Computational Complexity

Lecture 3
in which we come across
Diagonalization and Time-hierarchies

- \circ co-X = { L | L^c is in X } (where L^c = { x | x \notin L })
- co-DTIME(T) = DTIME(T)

- \circ co-X = { L | L^c is in X } (where L^c = { x | x \notin L })
- co-DTIME(T) = DTIME(T)

- \circ co-X = { L | L^c is in X } (where L^c = { x | x\notin L })
- co-DTIME(T) = DTIME(T)

 - M_Lc ↔ M_L: flip accept/reject states

- co-DTIME(T) = DTIME(T)
 - \odot DTIME closed under complement: $L^c \in DTIME(T) \Leftrightarrow L \in DTIME(T)$
- co-NTIME(T): all L s.t. L^c is in NTIME(T)

- \circ co-X = { L | L^c is in X } (where L^c = { x | x\notin L })
- co-DTIME(T) = DTIME(T)

 - M_Lc ↔ M_L: flip accept/reject states
- co-NTIME(T): all L s.t. L^c is in NTIME(T)
 - $M_L c \leftrightarrow M_L ?$

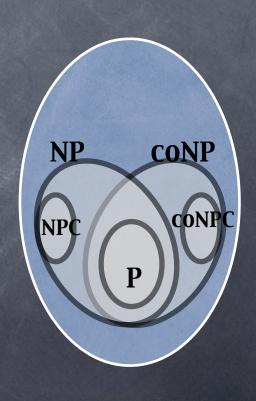
- co-DTIME(T) = DTIME(T)

 - M_Lc ↔ M_L: flip accept/reject states
- co-NTIME(T): all L s.t. L^c is in NTIME(T)
 - M_Lc ↔ M_L?
 - flip accept/reject states <u>and</u> flip "there exists" and "for all" in the acceptance criterion (NTM ↔ "co-NTM")

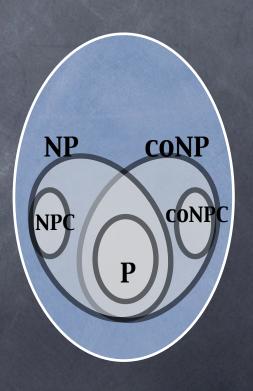
- co-DTIME(T) = DTIME(T)
- co-NTIME(T): all L s.t. L^c is in NTIME(T)
 - \bullet M_Lc \leftrightarrow M_L?
 - flip accept/reject states <u>and</u> flip "there exists" and "for all" in the acceptance criterion (NTM ↔ "co-NTM")
 - ② $L^c = \{ x \mid \exists w \text{ s.t. } (x,w) \in L' \} = \{ x \mid \forall w (x,w) \in L'^c \}$

- co-DTIME(T) = DTIME(T)

 - M_Lc ↔ M_L: flip accept/reject states
- co-NTIME(T): all L s.t. L^c is in NTIME(T)
 - \sim M_Lc \leftrightarrow M_L?
 - flip accept/reject states and flip "there exists" and "for all" of the acceptance criterion (NTM \leftrightarrow "co-NTM")
 - ② $L^{c} = \{ x \mid \exists w \text{ s.t. } (x,w) \in L' \} = \{ x \mid \forall w (x,w) \in L'^{c} \}$

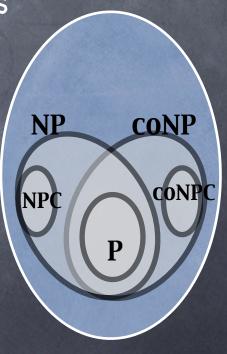


We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$



We say class X is "closed under polynomial reductions" if (L₁ ≤p L₂ and L₂ in class X) implies L₁ in X

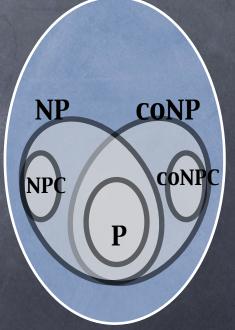
e.g. P, NP are closed under polynomial reductions



We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

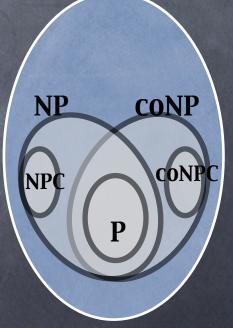


We say class X is "closed under polynomial reductions" if (L₁ ≤p L₂ and L₂ in class X) implies L₁ in X

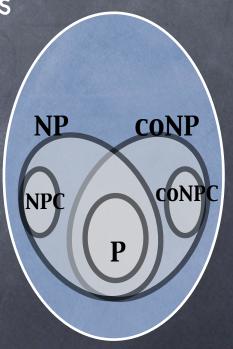
e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

