Computational Complexity

Lecture 9
More of the Polynomial Hierarchy
Alternation

Recall Σ_kp

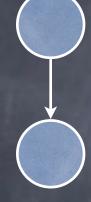
- \odot Recall Σ_k^p
 - Languages L = {x| ∃w₁∀w₂...Qwk F(x;w₁,w₂,..,wk)}, where F in P

- \odot Recall Σ_k^p
 - Languages L = {x| ∃w₁∀w₂...Qw_k F(x;w₁,w₂,...,w_k)}, where F in P
 - © Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates

- \odot Recall Σ_k^p
 - Languages L = {x| ∃w₁∀w₂...Qw_k F(x;w₁,w₂,..,w_k)}, where F in P
 - Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates
 - Tapes read one after the other

- \odot Recall Σ_k^p
 - Languages L = {x| ∃w₁∀w₂...Qw_k F(x;w₁,w₂,..,w_k)}, where F in P
 - Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates
 - Tapes read one after the other

- \odot Recall Σ_k^p
 - Languages L = {x| ∃w₁∀w₂...Qw_k F(x;w₁,w₂,..,w_k)}, where F in P
 - Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates
 - Tapes read one after the other
- Plan: Formulate in terms of a non-deterministic TM (with no certificates)



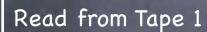
Read from Tape 1

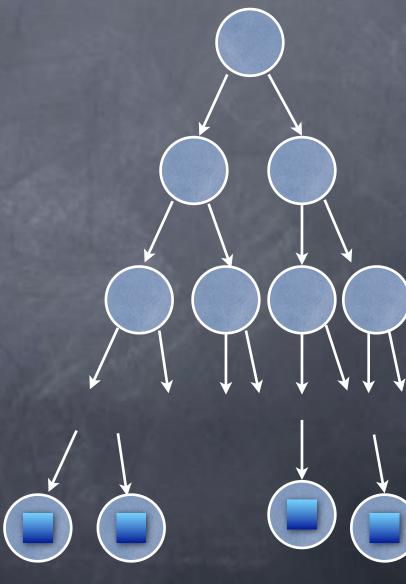
