Computational Complexity

Lecture 2
in which we talk about
NP-completeness
(reductions, reductions)

Recap

Languages in NP are of the form:

Recap

- Languages in NP are of the form:
 - L= { x | ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L' }, where
 L' is in P
 </pre>

Recap

- Languages in NP are of the form:
 - L= { x | ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L' }, where
 L' is in P
 </pre>
- Today: Hardest problems in NP

At the heart of today's complexity theory

- At the heart of today's complexity theory

- At the heart of today's complexity theory
- - ø if can decide L₂, can decide L₁

Turing reduction:

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:
 - \odot M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs

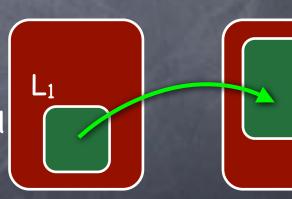
- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:
 - \odot M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs
 - M_{L1} maps its input x to an input f(x) for O_{L2}

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:
 - \odot M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs
 - M_{L1} maps its input x to an input f(x) for O_{L2}
 - \bullet $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:

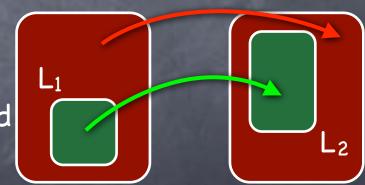
- ML1 maps its input x to an input f(x) for OL2
 - \bullet $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:
 - @ M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs



- ML1 maps its input x to an input f(x) for OL2
 - \bullet $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$

- Turing reduction:
 - Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^{\circ}O_{L2}$ decides L_1
 - ML1 may query OL2 many times (with different inputs)
- Many-One:
 - @ M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs



- ML1 maps its input x to an input f(x) for OL2
 - \bullet $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$

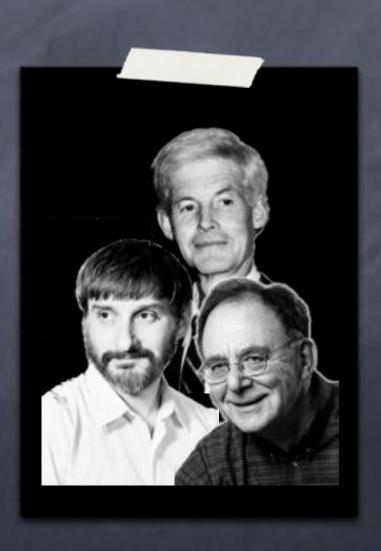
Many-one reduction, where M_{L1} runs in polynomial time

- Many-one reduction, where M_{L1} runs in polynomial time
- \odot $L_1 \leq_p L_2$

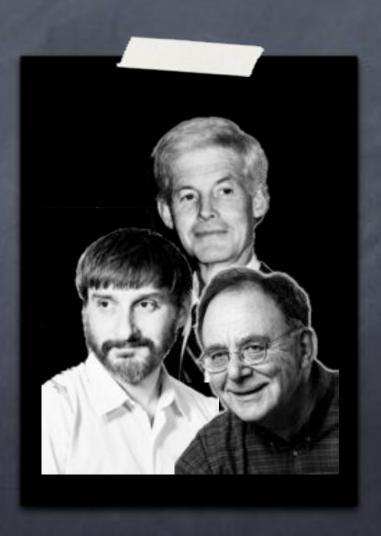
- Many-one reduction, where ML1 runs in polynomial time
- \odot $L_1 \leq_p L_2$
- L₂ is "computationally (almost) as hard or harder" compared to L₁

- Many-one reduction, where M_{L1} runs in polynomial time
- \odot $L_1 \leq_p L_2$
- @ L₂ is "computationally (almost) as hard or harder" compared to L₁
 - "almost": reduction overheads (reduction time, size blow-up)