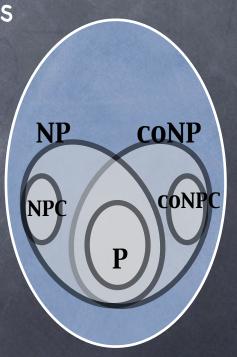
If any NPC language is in P, then NP = P



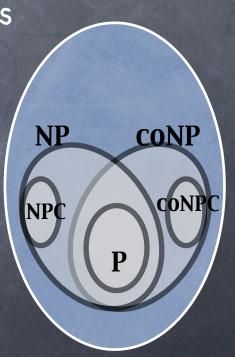
- - e.g. P, NP are closed under polynomial reductions
 - So is co-NP (If X is closed, so is co-X. Why?)
- If any NPC language is in P, then NP = P
- If any NPC language is in co-NP, then NP = co-NP



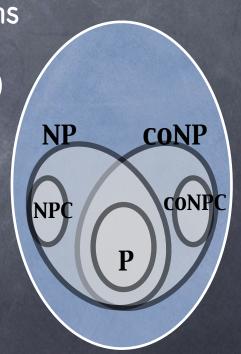
- We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$
 - e.g. P, NP are closed under polynomial reductions
 - So is co-NP (If X is closed, so is co-X. Why?)
- If any NPC language is in P, then NP = P
- If any NPC language is in co-NP, then NP = co-NP
 - Note: X ⊆ co-X ⇒ X = co-X (Why?)



- We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$
 - e.g. P, NP are closed under polynomial reductions
 - So is co-NP (If X is closed, so is co-X. Why?)
- If any NPC language is in P, then NP = P
- If any NPC language is in co-NP, then NP = co-NP
 - \odot Note: $X \subseteq co-X \Rightarrow X = co-X (Why?)$
- L is NP-complete iff L^c is co-NP-complete (Why?)



- We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$
 - e.g. P, NP are closed under polynomial reductions
 - So is co-NP (If X is closed, so is co-X. Why?)
- If any NPC language is in P, then NP = P
- If any NPC language is in co-NP, then NP = co-NP
 - Note: X ⊆ co-X ⇒ X = co-X (Why?)
- L is NP-complete iff L^c is co-NP-complete (Why?)
 - co-NP complete = co-(NP-complete)



How to prove a set X strictly bigger than Y

- How to prove a set X strictly bigger than Y
 - Show an element not in Y, but in X? For us, not in Y may often be difficult to prove for (familiar) elements

- How to prove a set X strictly bigger than Y
 - Show an element not in Y, but in X? For us, not in Y may often be difficult to prove for (familiar) elements
 - Count? What if both infinite?!

- How to prove a set X strictly bigger than Y
 - Show an element not in Y, but in X? For us, not in Y may often be difficult to prove for (familiar) elements
 - Count? What if both infinite?!
 - Comparing infinite sets: diagonalization!

Are real numbers (say in the range [0,1)) countable?

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table

Ri									
$R_1 =$	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"
 - Doesn't appear in this table!

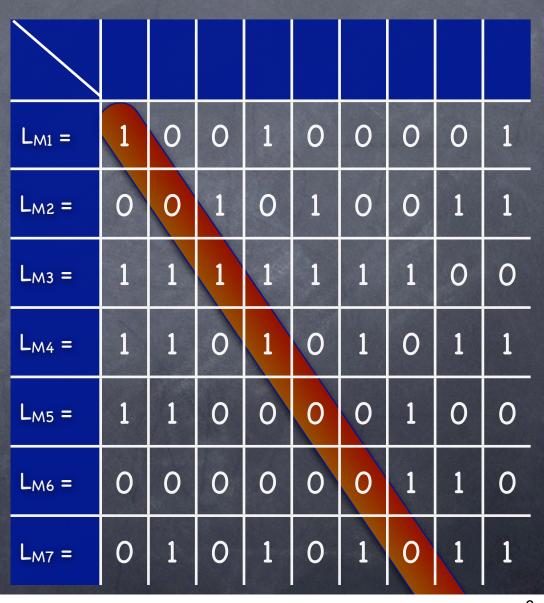
Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

Cantor's Diagonal Slash table can't have all reals have all reals

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"
 - Doesn't appear in this table!

