Computational Complexity

Lecture 7
Polynomial Hierarchy
Charting (some of) the space between P and PSPACE
(where much of the action happens)

Recall NP

- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$

- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$
 - Where F in P: i.e., language { x | F(x) } is in P

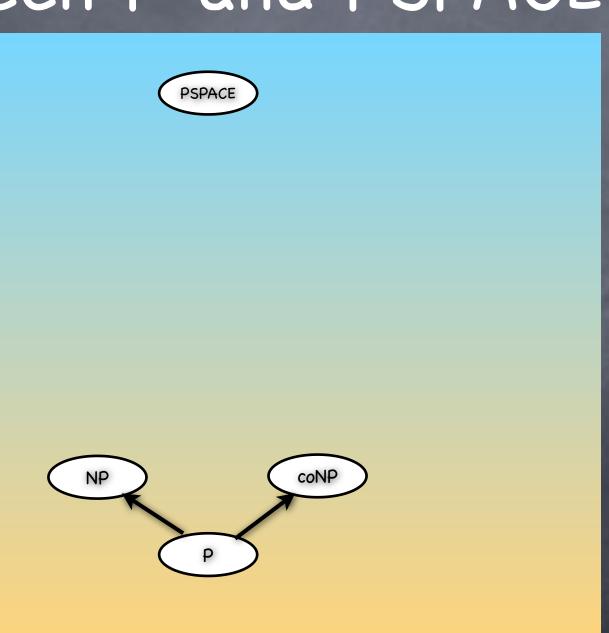
- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$
 - Where F in P: i.e., language { x | F(x) } is in P
 - \circ And $|u_1| < poly(|x|)$ for some polynomial

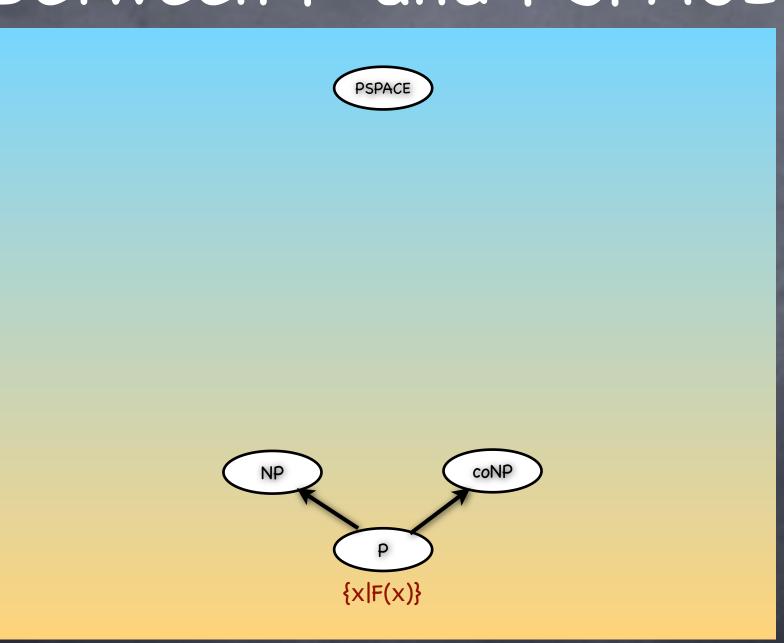
- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$
 - Where F in P: i.e., language $\{x \mid F(x)\}$ is in P
 - And $|u_1| < poly(|x|)$ for some polynomial
- Recall co-NP

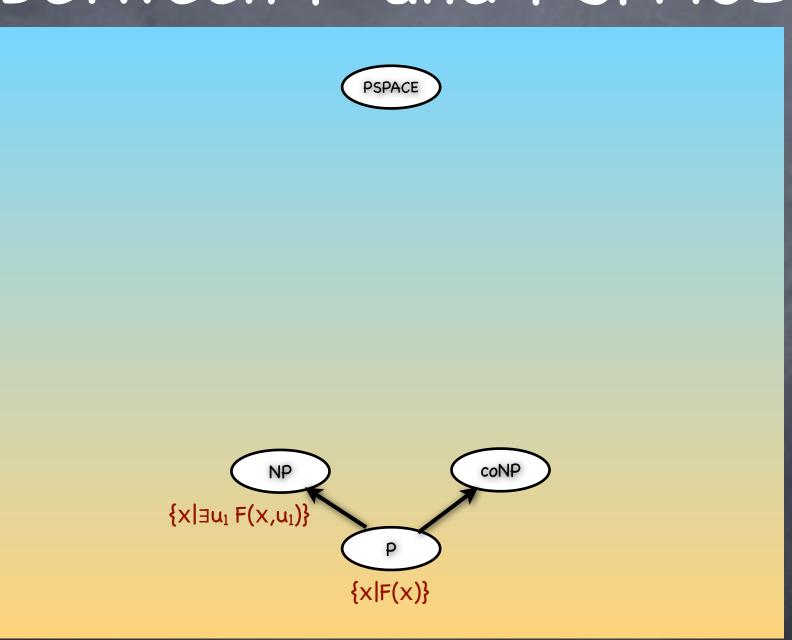
- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$
 - Where F in P: i.e., language $\{x \mid F(x)\}$ is in P
 - And |u1| < poly(|x|) for some polynomial</p>
- Recall co-NP
 - \odot Class of languages $\{x \mid \forall u_1 \ F(x,u_1)\}$

