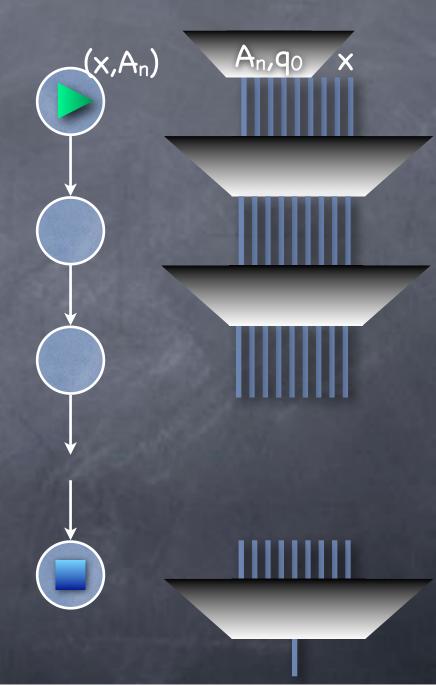
$NP \subseteq P/poly \Rightarrow PH=\Sigma_2^p$

- Will show $\Pi_2^P = \Sigma_2^P$
- © Consider L = $\{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi_2^P$ where L' = $\{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in NP$
 - If NP \subseteq P/poly then consider M with advice $\{A_n\}$ which finds witness for L': i.e. if $(x,w_1) \in L'$, then $M(x,w_1;A_n)$ outputs a witness w_2 s.t. $F(x,w_1,w_2)$

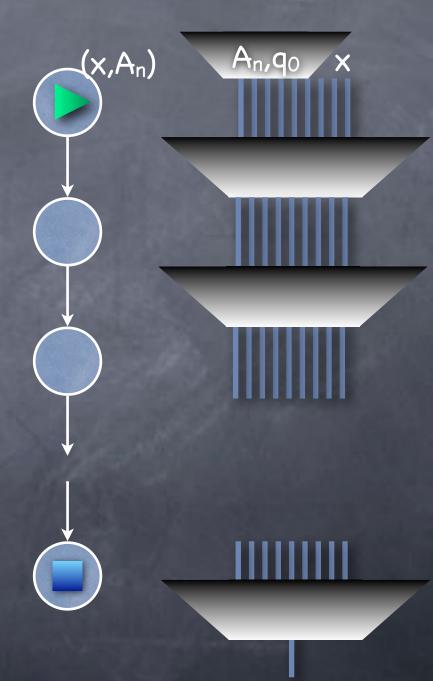
Non-uniformity: circuit family {C_n}

- Non-uniformity: circuit family {C_n}
 - © Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$

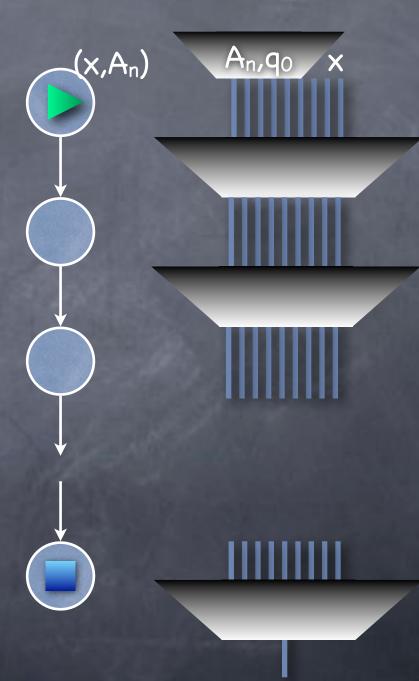
- Non-uniformity: circuit family {C_n}
 - © Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$



- Non-uniformity: circuit family {C_n}
 - Given non-uniform computation (M,{A_n}), can define equivalent $\{C_n\}$
 - \circ Advice A_n is hard-wired into circuit C_n



- Non-uniformity: circuit family {C_n}
 - Given non-uniform computation (M,{A_n}), can define equivalent $\{C_n\}$
 - Advice A_n is hard-wired into circuit C_n
 - Size of circuit polynomially related to running time of TM