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

Undecidable Languages



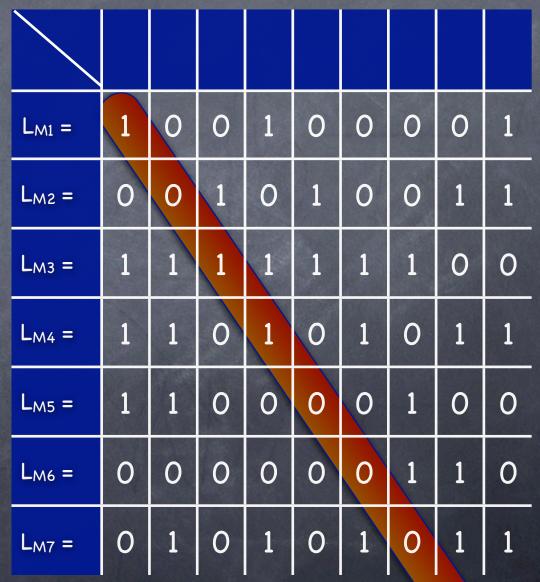
Undecidable Languages

Languages, like real numbers, can be represented as infinite bit-vectors

L _{M1} =		0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

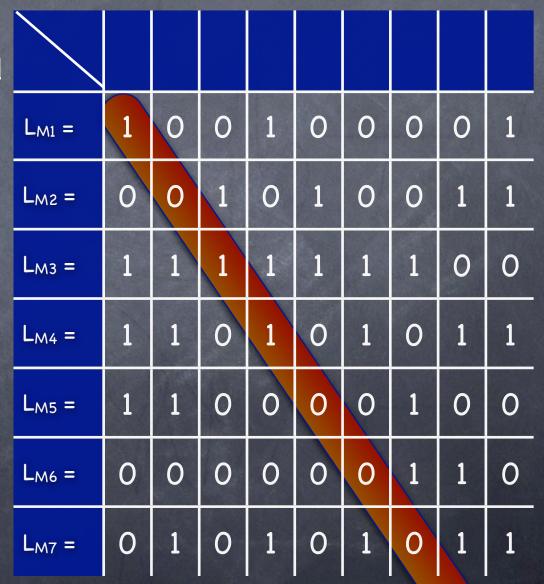
Undecidable Languages

- Languages, like real numbers, can be represented as infinite bit-vectors
- TMs can be enumerated!



Undecidable Languages

- Languages, like real numbers, can be represented as infinite bit-vectors
- TMs can be enumerated!
- Table of languages recognized by the TMs



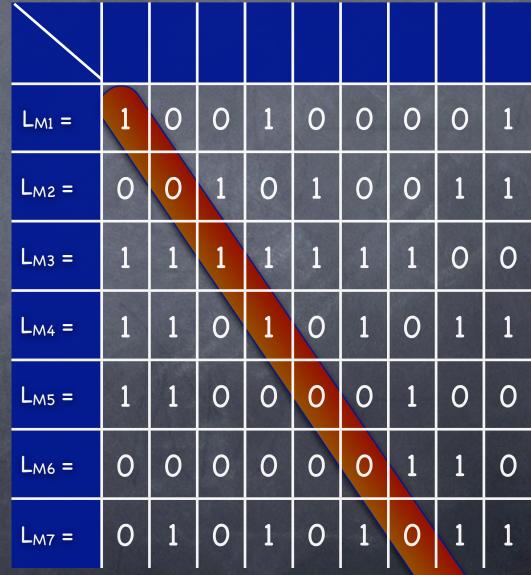
Undecidable Languages

- Languages, like real numbers, can be represented as infinite bit-vectors
- TMs can be enumerated!
- Table of languages recognized by the TMs
- L = "diagonal language"

L _{M1} =		0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

Undecidable Languages

- Languages, like real numbers, can be represented as infinite bit-vectors
- TMs can be enumerated!
- Table of languages recognized by the TMs
- L = "diagonal language"
 - L^c does not appear as a row in this table. Hence not recognizable!



Undecidable Languages This table can't ha

Languages, like real numbers, can be represented as infinite bit-vectors

- TMs can be enumerated!
- Table of languages recognized by the TMs
- L = "diagonal language"
 - L^c does not appear as a row in this table. Hence not recognizable!

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

Diagonalization to Separate Classes

- Diagonalization can separate the class of decidable languages (from the class of all languages)
 - Plan: Use similar techniques to separate complexity classes

Fix a TM model (one-tape, binary alphabet)

- Fix a TM model (one-tape, binary alphabet)
 - \odot DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM

- Fix a TM model (one-tape, binary alphabet)
 - DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM
- Theorem: DTIME(n^c) \subseteq DTIME(n^{c+1}) for all $c \ge 1$

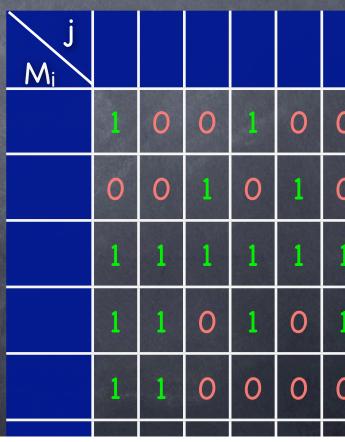
- Fix a TM model (one-tape, binary alphabet)
 - DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM
- Theorem: $DTIME(n^c) \subseteq DTIME(n^{c+1})$ for all $c \ge 1$
 - More generally DTIME(T) ⊆ DTIME(T') if T, T' "nice" (and ≥ n) and T(n)log(T(n)) = o(T'(n))