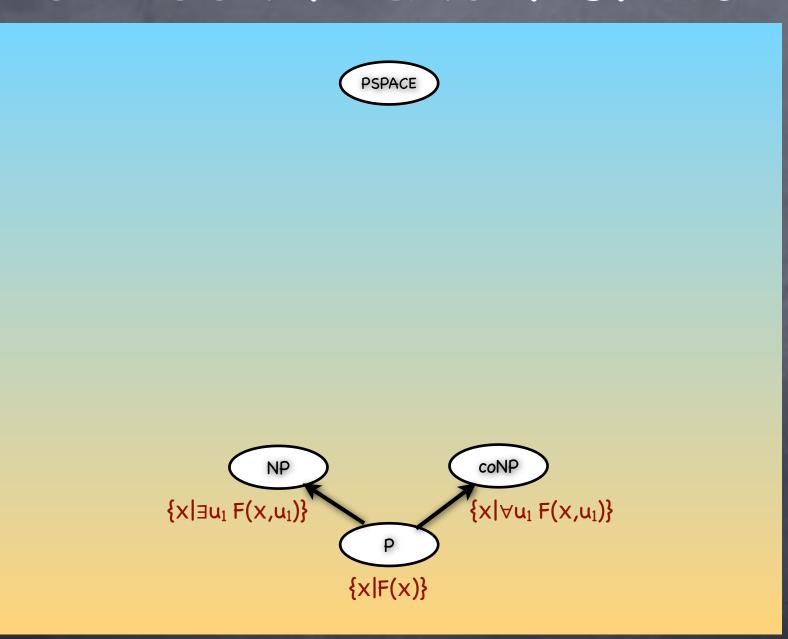
- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$
 - Where F in P: i.e., language $\{x \mid F(x)\}$ is in P
 - \circ And $|u_1|$ < poly(|x|) for some polynomial
- Recall co-NP
 - \odot Class of languages $\{x \mid \forall u_1 \ F(x,u_1)\}$

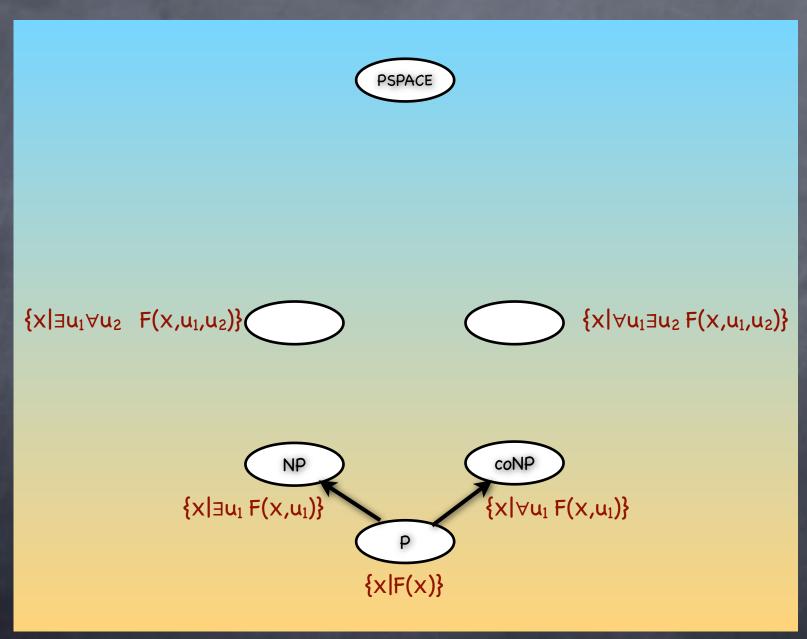
- Recall NP
 - \odot Class of languages $\{x \mid \exists u_1 \ F(x,u_1)\}$
 - Where F in P: i.e., language { x | F(x) } is in P
 - And $|u_1| < poly(|x|)$ for some polynomial
- Recall co-NP
 - \odot Class of languages $\{x \mid \forall u_1 \ F(x,u_1)\}$
- - Such languages in PSPACE: same way TQBF is (Recall?)