Read from Tape 1

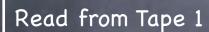
Read from Tape 1

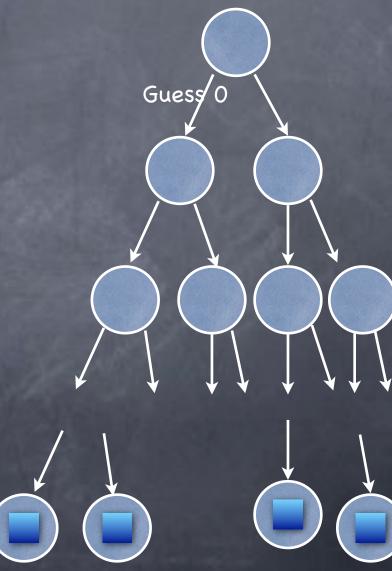
Read from Tape 1



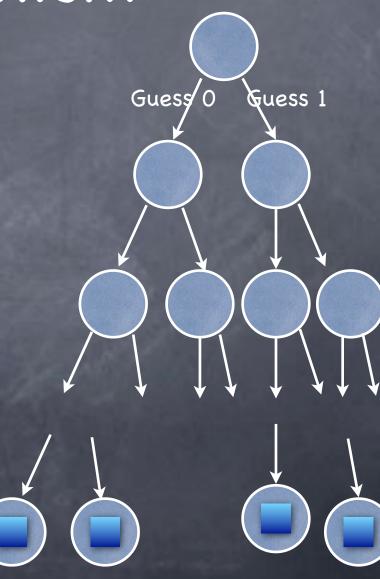


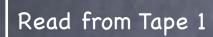


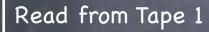


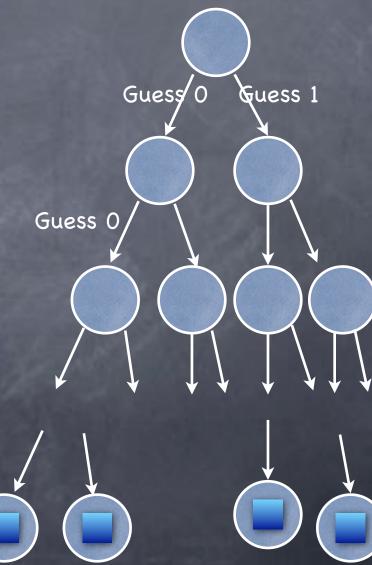


Read from Tape 1

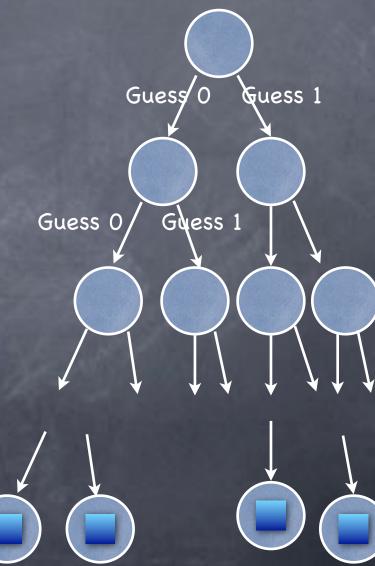


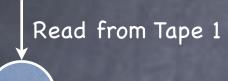






Read from Tape 1





Read from Tape 1

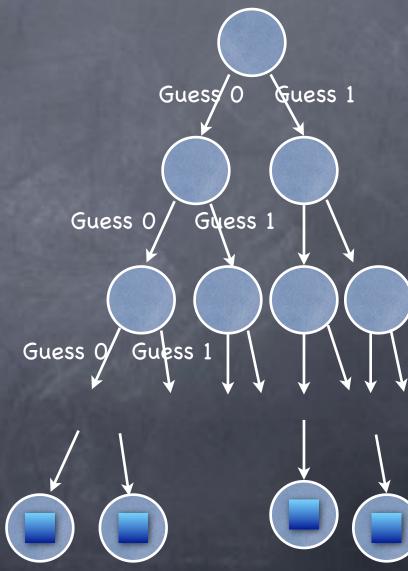
Guess 0

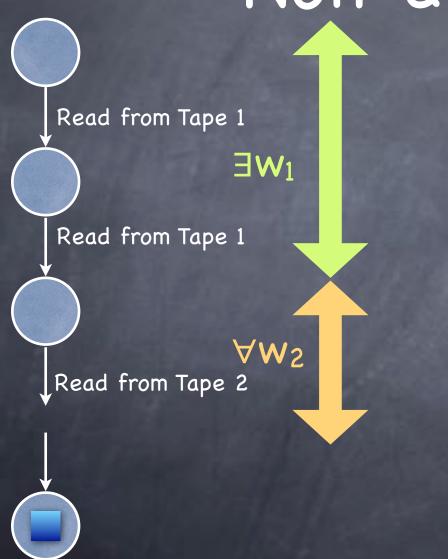
Guess 0

Gliess 1

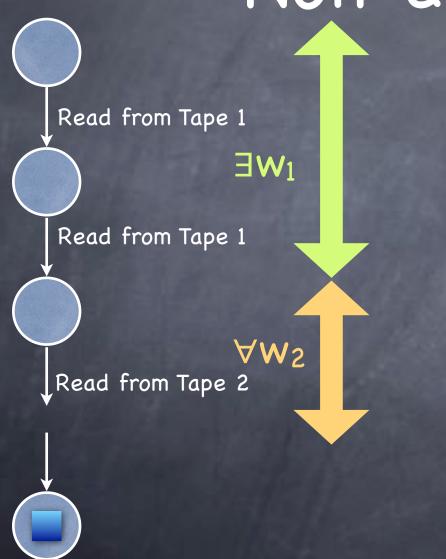
Guess 1

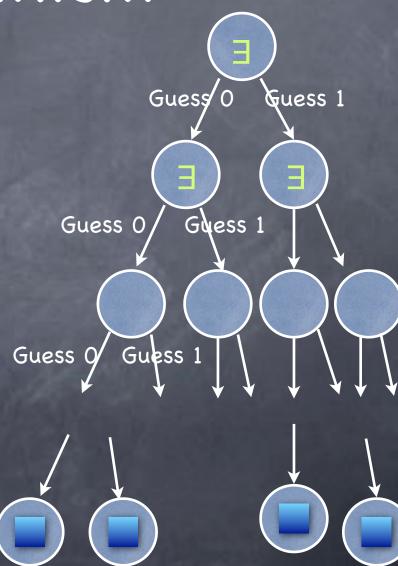


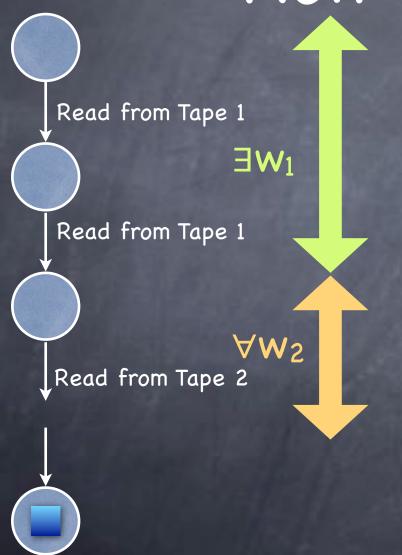


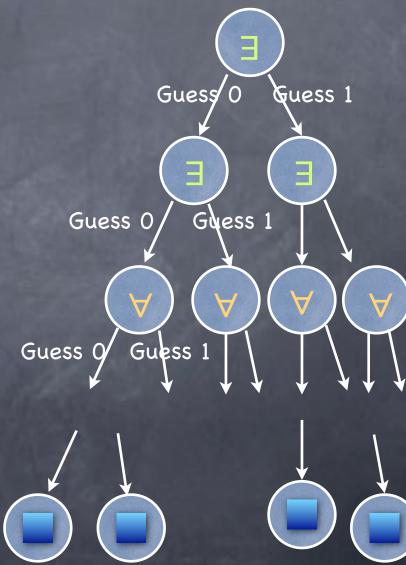


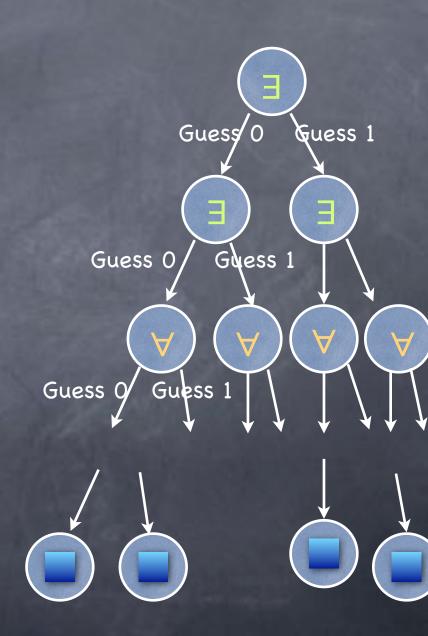




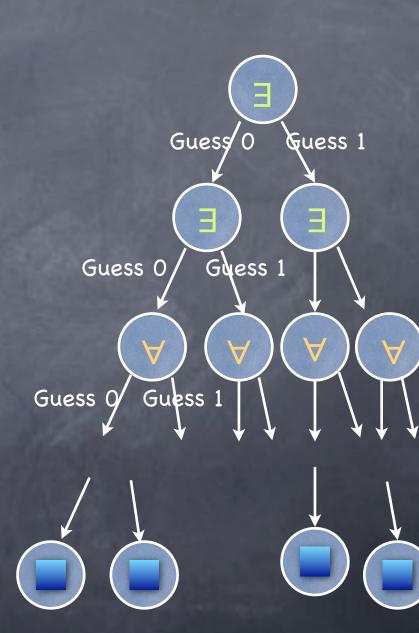






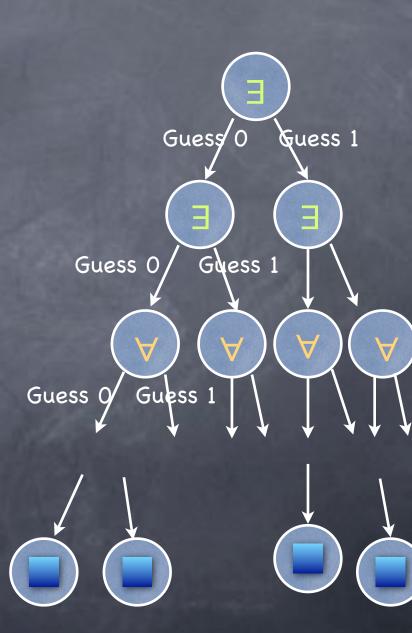


Alternating Turing Machine

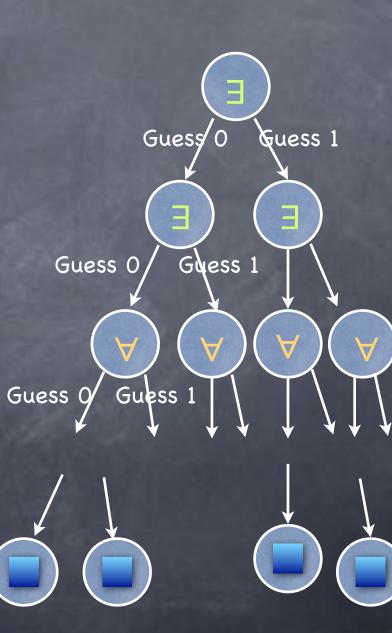


MTA

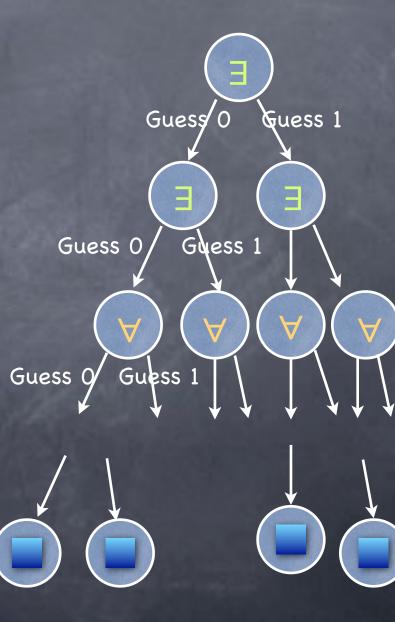
- Alternating Turing Machine
 - At each step, execution can fork into two