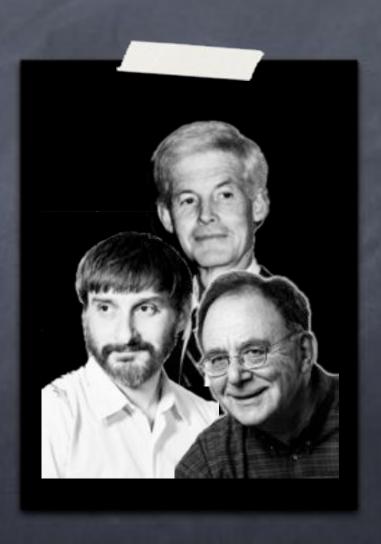
- Many-one reduction, where M_{L1} runs in polynomial time
- \odot $L_1 \leq_p L_2$
- @ L₂ is "computationally (almost) as hard or harder" compared to L₁
 - "almost": reduction overheads (reduction time, size blow-up)
 - L₂ may be way harder



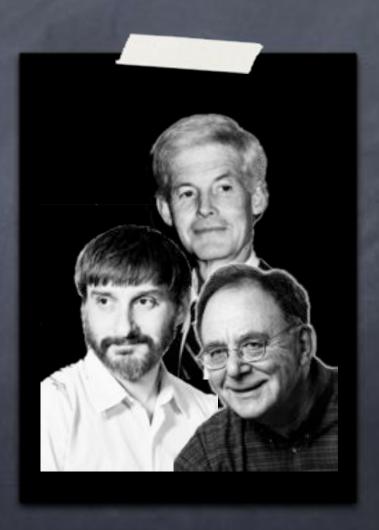
Polynomial-time reduction



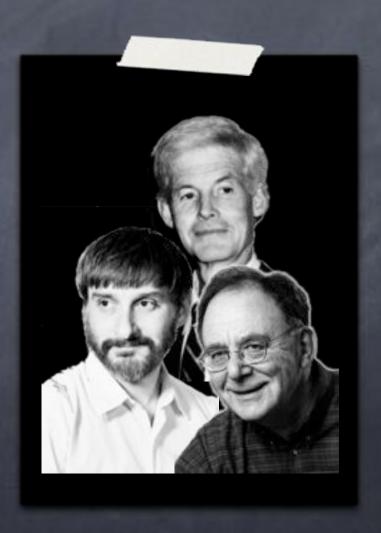
- Polynomial-time reduction
 - Cook: Turing reduction



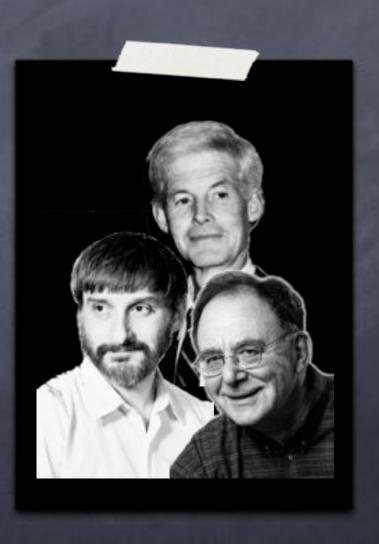
- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction



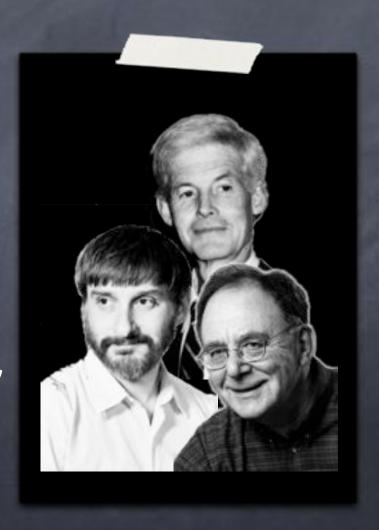
- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for ≤_p



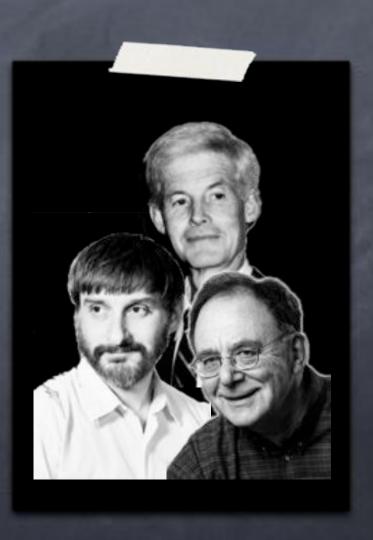
- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for ≤_p
- Between NP languages



- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for ≤_p
- Between NP languages
 - Levin: Karp + witnesses easily transformed back and forth



- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for ≤_p
- Between NP languages
 - Levin: Karp + witnesses easily transformed back and forth
 - Parsimonious: Karp + number of witnesses doesn't change



NP-completeness

NP-completeness

A language L is NP-Hard if for all L' in NP, L' ≤_p L

NP-completeness

- \odot A language L is NP-Hard if for all L' in NP, L' \leq_p L
- A language L is NP-Complete if it is NP-Hard and is in NP

NP-completeness

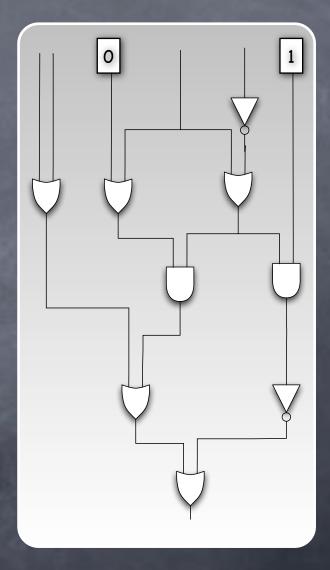
- A language L is NP-Complete if it is NP-Hard and is in NP
 - To efficiently solve all problems in NP, you need to efficiently solve L and nothing more

TMSAT = $\{ (M,z,1^n,1^t) \mid \exists w, |w| < n, s.t. TM represented by M accepts <math>(z,w)$ within time $t \}$

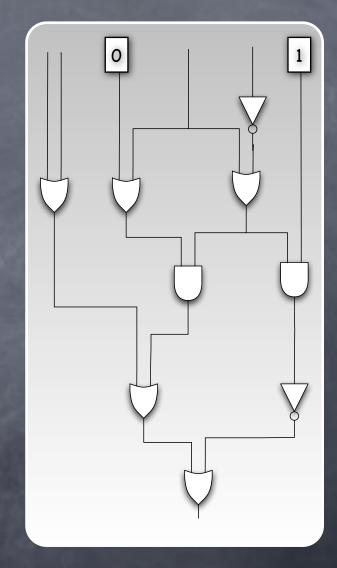
- TMSAT = $\{ (M,z,1^n,1^t) \mid \exists w, |w| < n, s.t. TM represented by M accepts <math>(z,w)$ within time $t \}$
 - TMSAT is in MP: TMVAL = $\{ (M,z,1^n,1^t,w) \mid |w| < n \text{ and } TM$ represented by M accepts (z,w) within time $t \}$ is in P

- TMSAT = $\{ (M,z,1^n,1^t) \mid \exists w, |w| < n, s.t. TM represented by M accepts <math>(z,w)$ within time $t \}$
 - TMSAT is in MP: TMVAL = $\{ (M,z,1^n,1^t,w) \mid |w| < n \text{ and } TM$ represented by M accepts (z,w) within time $t \}$ is in P
 - TMSAT is NP-hard: Given a language L in NP defined as $L = \{ x \mid \exists w, |w| < n \text{ s.t. } M_{L'} \text{ accepts } (x,w) \}$ and $M_{L'} \text{ runs }$ within time t, (where n,t are poly(|x|)), let the Karp reduction be $f(x) = (M_{L'}, x, 1^n, 1^t)$

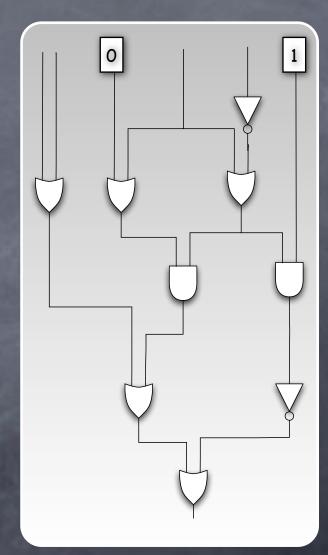
- TMSAT = $\{ (M,z,1^n,1^t) \mid \exists w, |w| < n, s.t. TM represented by M accepts <math>(z,w)$ within time $t \}$
 - TMSAT is in MP: TMVAL = $\{ (M,z,1^n,1^t,w) \mid |w| < n \text{ and } TM$ represented by M accepts (z,w) within time $t \}$ is in P
 - TMSAT is NP-hard: Given a language L in NP defined as $L = \{ x \mid \exists w, |w| < n \text{ s.t. } M_{L'} \text{ accepts } (x,w) \}$ and $M_{L'} \text{ runs } within time t, (where n,t are poly(|x|)), let the Karp reduction be <math>f(x) = (M_{L'}, x, 1^n, 1^t)$
- Any "natural" NPC language?