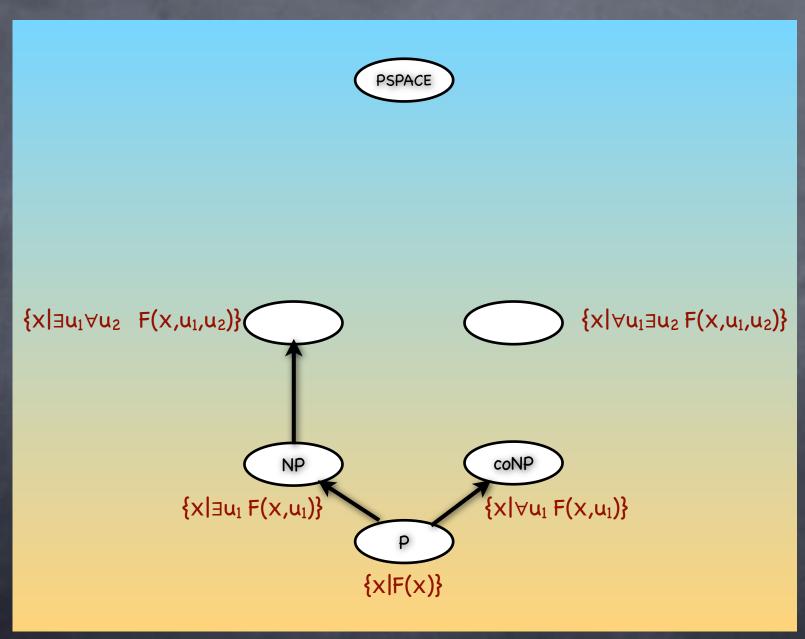


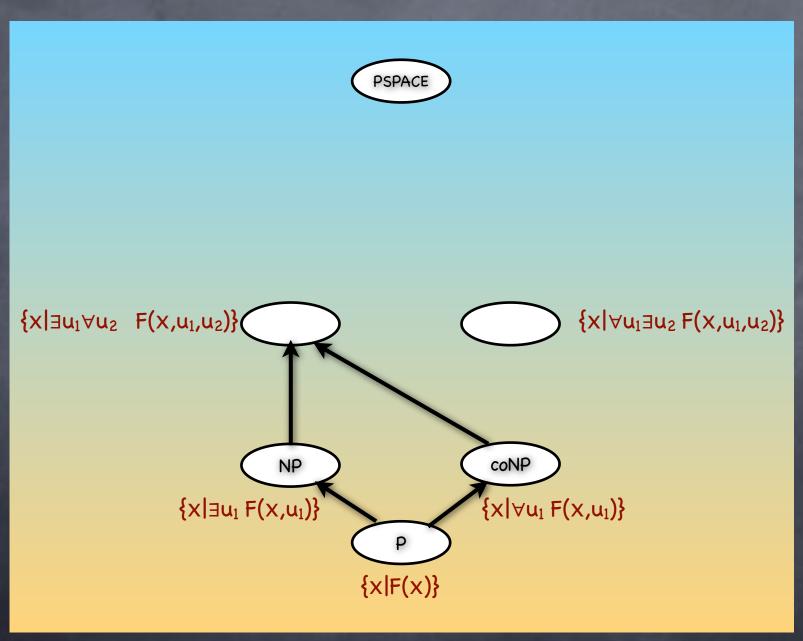


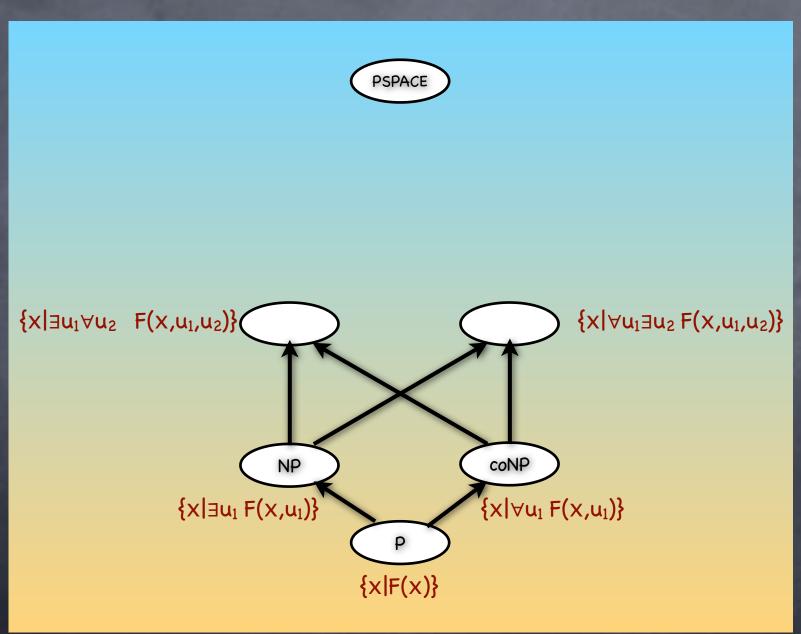












 \odot Class of languages $\{ x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2) \}$

- \odot Class of languages $\{ x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2) \}$
 - \odot F in P and $|u_i| = poly(|x|)$

- \odot Class of languages $\{x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2)\}$
 - \circ F in P and $|u_i| = poly(|x|)$
- @ e.g.: Two move QBF games, Alice moving first

- \odot Class of languages $\{x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2)\}$
 - F in P and |u_i| = poly(|x|)
- @ e.g.: Two move QBF games, Alice moving first
 - Does Alice have a move such that for all moves of the adversary, Alice wins

Σ_2^p

- \odot Class of languages $\{x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2)\}$
 - \circ F in P and $|u_i| = poly(|x|)$
- @ e.g.: Two move QBF games, Alice moving first
 - Does Alice have a move such that for all moves of the adversary, Alice wins
 - \circ Is " $\exists u_1 \ \forall u_2 \ \phi(u_1,u_2)$ " true?

- \odot Class of languages $\{x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2)\}$
 - \circ F in P and $|u_i| = poly(|x|)$
- e.g.: Two move QBF games, Alice moving first
- $F(\varphi,u_1,u_2) = \varphi(u_1,u_2)$
- Does Alice have a move such that for all moves of the adversary, Alice wins
- \circ Is " $\exists u_1 \ \forall u_2 \ \phi(u_1,u_2)$ " true?

- \odot Class of languages $\{x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2)\}$
 - F in P and |ui| = poly(|x|)
- e.g.: Two move QBF games, Alice moving first
- $F(\varphi,u_1,u_2) = \varphi(u_1,u_2)$
- Does Alice have a move such that for all moves of the adversary, Alice wins
 - \circ Is " $\exists u_1 \ \forall u_2 \ \phi(u_1,u_2)$ " true?
 - Seems inherently more complex than deciding $\exists u_1 \phi(u_1)$ or $\forall u_1 \phi(u_1)$

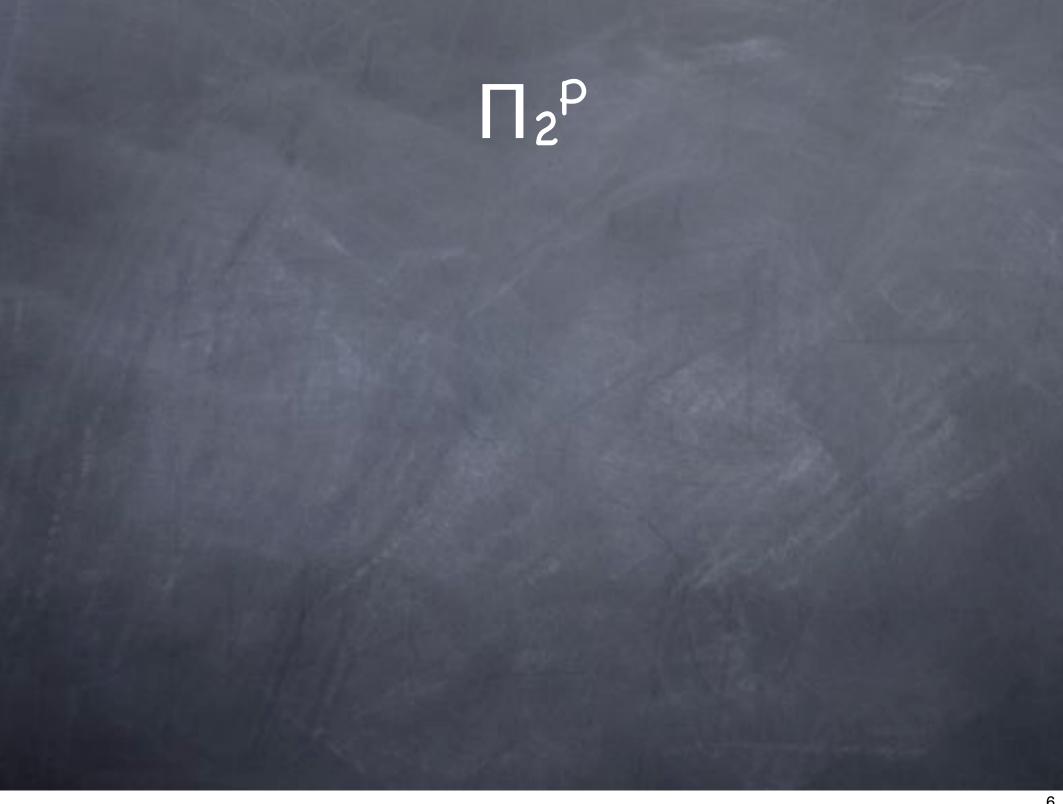
Another example: EXACT-CLIQUE

- Another example: EXACT-CLIQUE
 - EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }

- Another example: EXACT-CLIQUE
 - EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }
 - G has a clique of size k

- Another example: EXACT-CLIQUE
 - EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }
 - G has a clique of size k
 - And all cliques in G have size at most k

- Another example: EXACT-CLIQUE
 - EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }
 - G has a clique of size k
 - And all cliques in G have size at most k



Π_2^P

Π_2^P

Π_2^P

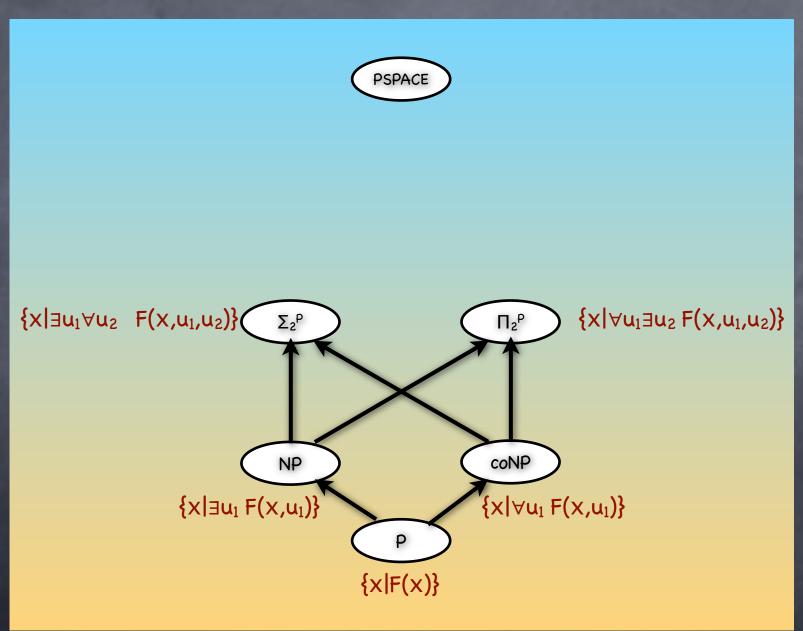
- @ e.g.: Two-move QBF game, Alice moving second

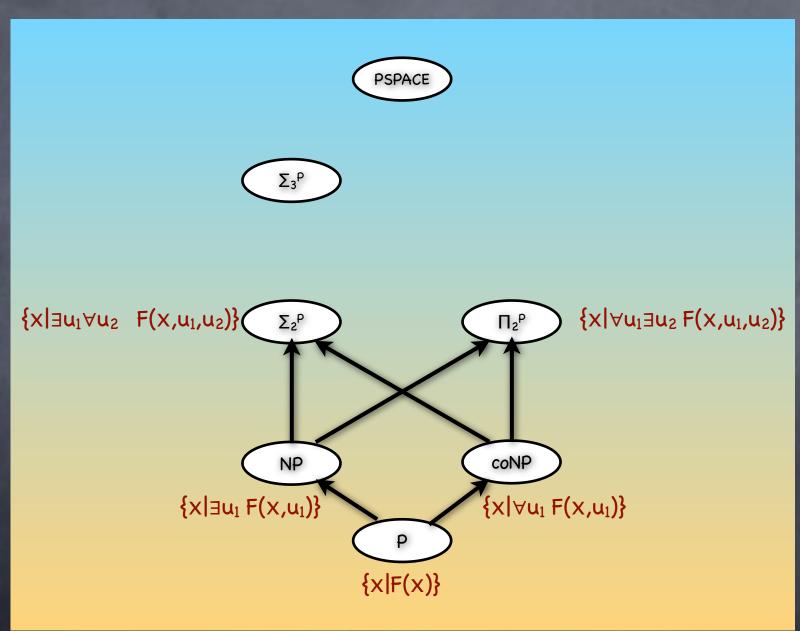
- ø e.g.: Two-move QBF game, Alice moving second
- EXACT-CLIQUE (again!)

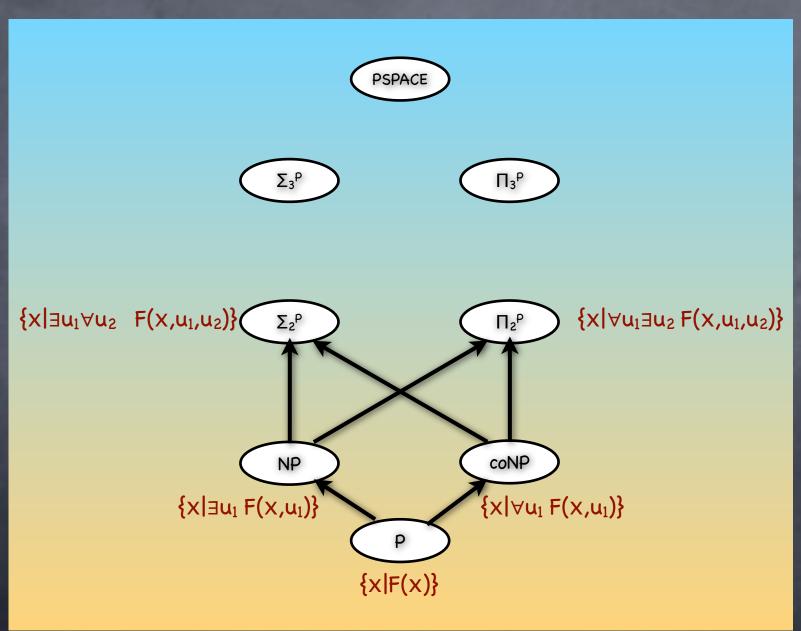
- e.g.: Two-move QBF game, Alice moving second
- EXACT-CLIQUE (again!)
 - $\bigcirc \square G_1$ is a clique in G of size k and $\bigcirc \square G_2$ if $\square G_2$ is a clique in G, it is of size at most k