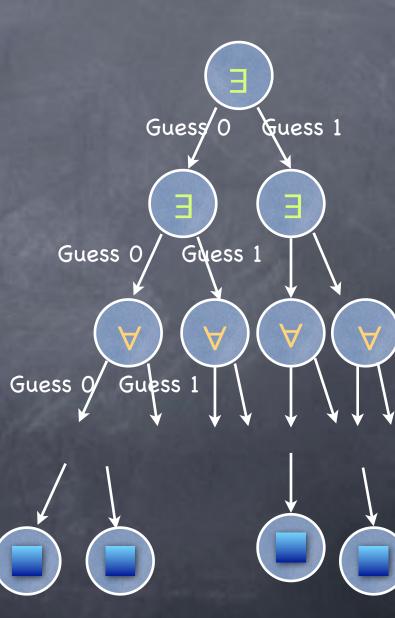
- Alternating Turing Machine
 - At each step, execution can fork into two
 - Exactly like an NTM or co-NTM

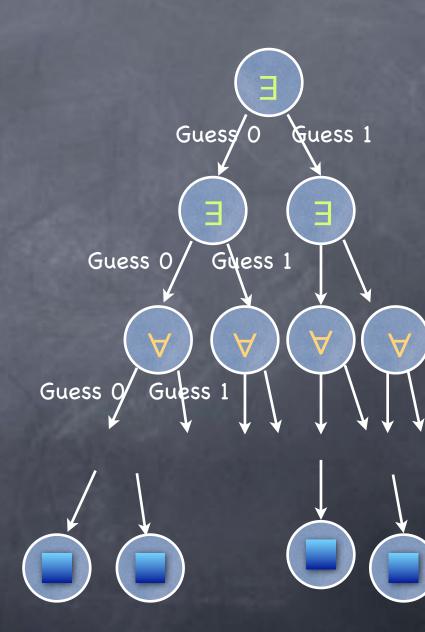


- Alternating Turing Machine
 - At each step, execution can fork into two
 - Exactly like an NTM or co-NTM
 - Accepting rule is more complex

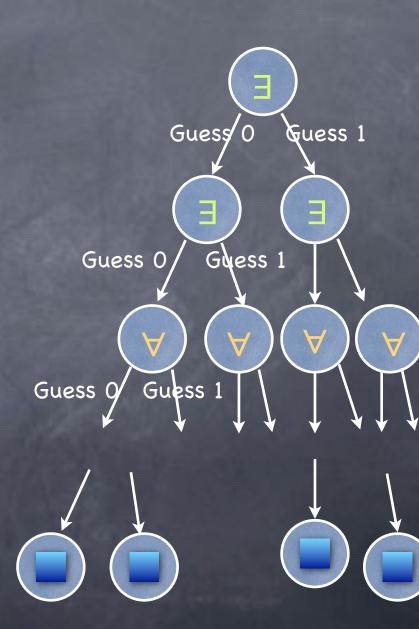


- Alternating Turing Machine
 - At each step, execution can fork into two
 - Exactly like an NTM or co-NTM
 - Accepting rule is more complex
 - Like in the game tree for QBF

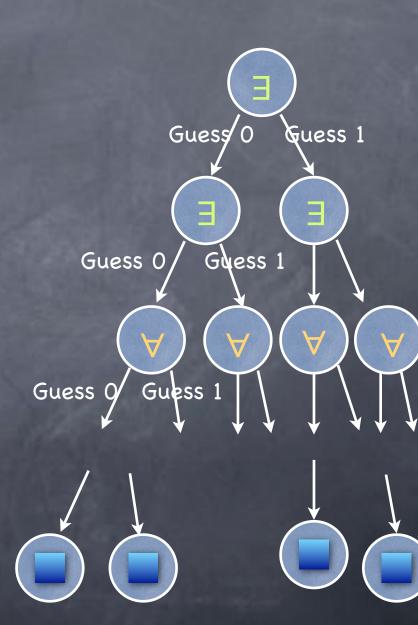




Two kinds of configurations: ∃ and ∀

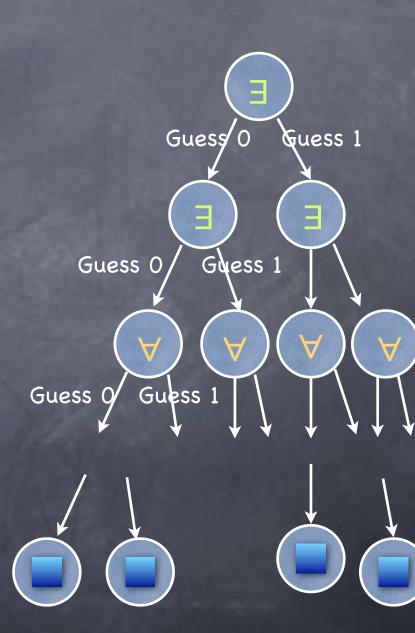


- Two kinds of configurations: ∃ and ∀
 - Depending on the state



ATM

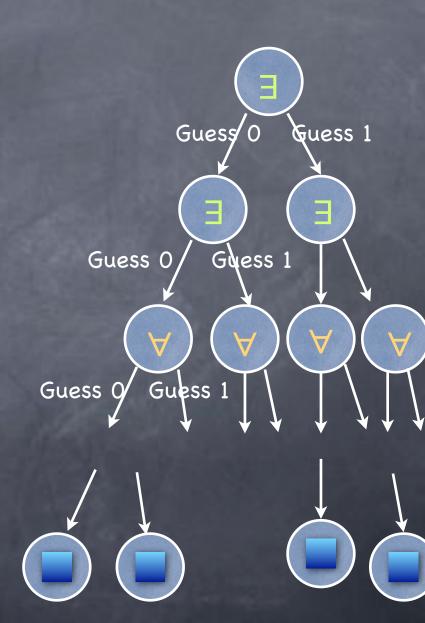
- Two kinds of configurations: ∃ and ∀
 - Depending on the state