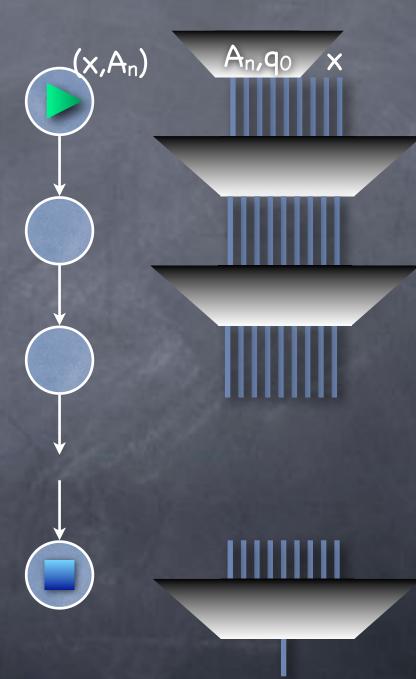


Non-uniformity: circuit family $\{C_n\}$

Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$ hines or

Advice An is hard-wired into circuit Cn

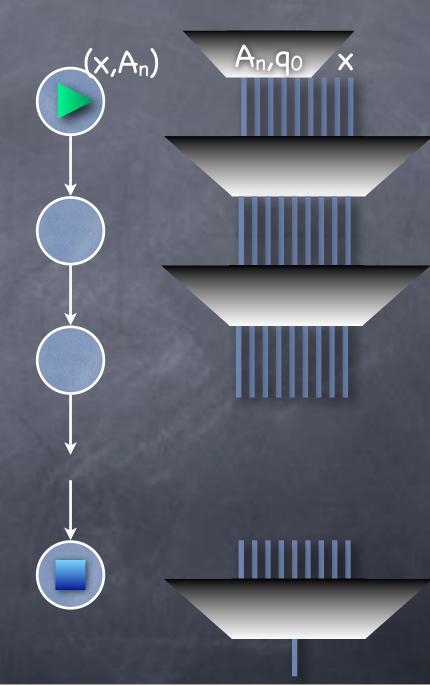
Size of circuit polynomially related to running time of TM



- Non-uniformity: circuit family {C_n}
- Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$ Wires or

Advice An is hard-wired into circuit Cn

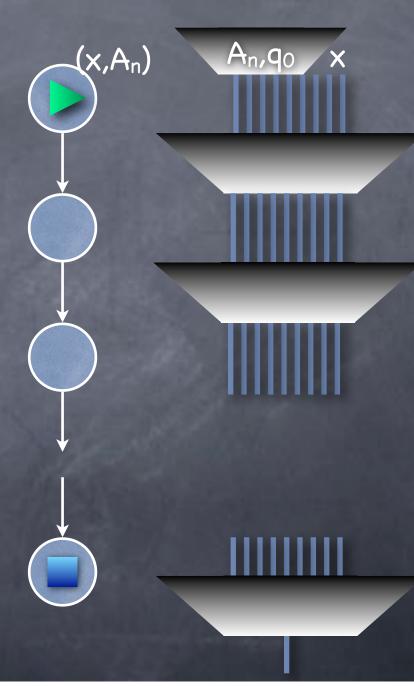
- Size of circuit polynomially related to running time of TM
- Conversely, given {C_n}, can use description of C_n as advice A_n for a "universal" TM



- Non-uniformity: circuit family {C_n}
- Given non-uniform computation $(M,{A_n})$, can define equivalent $\{C_n\}$ Wires or

Advice An is hard-wired into circuit Cn

- Size of circuit polynomially related to running time of TM
- Conversely, given {C_n}, can use description of C_n as advice A_n for a "universal" TM
 - |A_n| comparable to size of circuit Cn



SIZE(T): languages solved by circuit families of size T(n)

- SIZE(T): languages solved by circuit families of size T(n)
- P/poly = SIZE(poly)

- SIZE(T): languages solved by circuit families of size T(n)
- P/poly = SIZE(poly)
 - SIZE(poly) ⊆ P/poly: Size T circuit can be described in O(T log T) bits (advice). Universal TM can evaluate this circuit in poly time

- SIZE(T): languages solved by circuit families of size T(n)
- P/poly = SIZE(poly)
 - SIZE(poly) ⊆ P/poly: Size T circuit can be described in O(T log T) bits (advice). Universal TM can evaluate this circuit in poly time
 - P/poly ⊆ SIZE(poly): Transformation from Cook's theorem, with advice string hardwired into circuit

All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - © Circuit encodes truth-table

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}

- All languages (decidable or not) are in SIZE(T) for T=O(n2ⁿ)
 - Circuit encodes truth-table
- \odot Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}

 - Number of languages = 2^{2ⁿ}

SIZE(T') ⊆ SIZE(T) if T=Ω(†2†) and T'=O(2†/†)

- SIZE(T') ⊆ SIZE(T) if T=Ω(†2†) and T'=O(2†/†)
 - Consider functions on t bits (ignoring n-t bits)

- SIZE(T') ⊆ SIZE(T) if T=Ω(†2†) and T'=O(2†/†)
 - Consider functions on t bits (ignoring n-t bits)
 - All of them in SIZE(T), most not in SIZE(T')

Circuits are interesting for their structure too (not just size)!