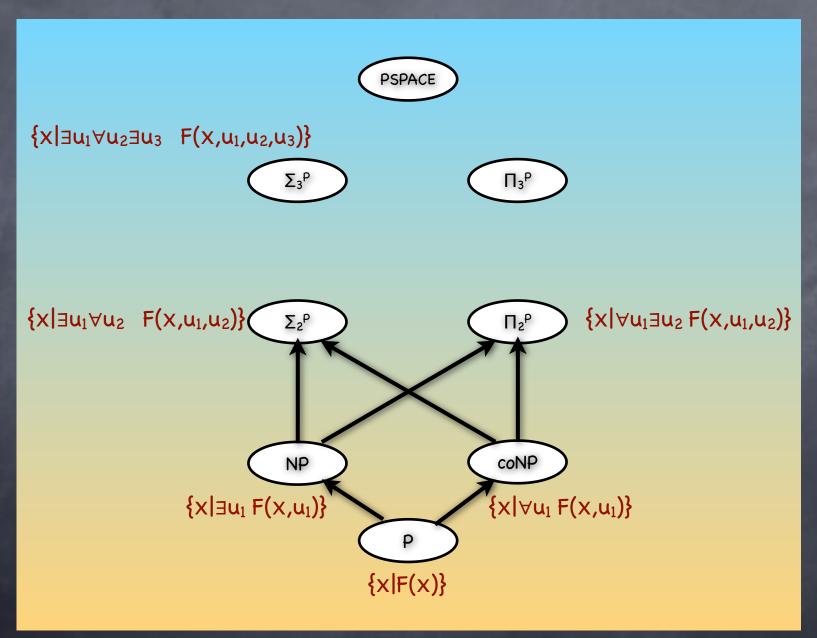
- e.g.: Two-move QBF game, Alice moving second
- EXACT-CLIQUE (again!)
 - - In fact, two prenex form representations with one quantifier each

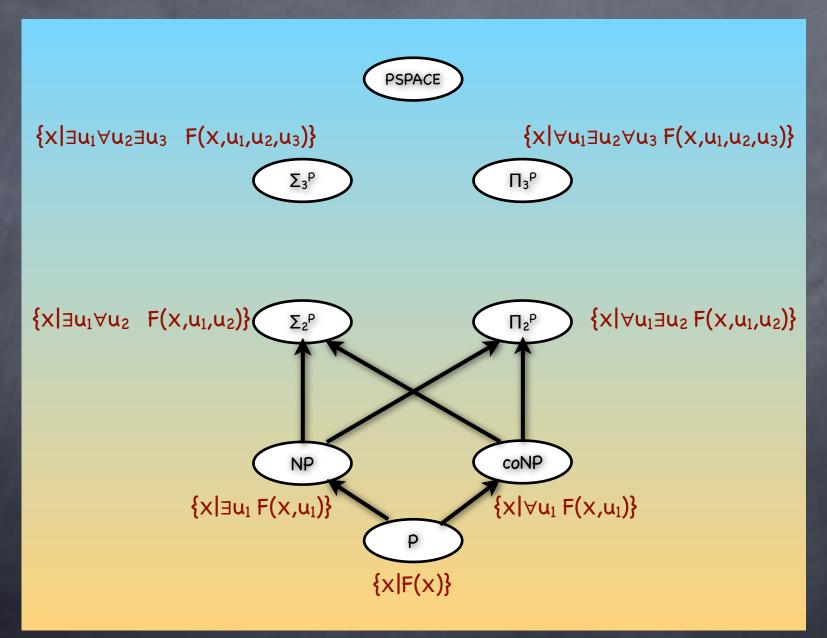
- e.g.: Two-move QBF game, Alice moving second
- EXACT-CLIQUE (again!)
 - - In fact, two prenex form representations with one quantifier each

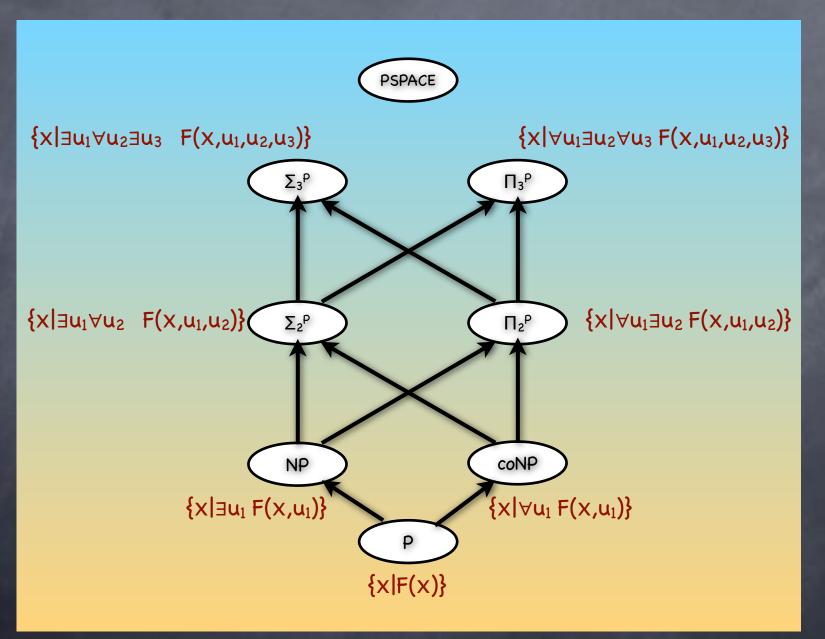












ΣkP and ΠkP 3 or based on k

ΣkP and ΠkP 3 or y based on k

ΣkP and ΠkP 3 or based on k

- - F in P and $|u_i| = poly(|x|)$

ΣkP and ΠkP 3 or y based on k

- - F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers

ΣkP and ΠkP 3 or y based on k

- - F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers
 - Note: can have more than k boolean variables, each ui being a string of boolean variables

Σ_kP and Π_kP 3 or y based on k

- - F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers
 - Note: can have more than k boolean variables, each ui being a string of boolean variables
 - k constant (independent of input size) for all languages, but number of variables need not be

ΣkP and ΠkP 3 or based on k

- - \circ F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers
 - Note: can have more than k boolean variables, each ui being a string of boolean variables
 - k constant (independent of input size) for all languages, but number of variables need not be
- \bullet P = Σ_0^P = Π_0^P , NP = Σ_1^P and co-NP = Π_1^P

- - \bullet L = { x | $\exists u_1 \forall u_2...Q_k u_k$ (x,u₁,u₂,...,u_k) \in F }, where F in P (and $|u_i|$ = poly(|x|))

- - □ L = { x | $\exists u_1 \forall u_2...Q_k u_k$ (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))