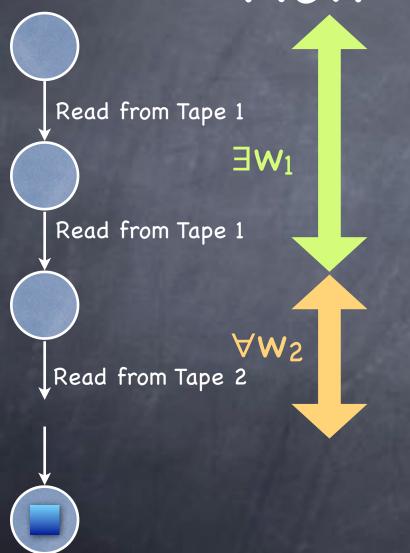


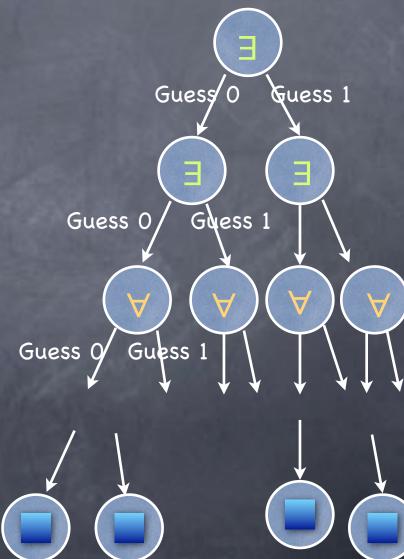
ATM

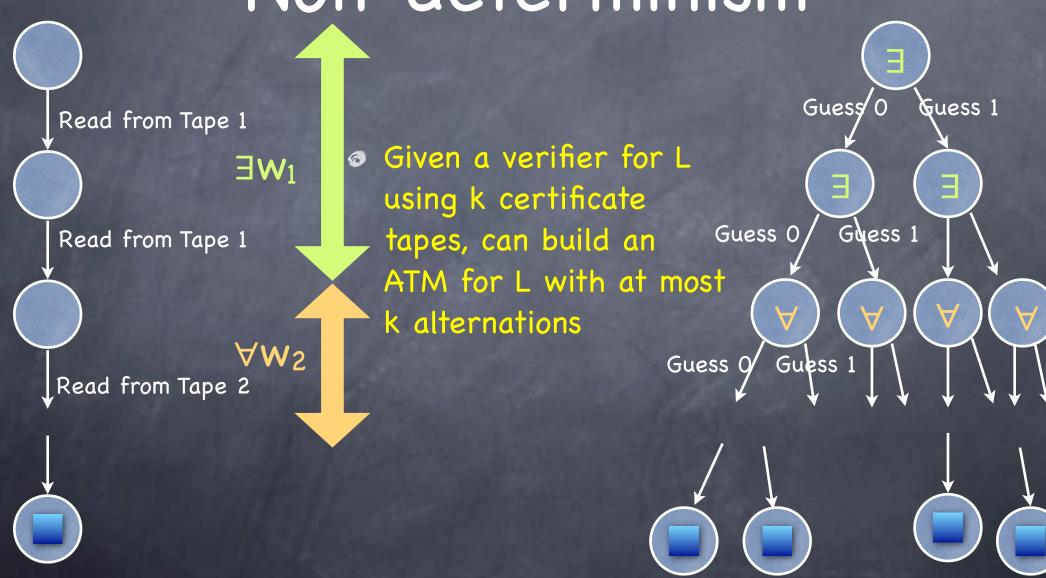
- Two kinds of configurations: ∃ and ∀
 - Depending on the state

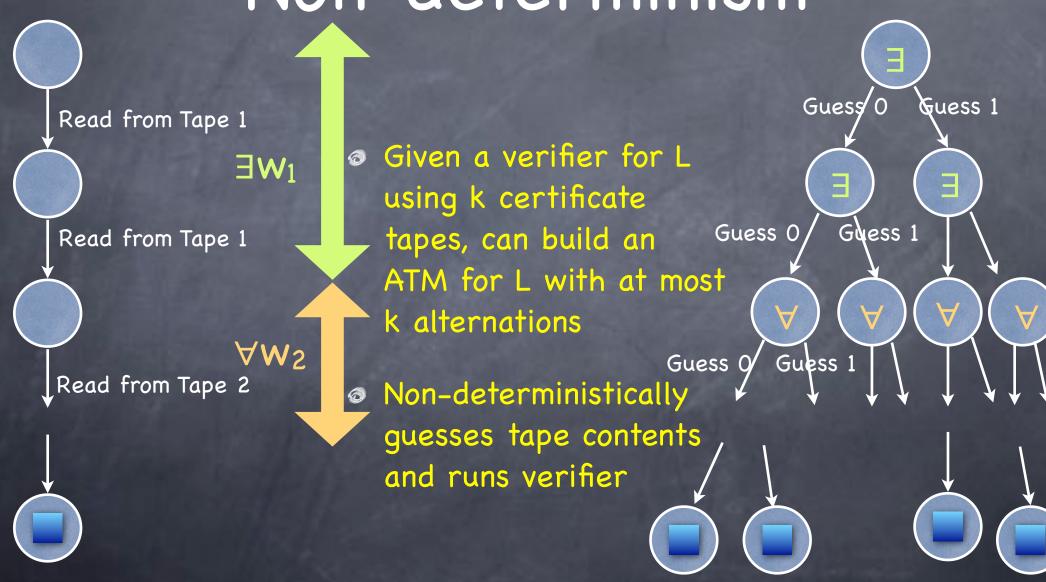
 - A ∀ configuration is accepting only if both children are accepting