- Fix a TM model (one-tape, binary alphabet)
 - \odot DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM
- Theorem: $DTIME(n^c) \subseteq DTIME(n^{c+1})$ for all $c \ge 1$
 - More generally DTIME(T) ⊆ DTIME(T') if T, T' "nice" (and ≥ n) and T(n)log(T(n)) = o(T'(n))
- Consequences, for e.g., P ⊆ EXP

- Fix a TM model (one-tape, binary alphabet)
 - DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM
- Theorem: $DTIME(n^c) \subseteq DTIME(n^{c+1})$ for all $c \ge 1$
 - More generally DTIME(T) ⊆ DTIME(T') if T, T' "nice" (and ≥ n) and T(n)log(T(n)) = o(T'(n))
- Consequences, for e.g., P ⊆ EXP
 - $P \subseteq DTIME(2^n) \subseteq DTIME(2^{2n}) \subseteq EXP$

M_i be an enumeration of TMs, each TM appearing infinitely often

- M_i be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')



- M_i be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

J Mi	n Descentific					
	1	0	0	1	0	(
	0	0	1	0	1	(
	1	1	1	1	1	1
	1	1	0	1	0	1
	1	1	0	0	0	(
		Y THE				

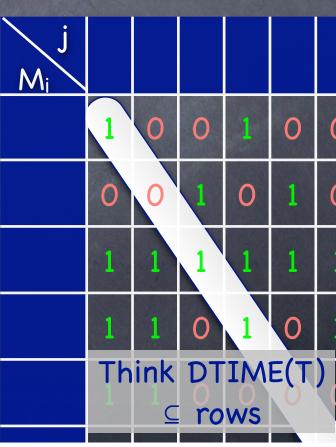
- M_i be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

j	n Consideration	engonae				
Mi		2004		1000000	S	
	1	0	0	1	0	(
	0	0	1	0	1	(
	1	1	1	1	1	
	1	1	0	1	0	
	Th	ink	DT		E(T)
				WS	-	

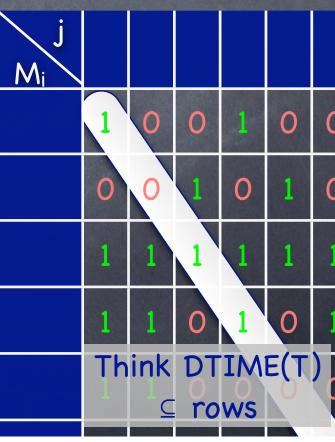
- M_i be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

j						10002
Mi						
	1	0	0	1	0	(
	0	0	1	0	1	(
	1	1	1	1	1	
	1	1	0	1	0	
	Th	ink	DT	IM ws	E(T	
	1000					

- M_i be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')
- Let L' = inverted diagonal.

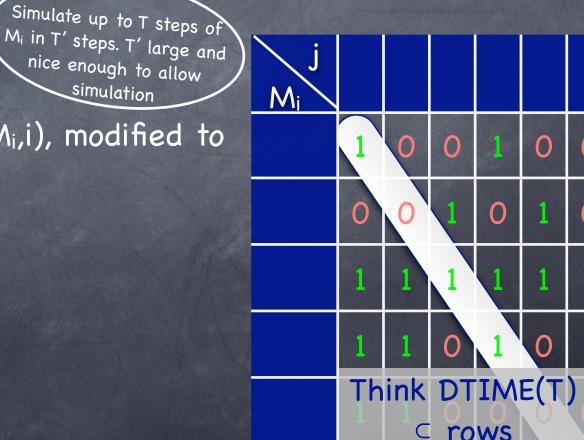


- M_i be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')
- Let L' = inverted diagonal.
- O L' in DTIME(T')

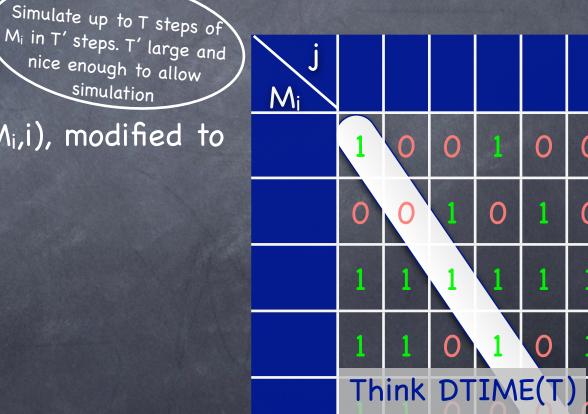


- Mi be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')
- Let L' = inverted diagonal.
- O L' in DTIME(T')