- - □ L = { x | $\exists u_1 \forall u_2...Q_k u_k$ (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))

 - Or more generally, in terms of k-ith level

- - □ L = { x | $\exists u_1 \forall u_2...Q_k u_k$ (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))
 - \bullet L = { x | $\exists u_1 (x,u_1) \in L'$ } where L' in $\prod_{k=1}^{p}$
 - Or more generally, in terms of k-ith level

- - □ L = { x | $\exists u_1 \forall u_2...Q_k u_k$ (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))
 - \bullet L = { x | $\exists u_1 (x,u_1) \in L'$ } where L' in $\prod_{k=1}^{p}$
 - Or more generally, in terms of k-ith level
- \odot Similarly, Π_k^P has languages of the form

- - □ L = { x | $\exists u_1 \forall u_2...Q_k u_k$ (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))
 - \bullet L = { x | $\exists u_1 (x,u_1) \in L'$ } where L' in $\prod_{k=1}^{p}$
 - Or more generally, in terms of k-ith level
- \odot Similarly, Π_k^P has languages of the form
 - □ L = { x | $\forall u_1 \exists u_2 ... Q_i u_i$ (x,u₁,u₂,...,u_i) ∈ L' } where L' in \sum_{k-i}^{P} (odd i) or \prod_{k-i}^{P} (even i)

$$\bullet$$
 PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$

- \bullet PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$
- PH ⊆ PSPACE

- PH ⊆ PSPACE
 - \bullet Because for each k, $\Sigma_k^P \subseteq PSPACE$

- PH ⊆ PSPACE
 - \bullet Because for each k, $\Sigma_k^P \subseteq PSPACE$
 - We don't know if PH
 □ PSPACE

- PH ⊆ PSPACE
 - \bullet Because for each k, $\Sigma_k^P \subseteq PSPACE$
- We don't know if $P \subseteq PH$ (or $P \subseteq PSPACE$)

- PH ⊆ PSPACE
 - \bullet Because for each k, $\Sigma_k^P \subseteq PSPACE$
- We don't know if $P \subseteq PH$ (or $P \subseteq PSPACE$)
 - lacktriangle Believed that $\Sigma_k{}^p \subsetneq \Sigma_{k+1}{}^p$ and $\Pi_k{}^p \subsetneq \Pi_{k+1}{}^p$ for all k

Complete problems

For each level of PH (w.r.t Karp reductions)

- For each level of PH (w.r.t Karp reductions)

- For each level of PH (w.r.t Karp reductions)
 - \odot Σ_k SAT: True QBFs with k alternations, starting with \exists
 - \odot Complete for Σ_k^P

- For each level of PH (w.r.t Karp reductions)
 - - \odot Complete for Σ_k^P
 - \odot Π_k SAT: True QBFs with k alternations, starting with \forall

- For each level of PH (w.r.t Karp reductions)
 - \odot Σ_k SAT: True QBFs with k alternations, starting with \exists
 - \circ Complete for Σ_k^P
 - \odot Π_k SAT: True QBFs with k alternations, starting with \forall
 - \circ Complete for Π_k^P

- For each level of PH (w.r.t Karp reductions)
 - \odot Σ_k SAT: True QBFs with k alternations, starting with \exists
 - \circ Complete for Σ_k^P
 - \odot Π_k SAT: True QBFs with k alternations, starting with \forall
 - \circ Complete for Π_k^P

- For each level of PH (w.r.t Karp reductions)
 - - \circ Complete for Σ_k^P
 - \odot $\Pi_k SAT$: True QBFs with k alternations, starting with \forall
 - \odot Complete for Π_k^P
 - Why? Consider odd k Σ_k^P and even k Π_k^P (ends with \exists)
 - @ Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \ \phi_F(X;w)=1$

- For each level of PH (w.r.t Karp reductions)
 - \odot Σ_k SAT: True QBFs with k alternations, starting with \exists
 - \circ Complete for Σ_k^P
- Veeded a 3 in going from ckt to CNF formula

 \circ Complete for Π_k^p

Why? Consider odd k Σ_k^P and even k Π_k^P (ends with \exists)

Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \ \phi_F(X;w)=1$

- For each level of PH (w.r.t Karp reductions)
 - - \circ Complete for Σ_k^P
 - Π_kSAT: True QBFs with k alternations, starting with ∀
- \circ Complete for Π_k^P Why? Consider odd k Σ_k^P and even k Π_k^P (ends with \exists) ckt to CNF®

formula

- Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \varphi_F(X;w)=1$
- \odot Qu₁... \exists u_k $F(...,u_k)$ true iff Qu₁... \exists u_k,w $\phi_F(...,u_k,w)$ true

- For each level of PH (w.r.t Karp reductions)
 - - \circ Complete for Σ_k^P
 - For the other classes Π_kSAT: True QBFs with k alternations, starting with ∀

 \circ Complete for Π_k^P

Why? Consider odd k Σ_k^P and even k Π_k^P (ends with \exists)

ckt to CNF® formula

Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \varphi_F(X;w)=1$

 \odot Qu₁... \exists u_k $F(...,u_k)$ true iff Qu₁... \exists u_k,w $\phi_F(...,u_k,w)$ true

Complete problem for PH?

- Complete problem for PH?
 - Then PH collapses to a finite level

- Complete problem for PH?
 - Then PH collapses to a finite level
 - \bullet If L is PH-complete, L $\in \Sigma_k^P$ for some k

- Complete problem for PH?
 - Then PH collapses to a finite level
 - \bullet If L is PH-complete, L $\in \Sigma_k^P$ for some k
 - \odot But Σ_k^P downward closed under Karp reductions (Exercise)

- © Complete problem for PH?
 - Then PH collapses to a finite level
 - \odot If L is PH-complete, L $\in \Sigma_k^P$ for some k
 - \bullet But Σ_k^P downward closed under Karp reductions (Exercise)
 - \circ So PH = Σ_k^P

- Complete problem for PH?
 - Then PH collapses to a finite level
 - \odot If L is PH-complete, L $\in \Sigma_k^P$ for some k
 - \bullet But Σ_k^P downward closed under Karp reductions (Exercise)
 - \odot So PH = Σ_k^P
- © Corollary: If PH = PSPACE, then PH = PSPACE = Σ_k^P for some k