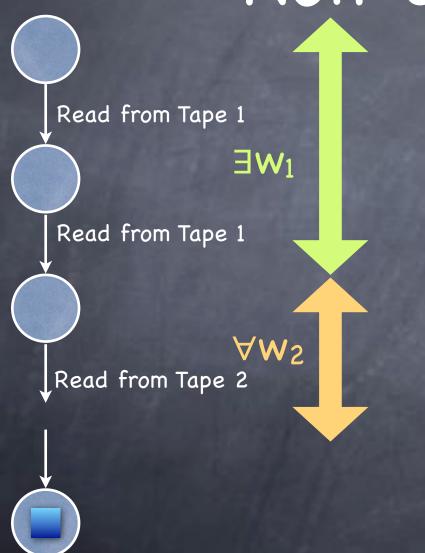


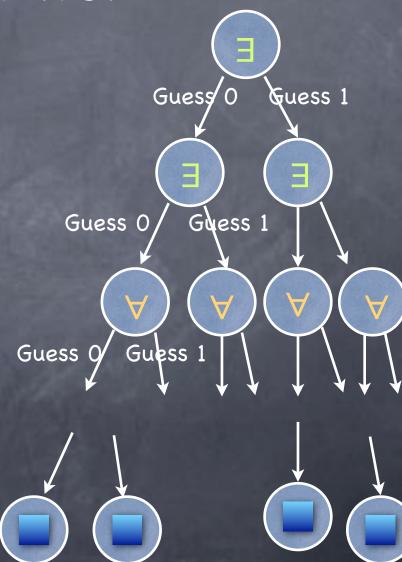


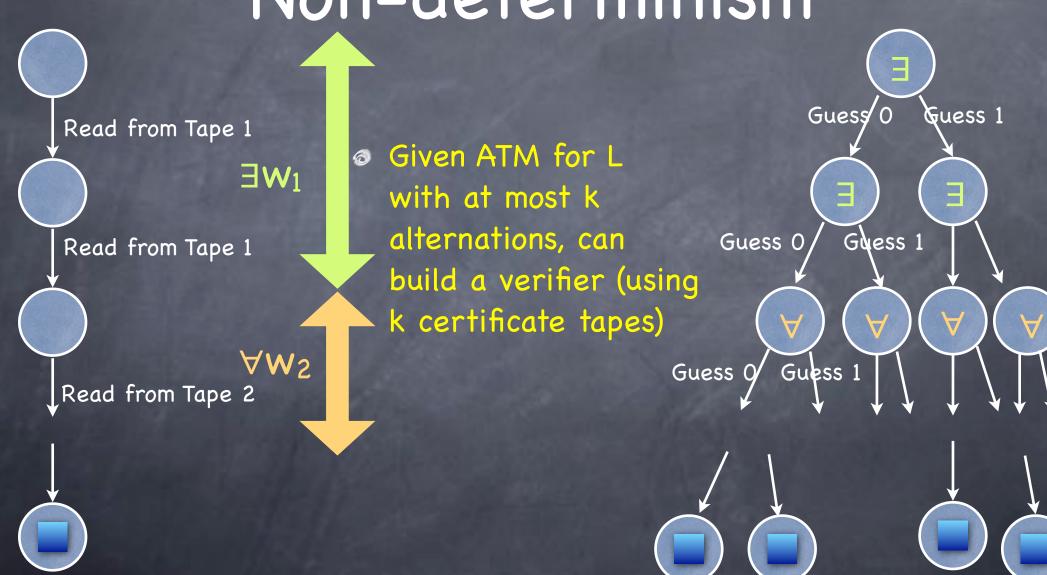


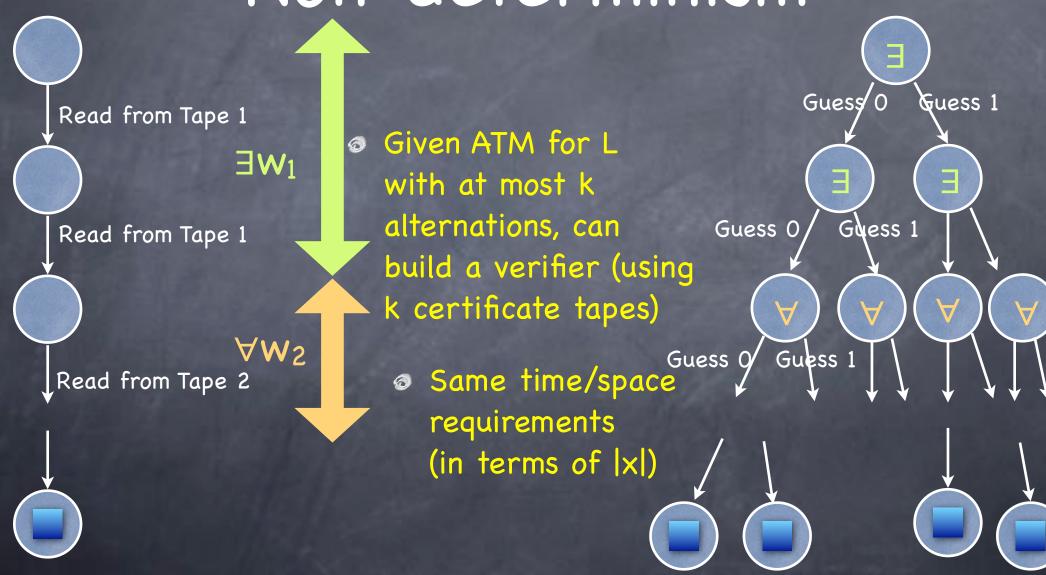


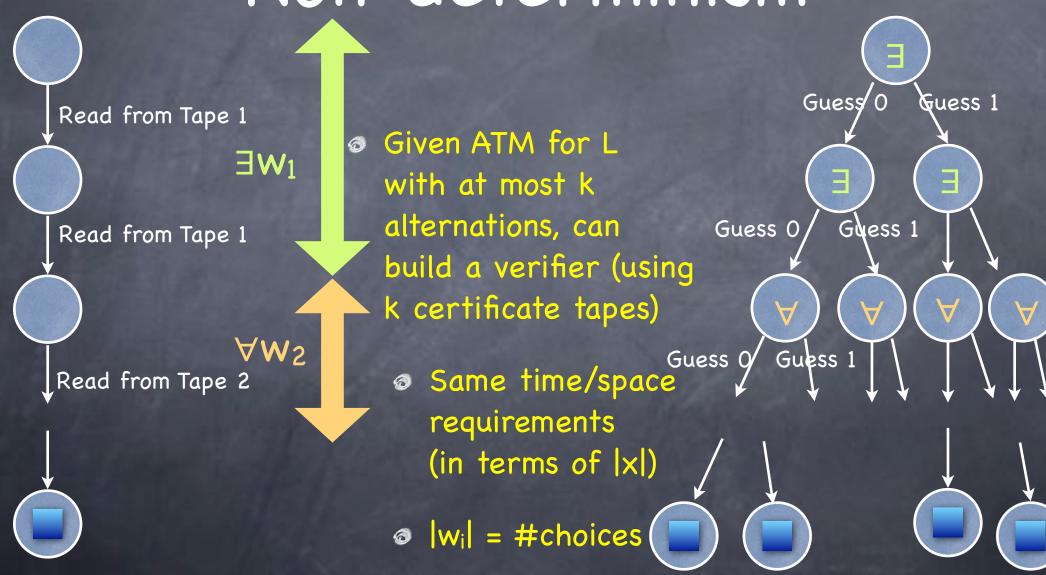










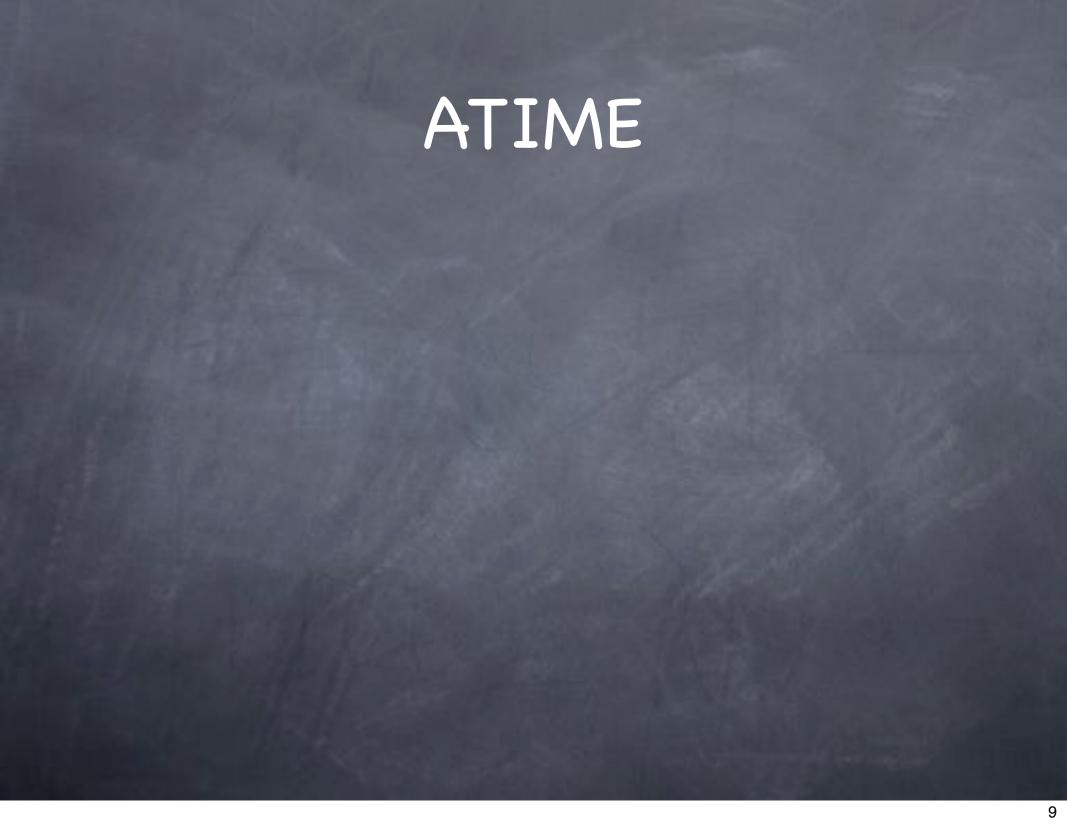


Complexity measures

- Complexity measures
 - Time: Maximum number of steps in any thread

- Complexity measures
 - Time: Maximum number of steps in any thread
 - Space: Maximum space in any configuration reached

- Complexity measures
 - Time: Maximum number of steps in any thread
 - Space: Maximum space in any configuration reached
 - Alternations: Maximum number of quantifier switches in any thread



- - ∞ Σ_k TIME(T): languages decided by ATMs with at most k alternations starting with \exists , in time T(n)

- - - Latter being exactly the certificate version

- - - Latter being exactly the certificate version
- ATIME

- - - Latter being exactly the certificate version
- ATIME
 - ATIME(T): languages decided by ATMs in time T(n)

- - \circ c.f. NTIME(T) \subseteq DSPACE(T)

- - \circ c.f. NTIME(T) \subseteq DSPACE(T)
 - AP ⊆ PSPACE

- - \circ c.f. NTIME(T) \subseteq DSPACE(T)
 - AP ⊆ PSPACE
- But PSPACE ⊆ AP

- - \circ c.f. NTIME(T) \subseteq DSPACE(T)
 - AP ⊆ PSPACE
- But PSPACE ⊆ AP
 - TQBF in AP (why?)

- - \circ c.f. NTIME(T) \subseteq DSPACE(T)
 - AP ⊆ PSPACE
- But PSPACE ⊆ AP
 - TQBF in AP (why?)
- AP = PSPACE

Evaluate if the start configuration is accepting, recursively

- Evaluate if the start configuration is accepting, recursively
 - ♠ A ∃ configuration is accepting if any child is, and
 a ∀ configuration is accepting if all children are

ATIME(T) \subseteq DSPACE(T²)

- Evaluate if the start configuration is accepting, recursively
 - A ∃ configuration is accepting if any child is, and
 a ∀ configuration is accepting if all children are
- Space needed: depth x size of configuration

- Evaluate if the start configuration is accepting, recursively
 - A ∃ configuration is accepting if any child is, and
 a ∀ configuration is accepting if all children are
- Space needed: depth x size of configuration
 - Depth = # alternations = O(T). Also, size of configuration = O(T) as any thread runs for time O(T)

- Evaluate if the start configuration is accepting, recursively
 - A ∃ configuration is accepting if any child is, and
 a ∀ configuration is accepting if all children are
- Space needed: depth x size of configuration
 - Depth = # alternations = O(T). Also, size of configuration = O(T) as any thread runs for time O(T)
 - O(T²)

ASPACE vs. DTIME

ASPACE vs. DTIME

- - Recall, already seen NSPACE(S) ⊆ DTIME(2^{O(S)})
 - Poly-time connectivity in configuration graph of size at most 2^{O(S)}

