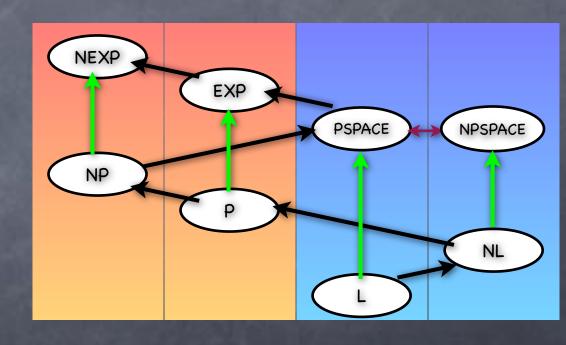
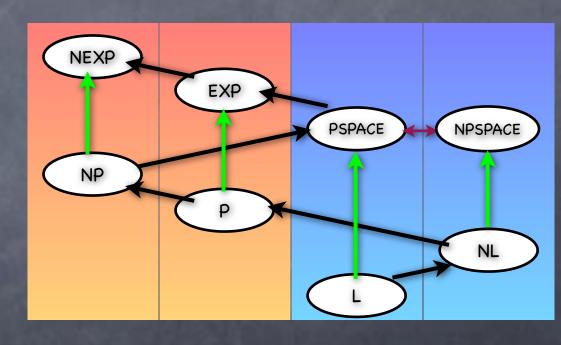
Computational Complexity

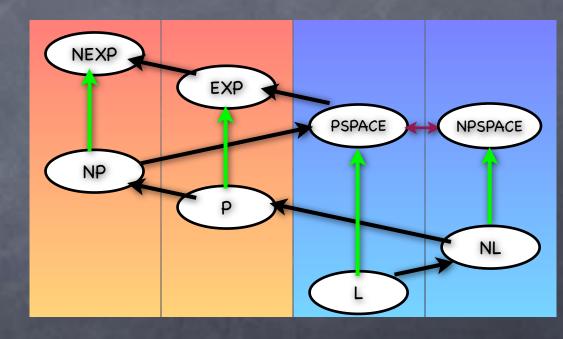
Lecture 6
NL-Completeness and NL=co-NL



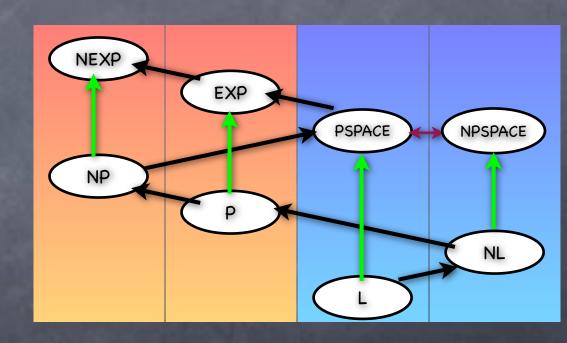
Time/Space Hierarchies



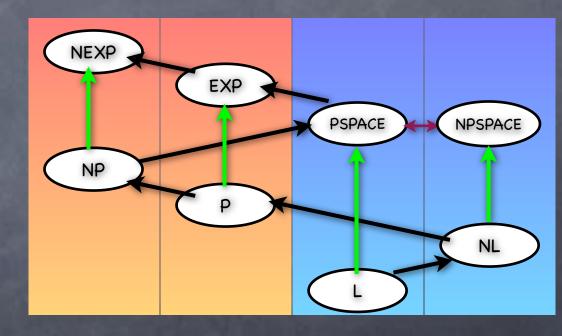
- Time/Space Hierarchies
- Relations across complexity measures



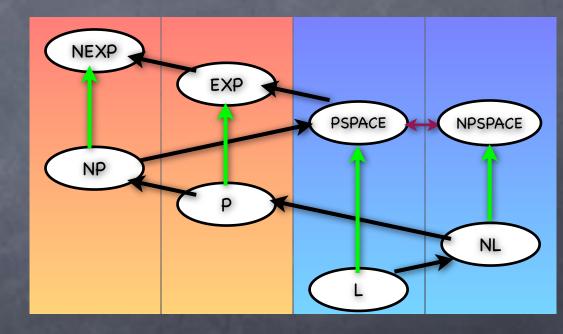
- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete



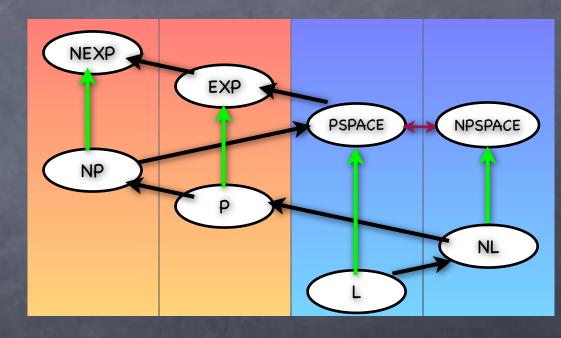
- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today