- Complete problem for PH?
 - Then PH collapses to a finite level
 - \odot If L is PH-complete, L $\in \Sigma_k^P$ for some k
 - \bullet But Σ_k^P downward closed under Karp reductions (Exercise)
 - \circ So PH = Σ_k^P
- © Corollary: If PH = PSPACE, then PH = PSPACE = Σ_k^P for some k
 - Because if PH = PSPACE, TQBF is PH-complete

Popular belief: All classes are distinct

- Popular belief: All classes are distinct
- The What happens if a level collapses on to the one below it (e.g. NP = P or Σ_2^P = NP)

- Popular belief: All classes are distinct
- What happens if a level collapses on to the one below it (e.g. NP = P or Σ_2^P = NP)
- What happens if at a level co-classes collapse on to each other (e.g. NP = coNP or $\Sigma_2^P = \Pi_2^P$)

- Popular belief: All classes are distinct
- What happens if a level collapses on to the one below it (e.g. NP = P or Σ_2^P = NP)
- What happens if at a level co-classes collapse on to each other (e.g. NP = coNP or $\Sigma_2^P = \Pi_2^P$)
- Then entire PH collapses! (to that level)

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

• If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - e.g. If NP = co-NP, then PH = NP

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - e.g. If NP = co-NP, then PH = NP
- \odot Will show that $\Sigma_k^P = \Pi_k^P$ (for k>0) $\Rightarrow \Sigma_{k+1}^P = \Pi_{k+1}^P = \Sigma_k^P = \Pi_k^P$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - e.g. If NP = co-NP, then PH = NP
- \odot Will show that $\Sigma_k^P = \Pi_k^P$ (for k>0) $\Rightarrow \Sigma_{k+1}^P = \Pi_{k+1}^P = \Sigma_k^P = \Pi_k^P$
 - **8** By induction PH = $\Sigma_k^P = \Pi_k^P$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- If $Σ_k^P = Π_k^P$ for some k>0 then PH = $Σ_k^P = Π_k^P$
 - e.g. If NP = co-NP, then PH = NP
- \odot Will show that $\Sigma_k^P = \Pi_k^P$ (for k>0) $\Rightarrow \Sigma_{k+1}^P = \Pi_{k+1}^P = \Sigma_k^P = \Pi_k^P$
 - **8** By induction PH = $\Sigma_k^P = \Pi_k^P$
 - © Enough to show $\Sigma_k^P = \Pi_k^P \text{ (for k>0)} \Rightarrow \Sigma_{k+1}^P \subseteq \Sigma_k^P$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

 \odot Consider L in Σ_{k+1}^P

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- \circ Consider L in Σ_{k+1}^{P}

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- \circ Consider L in Σ_{k+1}^{P}
- The Define L' = $\{(x,u_1) \mid \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})\}$

If
$$\Sigma_k^P = \Pi_k^P (k>0)$$

- \circ Consider L in Σ_{k+1}^{P}
- The Define L' = $\{(x,u_1) \mid \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})\}$

If $\Sigma_k^P = \Pi_k^P (k>0)$

- \odot Consider L in Σ_{k+1}^{P}
 - \bullet L = {x | $\exists u_1 \forall u_2 ... Q_{k+1} u_{k+1} F(x, u_1, u_2, ..., u_{k+1})$ }
- The Define L' = $\{(x,u_1) \mid \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})\}$
 - \bullet L = {x | $\exists u_1 (x,u_1) \in L'$ } and L' in Π_k^P

If $\Sigma_k^P = \Pi_k^P (k>0)$

- \circ Consider L in Σ_{k+1}^{P}
- The Define L' = $\{(x,u_1) \mid \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})\}$
 - \bullet L = {x | $\exists u_1 (x,u_1) \in L'$ } and L' in Π_k^P
- - $\Rightarrow L' = \{(x,u_1) \mid \exists v_2..Q'_{k+1}v_{k+1} F'(x,u_1,v_2,...,v_{k+1})\}$

If $\Sigma_k^P = \Pi_k^P (k>0)$

- \circ Consider L in Σ_{k+1}^{P}
 - \bullet L = {x | $\exists u_1 \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})$ }
- The Define L' = $\{(x,u_1) \mid \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})\}$
 - \bullet L = {x | $\exists u_1 (x,u_1) \in L'$ } and L' in Π_k^p
- - $\Rightarrow L' = \{(x,u_1) \mid \exists v_2...Q'_{k+1}v_{k+1} F'(x,u_1,v_2,...,v_{k+1})\}$
 - $\Rightarrow L = \{x \mid \exists u_1 \exists v_2 ... Q'_{k+1} v_{k+1} F'(x, u_1, v_2, ..., v_{k+1})\} \text{ in } \Sigma_k^P$

If $\Sigma_k^P = \Pi_k^P (k>0)$

- \circ Consider L in Σ_{k+1}^{P}
 - \bullet L = {x | $\exists u_1 \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})$ }
- The Define L' = $\{(x,u_1) \mid \forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})\}$
 - \bullet L = {x | $\exists u_1 (x,u_1) \in L'$ } and L' in Π_k^p
- - $\Rightarrow L' = \{(x,u_1) \mid \exists v_2..Q'_{k+1}v_{k+1} F'(x,u_1,v_2,...,v_{k+1})\}$
 - $\Rightarrow L = \{x \mid \exists u_1 \exists v_2 ... Q'_{k+1} v_{k+1} F'(x, u_1, v_2, ..., v_{k+1})\} \text{ in } \Sigma_k^P$

If
$$\Sigma_{k+1}^P = \Sigma_k^P$$

If
$$\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$$

If Σ_{k+1}^P = Σ_k^P (equivalently Π_{k+1}^P = Π_k^P) then PH = Σ_k^P

If
$$\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$$

- If Σ_{k+1}^P = Σ_k^P (equivalently Π_{k+1}^P = Π_k^P) then PH = Σ_k^P
- Because then $\Pi_k^P \subseteq \Sigma_{k+1}^P = \Sigma_k^P$ and hence $\Pi_k^P = \Sigma_k^P$