- - - Poly-time connectivity in configuration graph of size at most 2^{O(S)}
 - Instead of connectivity, can recursively label all accepting nodes (2 lookups per node: in poly(S) time). So ASPACE(S) ⊆ DTIME(2^{O(S)})

- - - Poly-time connectivity in configuration graph of size at most 2^{O(S)}
 - Instead of connectivity, can recursively label all accepting nodes (2 lookups per node: in poly(S) time). So ASPACE(S) ⊆ DTIME(2^{O(S)})
 - To show DTIME($2^{O(S)}$) \subseteq ASPACE(S)

To decide, is configuration after t steps accepting

- To decide, is configuration after t steps accepting
 - Accept configuration, with unique first cell α
 (blank tape cell and unique accept state)

- To decide, is configuration after t steps accepting
 - - Once there, stays there

- To decide, is configuration after t steps accepting
 - Accept configuration, with unique first cell α
 (blank tape cell and unique accept state)
 - Once there, stays there
 - Is first cell of config after t steps α

- To decide, is configuration after t steps accepting
 - Accept configuration, with unique first cell α
 (blank tape cell and unique accept state)
 - Once there, stays there
 - \odot Is first cell of config after t steps α
 - C(i,j,x): if after i steps, jth cell of config is x

- To decide, is configuration after t steps accepting
 - Accept configuration, with unique first cell α
 (blank tape cell and unique accept state)
 - Once there, stays there
 - Is first cell of config after t steps α
 - \circ C(i,j,x): if after i steps, jth cell of config is x
 - Need to check $C(t,1,\alpha)$

© C(i,j,x): if after i steps, jth cell of config is x

- C(i,j,x): if after i steps, jth cell of config is x
 - Recall reduction in Cook's theorem

- \circ C(i,j,x): if after i steps, jth cell of config is x
 - Recall reduction in Cook's theorem
 - If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

- \circ C(i,j,x): if after i steps, jth cell of config is x
 - Recall reduction in Cook's theorem
 - If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)
 - C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

- C(i,j,x): if after i steps, jth cell of config is x
 - Recall reduction in Cook's theorem
 - The second state of the second secon
 - C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Base case: C(0,j,x) easy to check from input

- \circ C(i,j,x): if after i steps, jth cell of config is x
 - Recall reduction in Cook's theorem
 - If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)
 - C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Base case: C(0,j,x) easy to check from input
 - Naive recursion: Extra O(S) space to store i,j at each level for 2^{O(S)} levels!