On input i, run UTM $|_{T'}$ (M_i,i), modified to invert output



- Mi be an enumeration of TMs, each TM appearing infinitely often
- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')
- Let L' = inverted diagonal.
- O L' in DTIME(T')
 - On input i, run UTM $|_{T'}$ (M_i,i), modified to invert output
- L' not in DTIME(T)

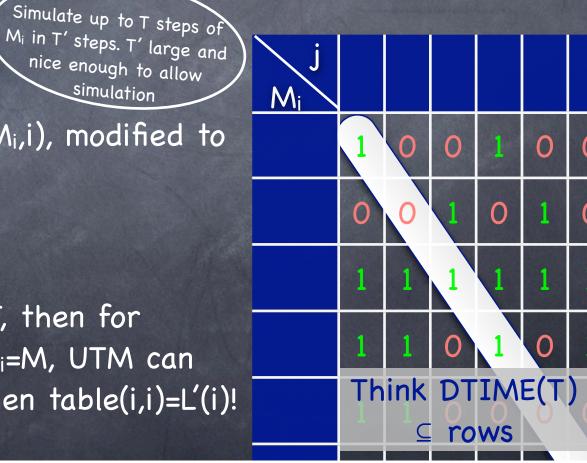


rows

M_i be an enumeration of TMs, each TM appearing infinitely often

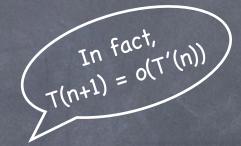
nice enough to allow simulation

- © Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')
- Let L' = inverted diagonal.
- L' in DTIME(T')
 - \odot On input i, run UTM $|_{T'}$ (Mi,i), modified to invert output
- L' not in DTIME(T)
 - If M accepts L' in time T, then for sufficiently large i s.t. Mi=M, UTM can finish simulating $M_i(i)$. Then table(i,i)=L'(i)!

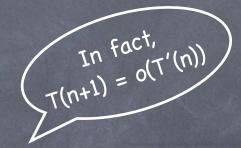


- Finer hierarchy
 - NTIME(T) \subseteq NTIME(T') if T(n)=o(T'(n)), and T, T' nice

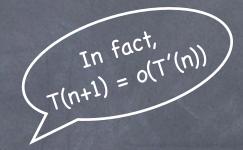
Finer hierarchy



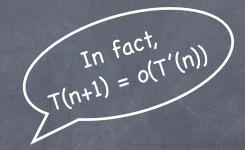
NTIME(T) \subseteq NTIME(T') if T(n)=o(T'(n)), and T, T' nice



- NTIME(T) ⊆ NTIME(T') if T(n)=o(T'(n)), and T, T' nice
- Because a more sophisticated Universal NTM has less overhead



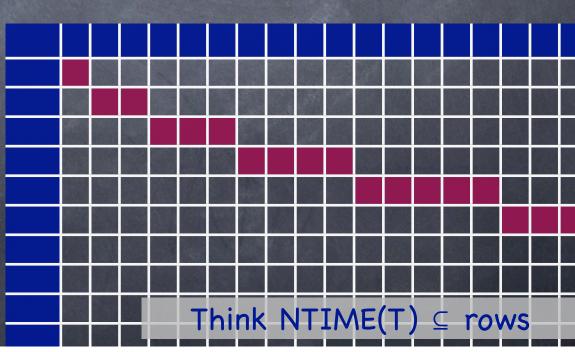
- Because a more sophisticated Universal NTM has less overhead
- Diagonalization is more complicated



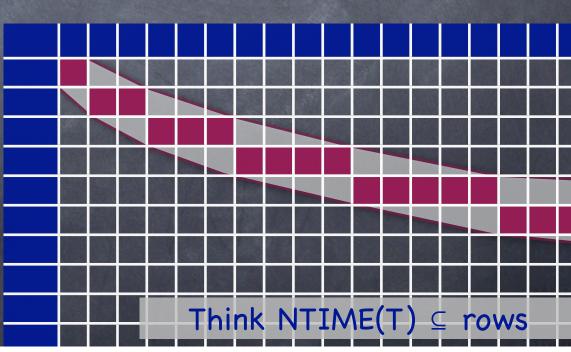
- NTIME(T) ⊆ NTIME(T') if T(n)=o(T'(n)), and T, T' nice
- Because a more sophisticated Universal NTM has less overhead
- Diagonalization is more complicated
 - Issue: NTIME(T') enough to simulate NTIME(T), but not to simulate co-NTIME(T)!