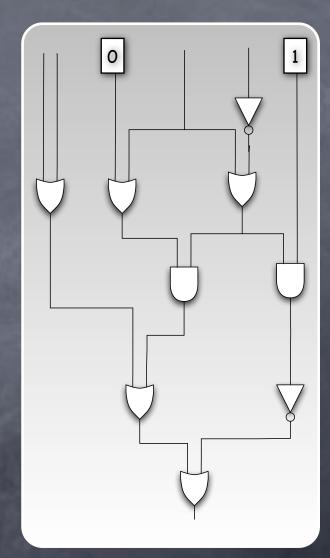
Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph



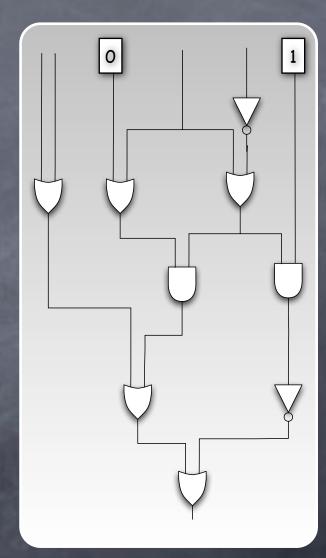
- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
 - © Circuit evaluation CKT-VAL: given (ckt,inputs) find ckt's boolean output value



- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
 - © Circuit evaluation CKT-VAL: given (ckt,inputs) find ckt's boolean output value
 - Can be done very efficiently: CKT-VAL is in P



- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
 - © Circuit evaluation CKT-VAL: given (ckt,inputs) find ckt's boolean output value
 - Can be done very efficiently:
 CKT-VAL is in P
- CKT-SAT: given ckt, is there a "satisfying" input (output=1). In NP.



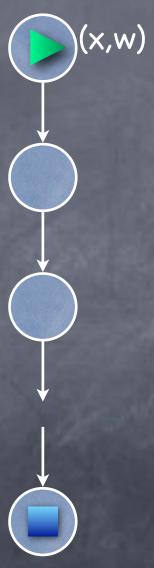
Reduce any NP language L to CKT-SAT

- Reduce any NP language L to CKT-SAT
 - Let's start from the TM for verifying membership in L, with time bound T

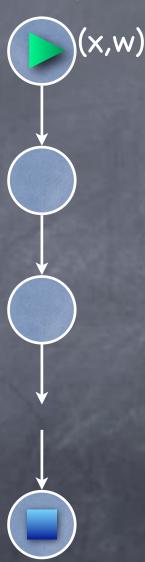
- Reduce any NP language L to CKT-SAT
 - Let's start from the TM for verifying membership in L, with time bound T
 - Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps

- Reduce any NP language L to CKT-SAT
 - Let's start from the TM for verifying membership in L, with time bound T
 - Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
 - This circuit is an instance of CKT-SAT

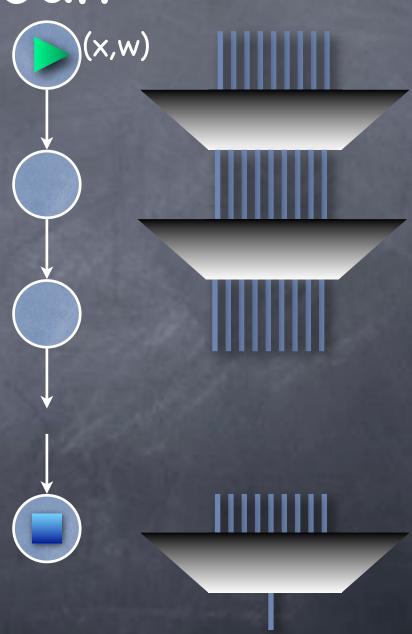
- Reduce any NP language L to CKT-SAT
 - Let's start from the TM for verifying membership in L, with time bound T
 - Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
 - This circuit is an instance of CKT-SAT
 - Ensure reduction is poly-time