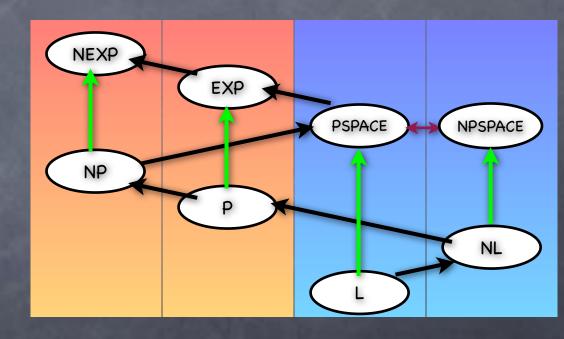
- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today
 - Log-space reductions



- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today
 - Log-space reductions
 - An NL-complete language:
 PATH



- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today
 - Log-space reductions
 - An NL-complete language: PATH
 - NSPACE = co-NSPACE (one less kind to worry about!)



For any two (non-trivial) languages L₁, L₂ in P, L₂ ≤ p L₁

- For any two (non-trivial) languages L₁, L₂ in P, L₂ ≤ p L₁
 - so if $X \subseteq P$, all languages in X are X-complete (w.r.t \leq_p)

- For any two (non-trivial) languages L₁, L₂ in P, L₂ ≤ p L₁
 - So if X ⊆ P, all languages in X are X-complete (w.r.t ≤_p)
- Need a tighter notion of reduction to capture "(almost) as hard as it gets" within X

Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that

Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that

 \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape
 - Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape
 - Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)
 - Equivalently: f "implicitly computable" in log-space

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape
 - Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)
 - Equivalently: f "implicitly computable" in log-space
 - \odot A log-space machine M' to output the bit $f_i(x)$ on input (x,i)

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape
 - Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)
 - Equivalently: f "implicitly computable" in log-space
 - \odot A log-space machine M' to output the bit $f_i(x)$ on input (x,i)
 - M' from M: keep a counter and output only the ith bit

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - \bullet $x \in L_2 \Rightarrow f(x) \in L_1$ and $x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape
 - Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)
 - Equivalently: f "implicitly computable" in log-space
 - \odot A log-space machine M' to output the bit $f_i(x)$ on input (x,i)
 - M' from M: keep a counter and output only the ith bit
 - M from M': keep a counter and repeatedly call M on each i

- Many-one reduction: L₂ ≤ L L₁ if there is a TM, M which maps its input x to f(x) such that
 - $x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$
 - M uses only O(log|x|) work-tape
 - Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)
 - Equivalently: f "implicitly computable" in log-space
 - \odot A log-space machine M' to output the bit $f_i(x)$ on input (x,i)
 - M' from M: keep a counter and output only the ith bit
 - M from M': keep a counter and repeatedly call M on each i

for use as a

subroutine

- - \odot Given M_{2-1} and M_{1-0} build M_{2-0} :

- - \odot Given M_{2-1} and M_{1-0} build M_{2-0} :
 - Start running M_{1-0} without input. When it wants to read i^{th} bit of input, run M_{2-1} (with a counter) to get the i^{th} bit of its output

- - \odot Given M_{2-1} and M_{1-0} build M_{2-0} :
 - The Start running M_{1-0} without input. When it wants to read i^{th} bit of input, run M_{2-1} (with a counter) to get the i^{th} bit of its output
 - Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), because |f(x)| is poly(|x|)

- - \odot Given M_{2-1} and M_{1-0} build M_{2-0} :
 - The Start running M_{1-0} without input. When it wants to read i^{th} bit of input, run M_{2-1} (with a counter) to get the i^{th} bit of its output
 - Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), because |f(x)| is poly(|x|)
- Similarly, L (the class of problems decidable in log-space) is downward closed under log-space reductions

- - \odot Given M_{2-1} and M_{1-0} build M_{2-0} :
 - The Start running M_{1-0} without input. When it wants to read i^{th} bit of input, run M_{2-1} (with a counter) to get the i^{th} bit of its output
 - Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), because |f(x)| is poly(|x|)
- Similarly, L (the class of problems decidable in log-space) is downward closed under log-space reductions

 \bullet L₀ is NL-Hard if for all L₁ in NL, L₁ \leq L L₀

- \bullet L₀ is NL-Hard if for all L₁ in NL, L₁ \leq L L₀
- Lo is NL-complete if it is NL-hard and is in NL

- Lo is NL-complete if it is NL-hard and is in NL
- Can construct trivial NL-complete language

- L₀ is NL-Hard if for all L₁ in NL, L₁ ≤ L L₀
- Lo is NL-complete if it is NL-hard and is in NL
- Can construct trivial NL-complete language