If
$$\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$$

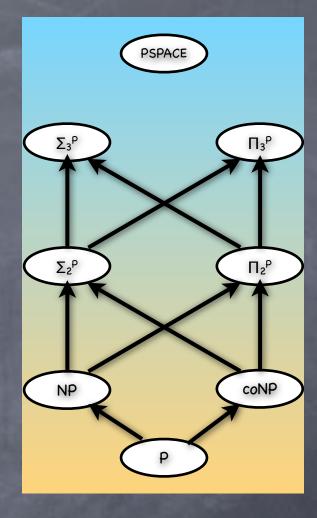
- If Σ_{k+1}^P = Σ_k^P (equivalently Π_{k+1}^P = Π_k^P) then PH = Σ_k^P
- Because then $\Pi_k^P \subseteq \Sigma_{k+1}^P = \Sigma_k^P$ and hence $\Pi_k^P = \Sigma_k^P$
 - \odot So for k>0, implies PH = Σ_k^P

If
$$\Sigma_{k+1}^P = \Sigma_k^P$$

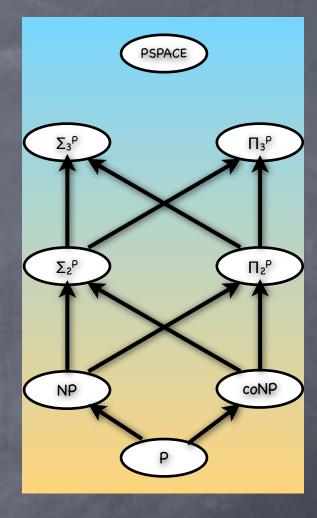
- If Σ_{k+1}^P = Σ_k^P (equivalently Π_{k+1}^P = Π_k^P) then PH = Σ_k^P
- Because then $\Pi_k^P \subseteq \Sigma_{k+1}^P = \Sigma_k^P$ and hence $\Pi_k^P = \Sigma_k^P$
 - So for k>0, implies PH = Σ_k^P
- Holds for k=0 too: i.e., NP = P \Rightarrow PH = P

If
$$\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$$

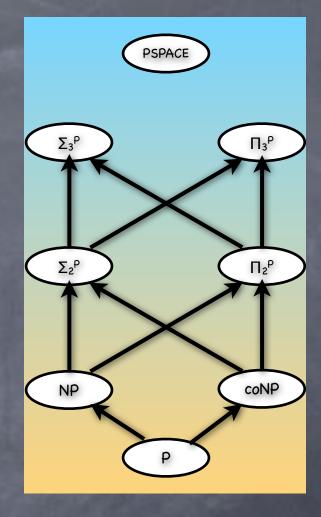
- If Σ_{k+1}^P = Σ_k^P (equivalently Π_{k+1}^P = Π_k^P) then PH = Σ_k^P
- Because then $\Pi_k^P \subseteq \Sigma_{k+1}^P = \Sigma_k^P$ and hence $\Pi_k^P = \Sigma_k^P$
 - So for k>0, implies PH = Σ_k^P
- Holds for k=0 too: i.e., NP = P ⇒ PH = P



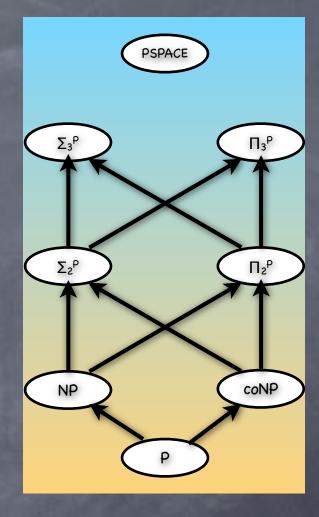
Polynomial Hierarchy



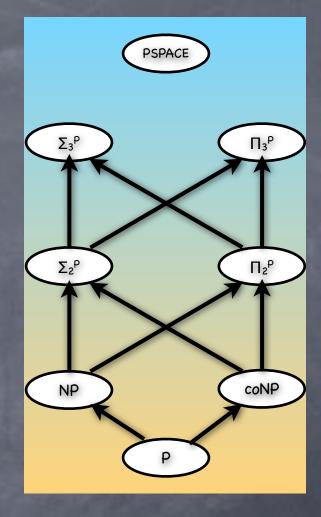
- Polynomial Hierarchy



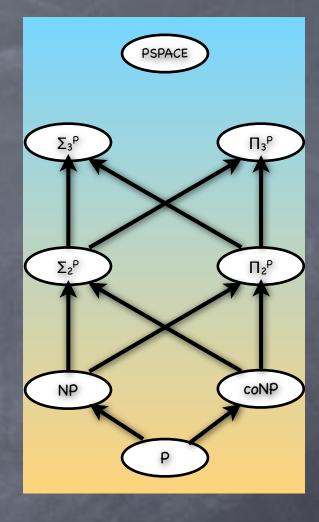
- Polynomial Hierarchy
- © Collapse of Polynomial Hierarchy



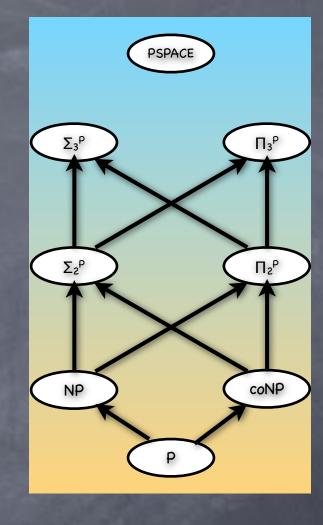
- Polynomial Hierarchy
- © Collapse of Polynomial Hierarchy
 - Believed not to collapse



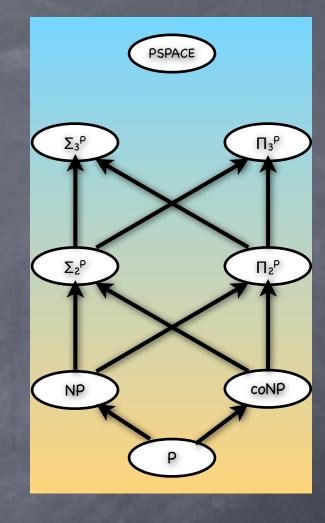
- Polynomial Hierarchy
- © Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels



- Polynomial Hierarchy
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels
 - © If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$



- Polynomial Hierarchy
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels
 - \odot If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - \odot If $\Sigma_{k+1}^P = \Sigma_k^P$ (i.e., $\Pi_{k+1}^P = \Pi_k^P$) then PH = Σ_k^P



- Polynomial Hierarchy
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels
 - If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - \bullet If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (i.e., $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P}
- Coming up: More ways to look at the polynomial hierarchy