Delayed flip" on a "rapidly thickening diagonal"

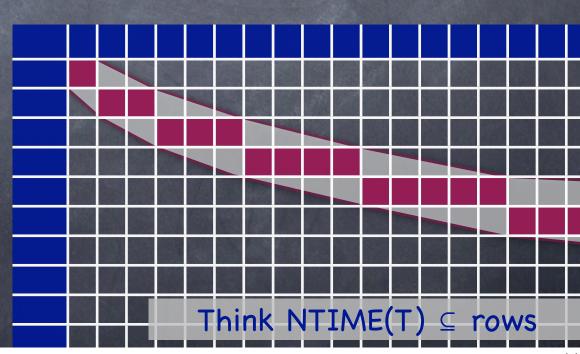
Delayed flip" on a "rapidly thickening diagonal"



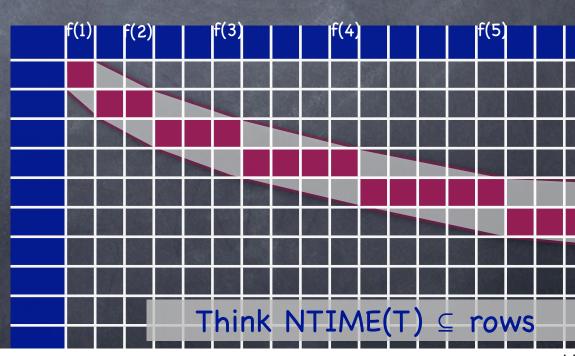
Delayed flip" on a "rapidly thickening diagonal"



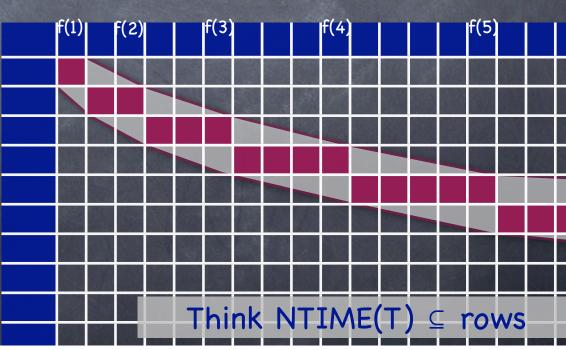
- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))



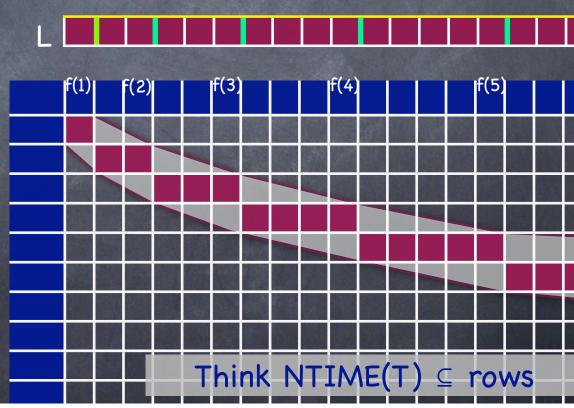
- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))



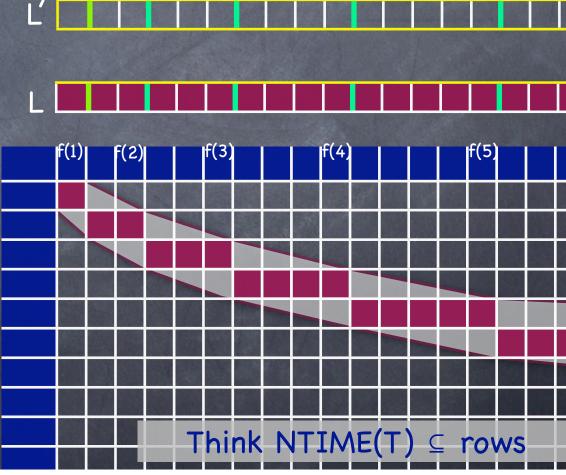
- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language



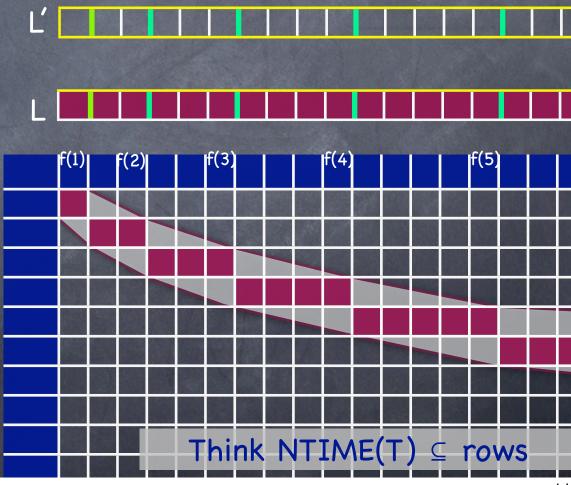
- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language