- L₀ is NL-Hard if for all L₁ in NL, L₁ ≤ L L₀
- Lo is NL-complete if it is NL-hard and is in NL
- Can construct trivial NL-complete language
- Interesting NLC language: PATH

 \bigcirc PATH = {(G,s,t) | G a directed graph with a path from s to t}

- PATH = {(G,s,t) | G a directed graph with a path from s to t}
 - G using some representation, of size say, n² (n=#vertices)

- PATH = {(G,s,t) | G a directed graph with a path from s to t}
 - G using some representation, of size say, n² (n=#vertices)
 - Such that, if two vertices x,y on work-tape, can read the input tape to check for edge (x,y)

- PATH = {(G,s,t) | G a directed graph with a path from s to t}
 - G using some representation, of size say, n² (n=#vertices)
 - Such that, if two vertices x,y on work-tape, can read the input tape to check for edge (x,y)
- PATH in NL

- PATH = {(G,s,t) | G a directed graph with a path from s to t}
 - G using some representation, of size say, n² (n=#vertices)
 - Such that, if two vertices x,y on work-tape, can read the input tape to check for edge (x,y)
- PATH in NL
 - Certificate w is the path (poly(n) long certificate)

- PATH = {(G,s,t) | G a directed graph with a path from s to t}
 - G using some representation, of size say, n² (n=#vertices)
 - Such that, if two vertices x,y on work-tape, can read the input tape to check for edge (x,y)
- PATH in NL
 - © Certificate w is the path (poly(n) long certificate)
 - Need to verify adjacent vertices are connected: need keep only two vertices on the work-tape at a time

- PATH = {(G,s,t) | G a directed graph with a path from s to t}
 - G using some representation, of size say, n² (n=#vertices)
 - Such that, if two vertices x,y on work-tape, can read the input tape to check for edge (x,y)
- PATH in NL
 - © Certificate w is the path (poly(n) long certificate)
 - Need to verify adjacent vertices are connected: need keep only two vertices on the work-tape at a time
 - Note: w is scanned only once

In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)

- In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 - Every problem in NL Karp reduces to PATH

- In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 - Every problem in NL Karp reduces to PATH
 - PATH ∈ P

- In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 - Every problem in NL Karp reduces to PATH
 - PATH ∈ P
- In Savitch's theorem

- In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 - Every problem in NL Karp reduces to PATH
 - PATH ∈ P
- In Savitch's theorem

Log-space reducing any NL language L₁ to PATH

- Log-space reducing any NL language L₁ to PATH
 - © Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L_1 , and s,t are start, accept configurations

- Log-space reducing any NL language L₁ to PATH
 - Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
 - Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix

- Log-space reducing any NL language L₁ to PATH
 - Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
 - Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix
 - Edge checking done using M's transition table

- Log-space reducing any NL language L₁ to PATH
 - Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
 - Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix
 - Edge checking done using M's transition table
 - Need to store only two configurations at a time in the work-tape

- Log-space reducing any NL language L₁ to PATH
 - Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
 - Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix
 - Edge checking done using M's transition table
 - Need to store only two configurations at a time in the work-tape
- Note: in fact O(S)-space reduction from L ∈ NSPACE(S) to PATH

If PATH ∈ co-NL, then co-NL ⊆ NL

- If PATH ∈ co-NL, then co-NL ⊆ NL
 - For any $L \in co-NL$, we have $L \leq_L PATH^c$ (as $L^c \leq_L PATH$), and if $PATH^c \in NL$, then $L \in NL$ (NL is downward closed under \leq_L)

- If PATH ∈ co-NL, then co-NL ⊆ NL
 - For any $L \in co-NL$, we have $L \leq_L PATH^c$ (as $L^c \leq_L PATH$), and if $PATH^c \in NL$, then $L \in NL$ (NL is downward closed under \leq_L)
 - Implies co-NL = NL (why?)

- If PATH ∈ co-NL, then co-NL ⊆ NL
 - For any $L \in co-NL$, we have $L \le L$ PATH^c (as $L^c \le L$ PATH), and if PATH^c $\in NL$, then $L \in NL$ (NL is downward closed under $\le L$)
 - Implies co-NL = NL (why?)
 - If Y ⊆ X, then co-Y ⊆ co-X. Consider X = NL, Y = co-NL.