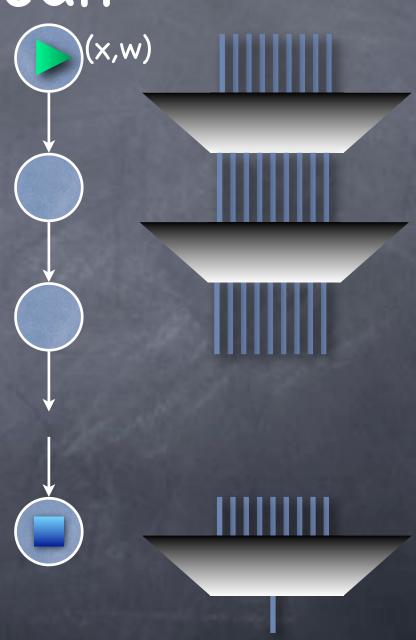
Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head



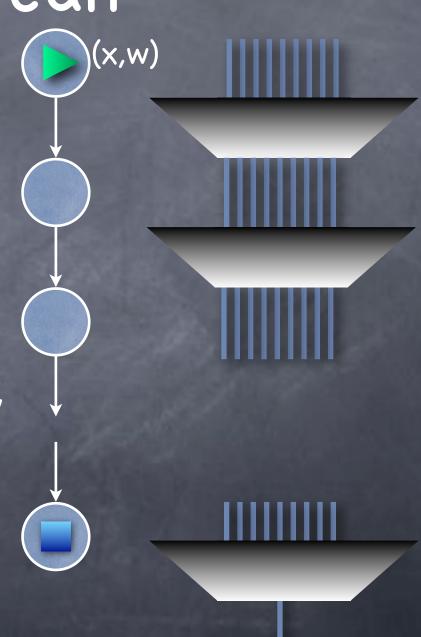
Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head



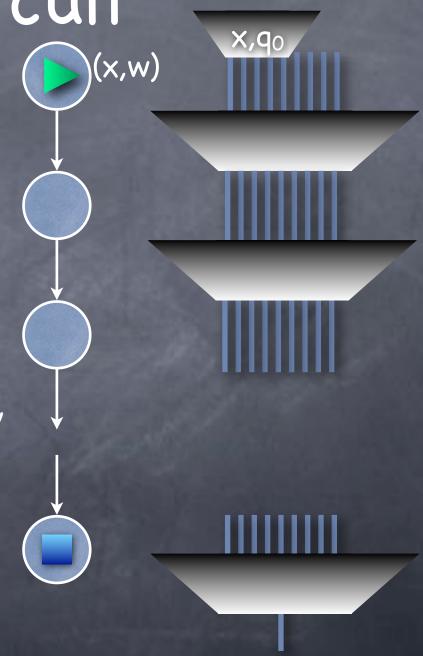
- Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
- © Circuitry for evolution: each bundle depends only on 3 previous bundles



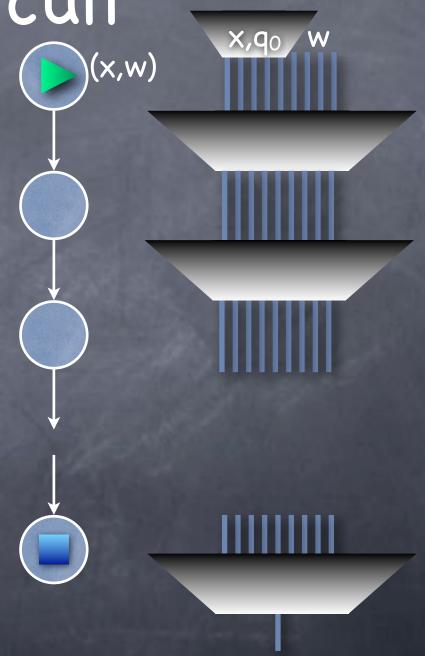
- Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namelyw, to be plugged in as input