ATM to check if C(i,j,x)

- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks

- ATM to check if C(i,j,x)
 - \circ C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - © Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check

- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check
 - Overwrite C(i,j,x) with C(i-1,...) and reuse space

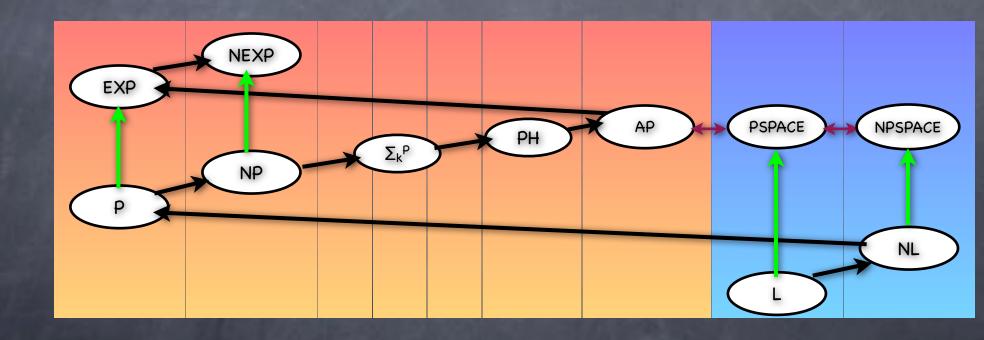
- ATM to check if C(i,j,x)
 - © C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - © Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check
 - Overwrite C(i,j,x) with C(i-1,...) and reuse space
 - Stay within the same O(S) space at each level!

- ATM to check if C(i,j,x)
 - \circ C(i,j,x): $\exists a,b,c$ st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), for free. No need to use a C(i-1,j+1,c)
 - Tail-recursion in parallel forks
 - Check x=F(a,b,c); then enter universal state, and non-deterministically choose one of the three conditions to check
 - Overwrite C(i,j,x) with C(i-1,...) and reuse space
 - Stay within the same O(S) space at each level!