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs
- Logspace-uniform:

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs
- Logspace-uniform:
 - An O(log n) space TM can compute the circuit

NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
 - NC with bounded fan-in and AC with unbounded fan-in

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
 - NC with bounded fan-in and AC with unbounded fan-in
 - NCⁱ: decided by bounded fan-in logspace-uniform circuits of poly size and depth O(logⁱ n)

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
 - NC with bounded fan-in and AC with unbounded fan-in
 - NCi: decided by bounded fan-in logspace-uniform circuits of poly size and depth O(logi n)
 - O NC = $\cup_{i>0}$ NC

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
 - NC with bounded fan-in and AC with unbounded fan-in
 - NCi: decided by bounded fan-in logspace-uniform circuits of poly size and depth O(logi n)
 - O NC = $\cup_{i>0}$ NC
 - Similarly AC^i and $AC = \bigcup_{i>0} AC^i$

NCi and ACi

NCi and ACi

O $NC^i \subseteq AC^i \subseteq NC^{i+1}$

NCi and ACi

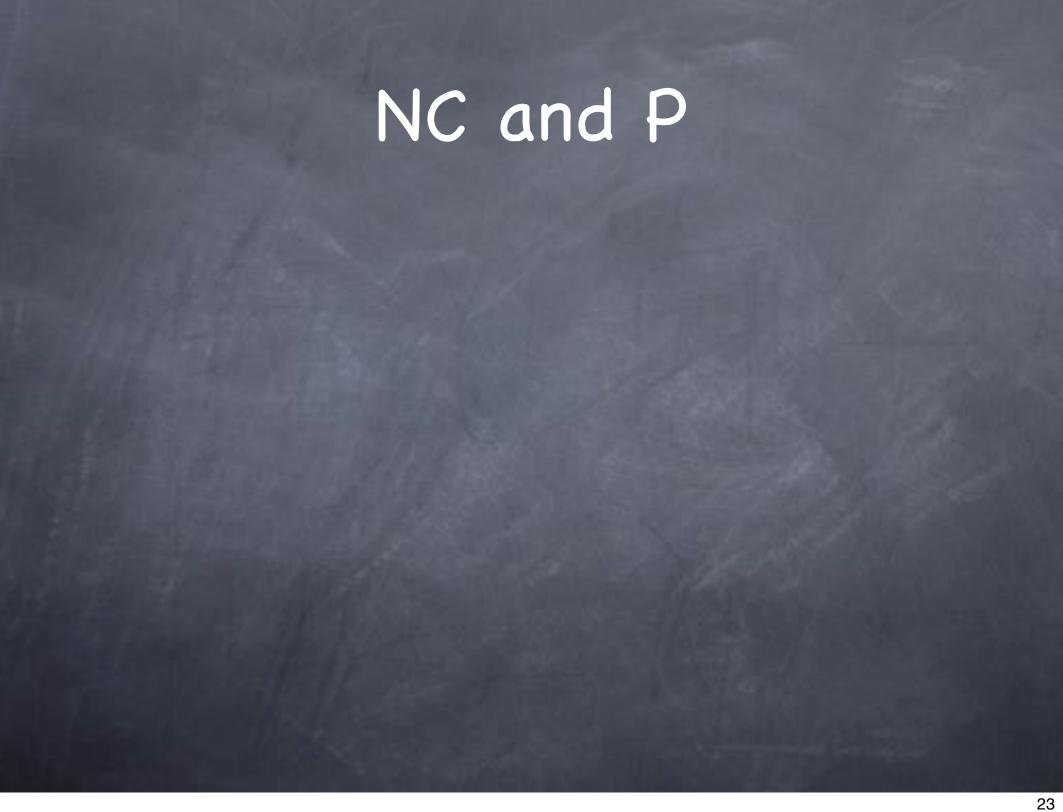
- O $NC^i \subseteq AC^i \subseteq NC^{i+1}$
 - \odot Clearly $NC^i \subseteq AC^i$

NCi and ACi

- $NC^i \subseteq AC^i \subseteq NC^{i+1}$
 - Clearly NCⁱ ⊆ ACⁱ

NCi and ACi

- $NC^i \subseteq AC^i \subseteq NC^{i+1}$
 - Clearly NCⁱ ⊆ ACⁱ
 - ACⁱ ⊆ NCⁱ⁺¹ because polynomial fan-in can be reduced to constant fan-in by using a log depth tree
- So NC = AC



NC and P

ø NC ⊆ P

NC and P

- NC ⊆ P
 - Build the circuit in logspace (so poly time) and evaluate it in time polynomial in the size of the circuit

NC and P

- NC ⊆ P
 - Build the circuit in logspace (so poly time) and evaluate it in time polynomial in the size of the circuit
- Open problem: Is NC = P?

Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
 - Corresponds to NC

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
 - Corresponds to NC
 - Depth translates to time

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
 - Corresponds to NC
 - Depth translates to time
 - Total "work" is size of the circuit