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

- In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)
 - Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

- In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)
 - Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH
 - i.e., from L' ∈ co-NSPACE(S) to PATH^c

- In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)
 - \circ Recall: O(S)-space reduction from L \in NSPACE(S) to PATH
 - i.e., from L' ∈ co-NSPACE(S) to PATH^c
 - Size of the new instance is at most $N = 2^{O(|S|)}$

- In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)
 - Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH
 - i.e., from L' ∈ co-NSPACE(S) to PATH^c
 - Size of the new instance is at most $N = 2^{O(|S|)}$
 - PATH^c ∈ NL implies an NTM that decides if the instance is in PATH^c in NSPACE(log N) = NSPACE(S)

- In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)
 - Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH
 - i.e., from L' ∈ co-NSPACE(S) to PATH^c
 - Size of the new instance is at most $N = 2^{O(|S|)}$
 - PATH^c ∈ NL implies an NTM that decides if the instance is in PATH^c in NSPACE(log N) = NSPACE(S)
 - Then $L' \in co-NSPACE(S)$ is also in NSPACE(S), by composing space-bounded computations. So, co-NSPACE(S) \subseteq NSPACE(S)

- In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)
 - Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH
 - i.e., from L' ∈ co-NSPACE(S) to PATH^c
 - Size of the new instance is at most N = 20(|S|)
 - PATH^c ∈ NL implies an NTM that decides if the instance is in PATH^c in NSPACE(log N) = NSPACE(S)
 - Then $L' \in co-NSPACE(S)$ is also in NSPACE(S), by composing space-bounded computations. So, co-NSPACE(S) \subseteq NSPACE(S)
 - Hence co-NSPACE(S) = NSPACE(S)

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

If PATH ∈ co-NL

- If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

If PATH ∈ co-NL

- If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)
- And indeed, PATH ∈ co-NL!

If PATH ∈ co-NL

- If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)
- And indeed, PATH ∈ co-NL!
 - There is a (polynomial sized) certificate that can be verified in log-space, that there is no path from s to t in a graph G

© Certificate for (s,t) connected is just the path

- Certificate for (s,t) connected is just the path
- What is a certificate that (s,t) not connected?

- Certificate for (s,t) connected is just the path
- What is a certificate that (s,t) not connected?
 - size c of the connected component of s, C; a list of all $v \in C$ (with certificates) in order; and (somehow) a certificate for c = |C|

- Certificate for (s,t) connected is just the path
- What is a certificate that (s,t) not connected?
 - \circ size c of the connected component of s, C; a list of all $v \in C$ (with certificates) in order; and (somehow) a certificate for c = |C|
 - Log-space, one-scan verification of certified C (believing |C|): scan list, checking certificates, counting, ensuring order, and that t not in the list. Verify count.

- Certificate for (s,t) connected is just the path
- What is a certificate that (s,t) not connected?
 - \circ size c of the connected component of s, C; a list of all $v \in C$ (with certificates) in order; and (somehow) a certificate for c = |C|
 - Log-space, one-scan verification of certified C (believing |C|): scan list, checking certificates, counting, ensuring order, and that t not in the list. Verify count.
 - \odot List has |C| many $v \in C$, without repeating

 \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$

- \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$
- \odot Tail recursion to verify $|C_N|$:

- \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$
- \odot Tail recursion to verify $|C_N|$:
 - \odot Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$;

- \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$
- \odot Tail recursion to verify $|C_N|$:
 - \odot Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$;
 - @ Read $|C_{N-2}|$, believing it verify $|C_{N-1}|$, forget $|C_{N-1}|$; ...

- \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$
- \odot Tail recursion to verify $|C_N|$:
 - \odot Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$;
 - @ Read $|C_{N-2}|$, believing it verify $|C_{N-1}|$, forget $|C_{N-1}|$; ...
 - \odot Base case: $|C_0|=1$

- \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$
- \odot Tail recursion to verify $|C_N|$:
 - \odot Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$;
 - @ Read $|C_{N-2}|$, believing it verify $|C_{N-1}|$, forget $|C_{N-1}|$; ...
 - \odot Base case: $|C_0|=1$
- Believing $|C_{i-1}|$ verify $|C_i|$: for each vertex v certificate that $v \in C_i$ or that $v \not\in C_i$ (these certificates are poly(N) long)

- \odot Let C_i := set of nodes within distance i of s. Then $C = C_N$
- \odot Tail recursion to verify $|C_N|$:
 - \odot Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$;
 - @ Read $|C_{N-2}|$, believing it verify $|C_{N-1}|$, forget $|C_{N-1}|$; ...
 - \odot Base case: $|C_0|=1$
- Believing $|C_{i-1}|$ verify $|C_i|$: for each vertex v certificate that $v \in C_i$ or that $v \not\in C_i$ (these certificates are poly(N) long)
- Certificate that v ∉ C_i given (i.e., believing) |C_{i-1}|: list of all vertices in C_{i-1} in order, with certificates. As before verify C_{i-1} believing |C_{i-1}| (scan and ensure list is correct/complete), but also check that no node in the list has v as a neighbor

Certificate for t∉C_N

Certificate for t∉C_N

 $\mathbf{t}\notin\mathbf{C_{N}}$

Certificate for t∉C_N

 $\mathbf{t}
otin \mathbf{C_N}$

|C_N|