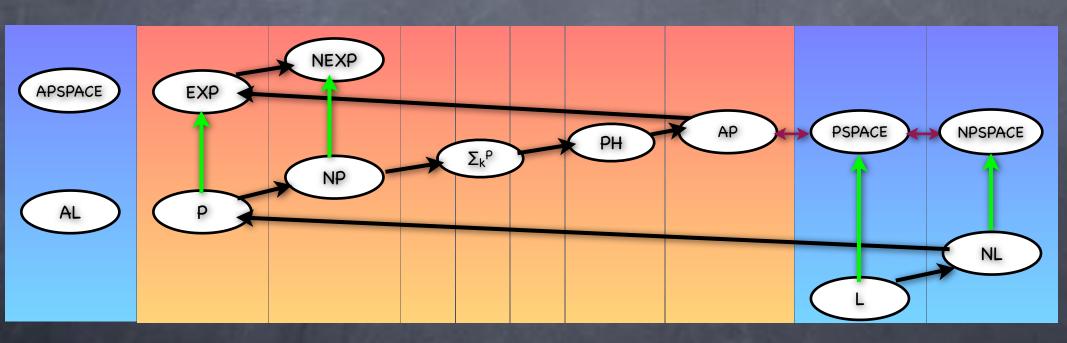
- - APSPACE = EXP

- - APSPACE = EXP
 - AL = P

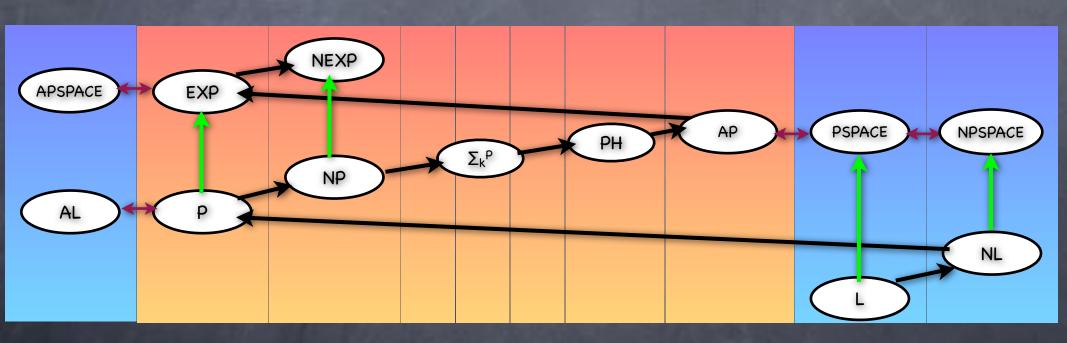
Zoo

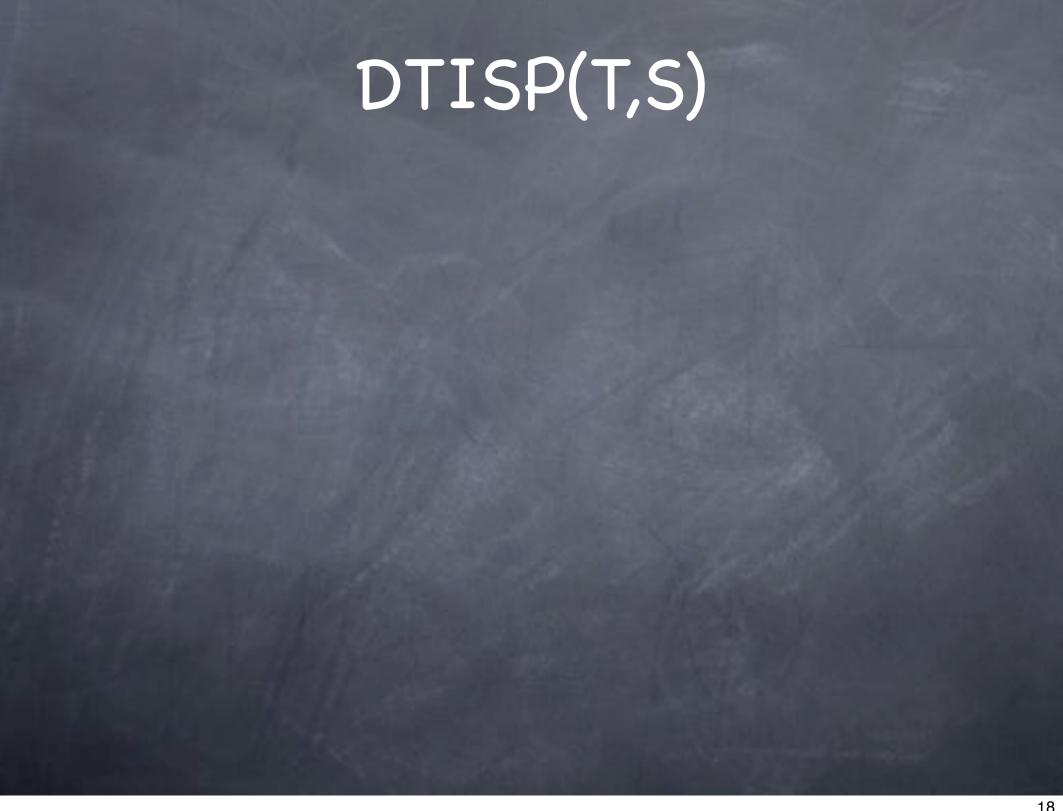


Zoo



Zoo





Theorem: NTIME(n) $\not\subset$ DTISP(n^{1+ ϵ},n^{δ}) for some ϵ , δ > 0

- Theorem: NTIME(n) $\not\subset$ DTISP(n^{1+ ε},n^{δ}) for some ε , δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space

- Theorem: NTIME(n) ⊄ DTISP(n^{1+ε},n^δ) for some ε, δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
 - Commonly Believed: can't solve in less than exponential time or with less than linear space

- **Theorem:** NTIME(n) ⊄ DTISP(n^{1+ε},n^δ) for some ε, δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
 - Commonly Believed: can't solve in less than exponential time or with less than linear space
- Follows (after careful choice of parameters) from

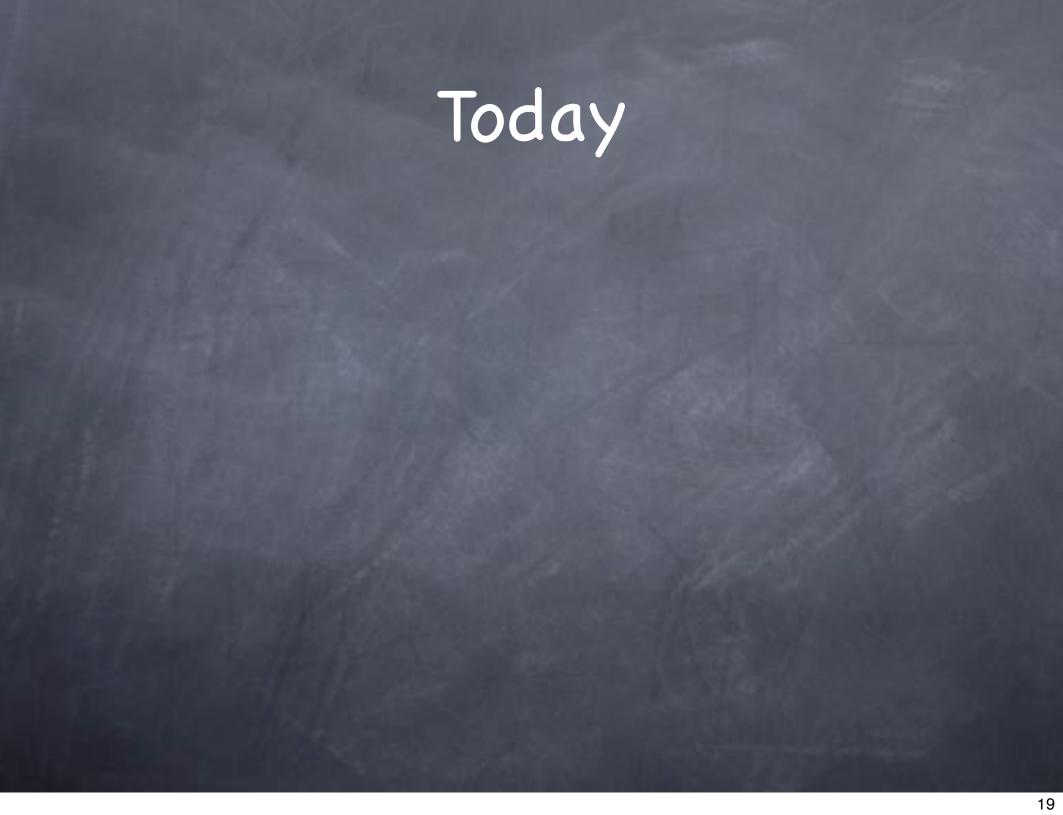
- **Theorem:** NTIME(n) ⊄ DTISP(n^{1+ε},n^δ) for some ε, δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
 - Commonly Believed: can't solve in less than exponential time or with less than linear space
- Follows (after careful choice of parameters) from
 - \circ DTISP(T,S) $\subseteq \Sigma_2$ TIME(T^{1/2} S)

- Theorem: NTIME(n) ⊄ DTISP(n¹+ε,nδ) for some ε, δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
 - Commonly Believed: can't solve in less than exponential time or with less than linear space
- Follows (after careful choice of parameters) from
 - \circ DTISP(T,S) $\subseteq \Sigma_2$ TIME(T^{1/2} S)

guess intermediate consecutive guesses

- Theorem: NTIME(n) ⊄ DTISP(n¹+ε,nδ) for some ε, δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
 - Commonly Believed: can't solve in less than exponential time or with less than linear space
- Follows (after careful choice of parameters) from
 - \odot DTISP(T,S) \subseteq Σ_2 TIME(T^{1/2} S)
 - $> NTIME(n) \subseteq DTIME(n^{1+\epsilon}) \Rightarrow \Sigma_2TIME(T) \subseteq NTIME(T^{1+\epsilon})$

- Theorem: NTIME(n) ⊄ DTISP(n^{1+ε},n^δ) for some ε, δ > 0
- i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
 - Commonly Believed: can't solve in less than exponential time or with less than linear space
- Follows (after careful choice of parameters) from
 - \circ DTISP(T,S) $\subseteq \Sigma_2$ TIME(T^{1/2} S)
 - NTIME(n) ⊆ DTIME(n^{1+ε}) ⇒ Σ₂TIME(T) ⊆ NTIME(T^{1+ε})
 - NTIME(n) ⊆ DTISP(n¹+ε,nδ) ⇒ NTIME(n†) ⊆ NTIME(n†(1/2+ε′))!



ATM to define levels of PH

- ATM to define levels of PH
 - ATIME and ASPACE

- ATM to define levels of PH
 - ATIME and ASPACE
 - AP = PSPACE and APSPACE = EXP

- ATM to define levels of PH
 - ATIME and ASPACE
 - AP = PSPACE and APSPACE = EXP