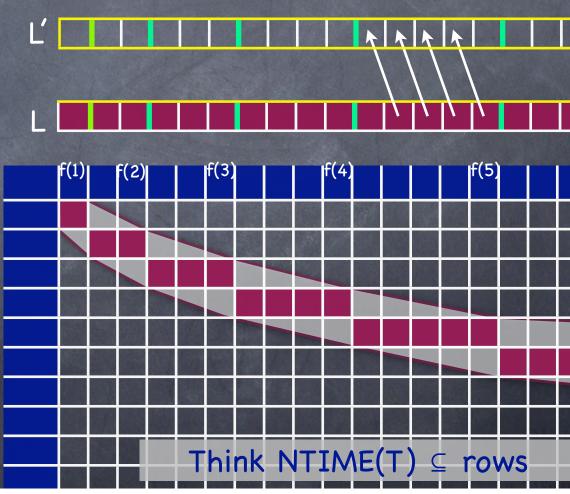
- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language



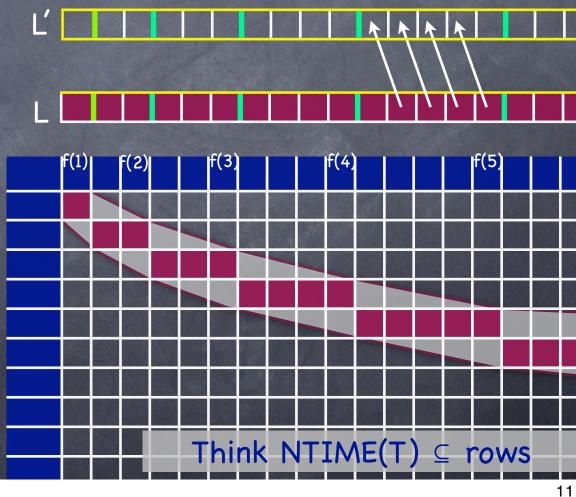
- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)



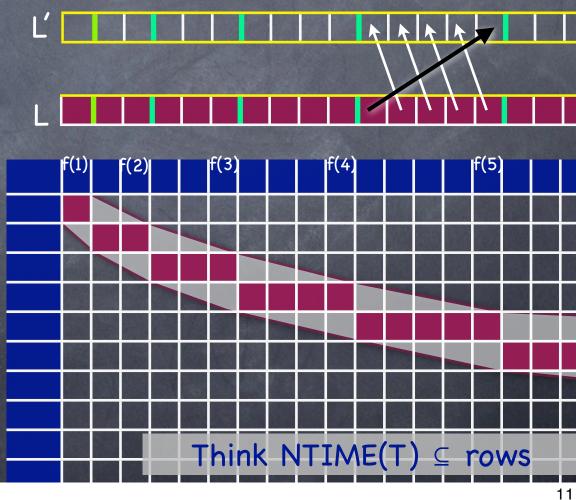
- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)



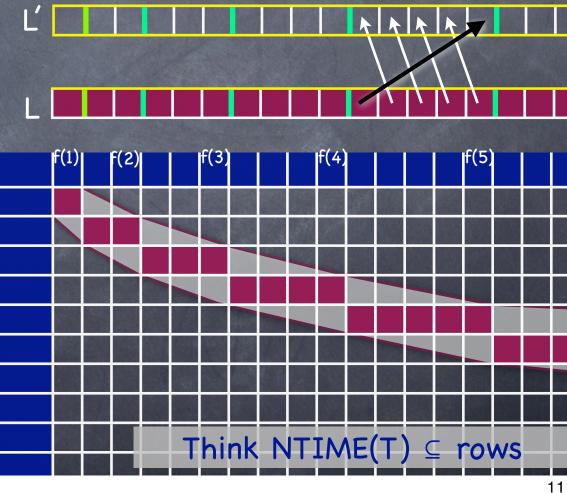
- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)
 - except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)



- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)
 - except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)

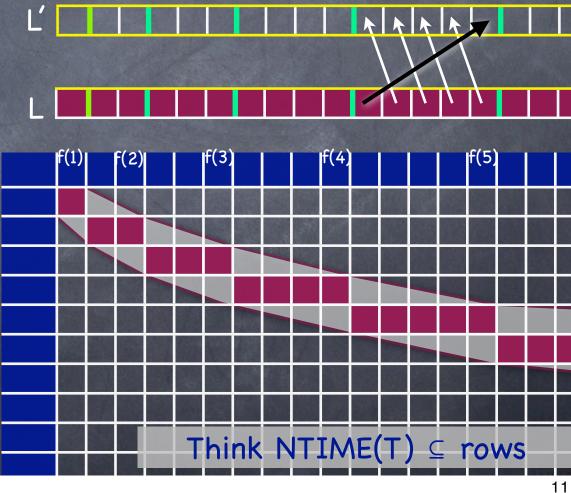


- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)
 - except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)
 - L' not in NTIME(T), but is in NTIME(T')