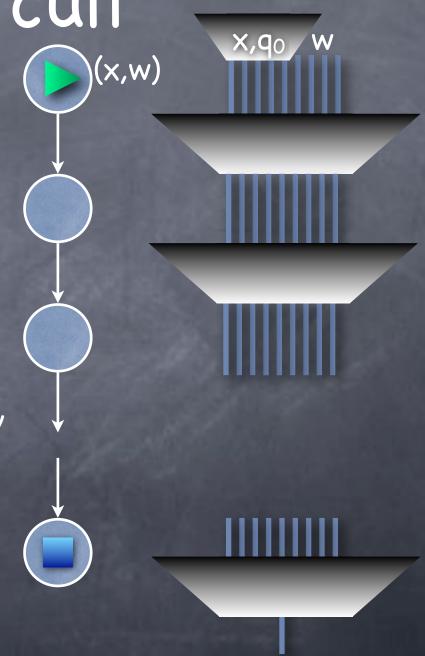
- Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namelyw, to be plugged in as input



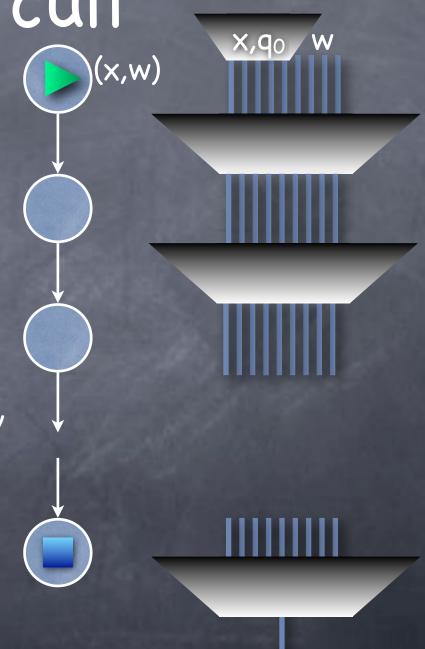
- Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namelyw, to be plugged in as input



- Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namelyw, to be plugged in as input
- T configurations, T bundles each

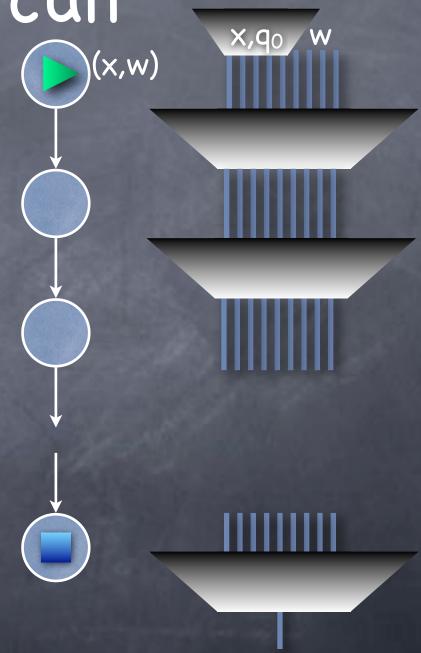


- Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namelyw, to be plugged in as input
- T configurations, T bundles each
- \circ Circuit size = $O(T^2)$

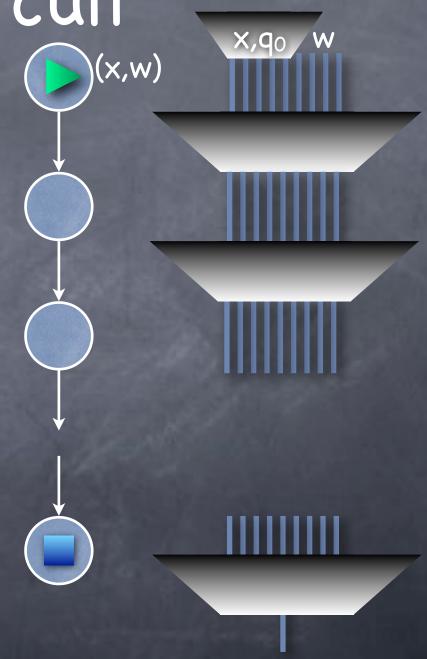


TM to Circuit $x,q_0/w$ (x,w)