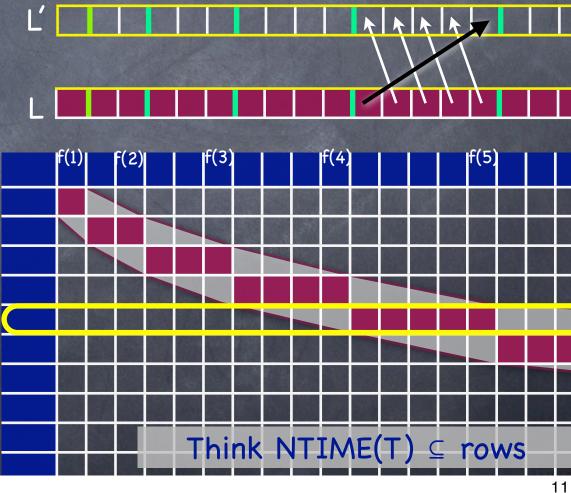
- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)
 - except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)

Flip, Diagonal L' not in NTIME(T), but is in NTIME(T')



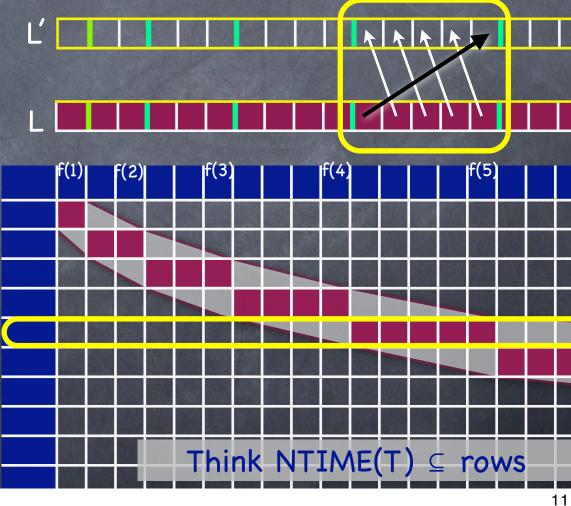
- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)
 - except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)

Flip, Diagonal L' not in NTIME(T), but is in NTIME(T')



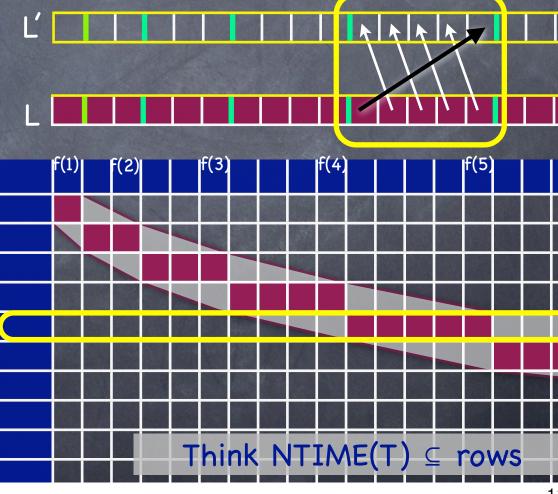
- "Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - \circ L'(j)=L(j+1)
 - except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)

Flip, Diagonal L' not in NTIME(T), but is in NTIME(T')



- Delayed flip" on a "rapidly thickening diagonal"
 - \circ f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - - except if j=f(i), then
 L'(j) = 1 L(f(i-1)+1)

Flip, Diagonal L' not in NTIME(T), but Delay, Rapid is in NTIME(T')



Within DTIME and NTIME fine gradation

- Within DTIME and NTIME fine gradation
 - In particular P ⊆ EXP, NP ⊆ NEXP

- Within DTIME and NTIME fine gradation
 - In particular P ⊆ EXP, NP ⊆ NEXP
- Tells nothing across DTIME and NTIME

- Within DTIME and NTIME fine gradation
 - In particular P ⊆ EXP, NP ⊆ NEXP
- Tells nothing across DTIME and NTIME
 - P and NP?

- Within DTIME and NTIME fine gradation
 - In particular P ⊆ EXP, NP ⊆ NEXP
- Tells nothing across DTIME and NTIME
 - P and NP?
 - Just diagonalization won't help (next lecture)

Today

- © DTIME Hierarchy
 - \odot DTIME(T) \subseteq DTIME(T') if T log T = o(T')
- NTIME Hierarchy
 - NTIME(T)
 □ NTIME(T') if T = o(T')
- Using diagonalization

Next Lecture

- Another application of diagonalization
 - Ladner's Theorem: If P≠NP, NP language which is neither in P nor NP-complete
- Limits of Diagonalization
- Starting Space Complexity