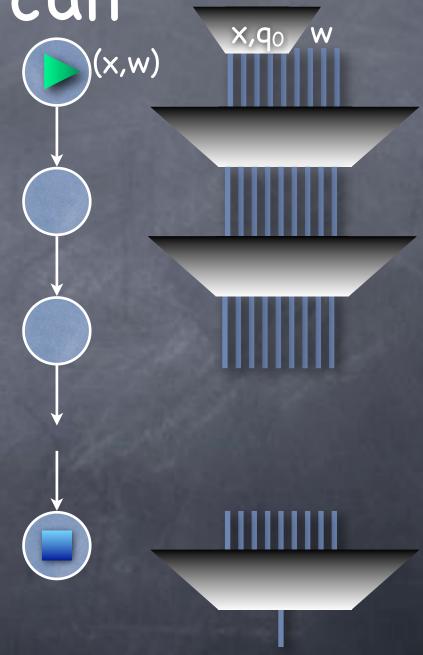
Reducing any NP language L to CKT-SAT



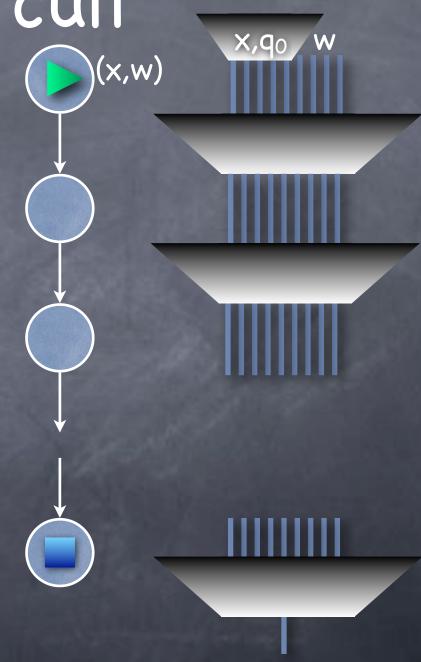
- Reducing any NP language L to CKT-SAT
 - TM for verifying membership in L, time-bound T, and input x
 → A circuit which on input w outputs what the TM outputs on (x,w) within T steps



- Reducing any NP language L to CKT-SAT
 - TM for verifying membership in L, time-bound T, and input x
 → A circuit which on input w outputs what the TM outputs on (x,w) within T steps
 - Poly-time reduction



- Reducing any NP language L to CKT-SAT
 - TM for verifying membership in L, time-bound T, and input x
 → A circuit which on input w outputs what the TM outputs on (x,w) within T steps
 - Poly-time reduction
 - CKT-SAT is NP-complete



SAT and 3SAT

- SAT and 3SAT
 - SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

- SAT and 3SAT
 - SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals

- SAT and 3SAT
 - SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER

- SAT and 3SAT
 - SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
- Hundreds (thousands?) more

- SAT and 3SAT
 - SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
- Hundreds (thousands?) more
- Shown using already known ones:

- SAT and 3SAT
 - SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
- Hundreds (thousands?) more
- Shown using already known ones:
 - If L ≤_p L₁ and L₁ ≤_p L₂, then L ≤_p L₂

Converting a circuit to a collection of clauses:

- Converting a circuit to a collection of clauses:
 - For each wire (connected component), add a variable

- Converting a circuit to a collection of clauses:
 - For each wire (connected component), add a variable
 - For each gate, add a clause involving variables for wires connected to the gate:

- Converting a circuit to a collection of clauses:
 - For each wire (connected component), add a variable
 - For each gate, add a clause involving variables for wires connected to the gate:

e.g.
$$\stackrel{X}{y} = \stackrel{AND}{} - \stackrel{Z}{} : (z \Rightarrow x), (z \Rightarrow y), (\neg z \Rightarrow \neg x \vee \neg y).$$

i.e., $(\neg z \vee x), (\neg z \vee y), (z \vee \neg x \vee y).$

- Converting a circuit to a collection of clauses:
 - For each wire (connected component), add a variable
 - For each gate, add a clause involving variables for wires connected to the gate:

e.g.
$$\stackrel{X}{y} = \stackrel{AND}{} - \stackrel{Z}{} : (z \Rightarrow x), (z \Rightarrow y), (\neg z \Rightarrow \neg x \vee \neg y).$$

i.e., $(\neg z \vee x), (\neg z \vee y), (z \vee \neg x \vee y).$

$$\circ$$
 and $\stackrel{\times}{y}$ \longrightarrow z : $(z \Rightarrow x \lor y)$, $(\neg z \Rightarrow \neg x)$, $(\neg z \Rightarrow \neg y)$.

Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

- Previous reduction was to 3SAT, so 3SAT is NP-complete.
 And SAT is in NP. So SAT ≤p 3SAT.
- More directly:

- Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤p 3SAT.
- More directly:

- Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤p 3SAT.
- More directly:
- Reduction needs 3SAT

- Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤p 3SAT.
- More directly:
- Reduction needs 3SAT
 - 2SAT is in fact in P! [Exercise]

- Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤p 3SAT.
- More directly:
- Reduction needs 3SAT
 - 2SAT is in fact in P! [Exercise]
- Reduction not parsimonious (can you make it? [Exercise])

Clauses → Graph

$$(x \vee \neg y \vee \neg z)$$

Clauses → Graph

$$(w \vee y)$$

$$(w \vee x \vee \neg z)$$

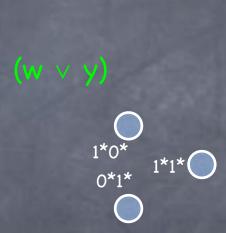
 $(x \vee \neg y \vee \neg z)$

- - vertices: each clause's satisfying assignments (for its variables)

 $(w \vee y)$

 $(w \vee x \vee \neg z)$

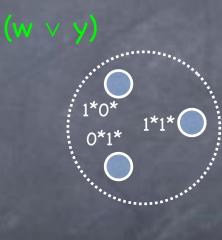
- - vertices: each clause's satisfying assignments (for its variables)



$$(w \vee x \vee \neg z)$$

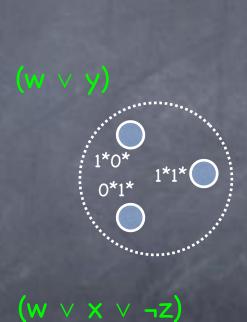
 $(x \vee \neg y \vee \neg z)$

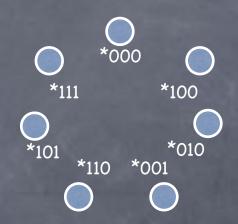
- - vertices: each clause's satisfying assignments (for its variables)



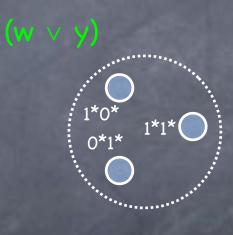
$$(w \vee x \vee \neg z)$$

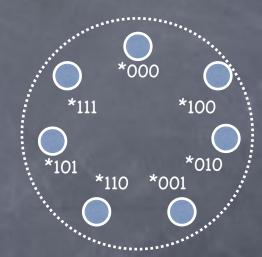
- Clauses → Graph
 - vertices: each clause's satisfying assignments (for its variables)





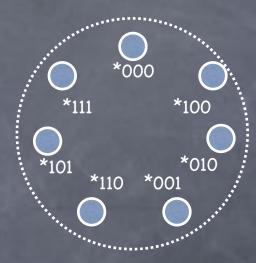
- - vertices: each clause's satisfying assignments (for its variables)

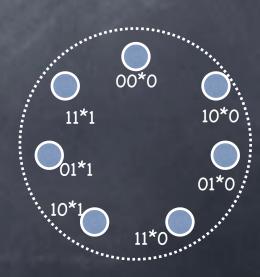




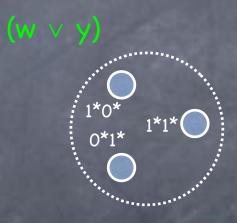
- - vertices: each clause's satisfying assignments (for its variables)



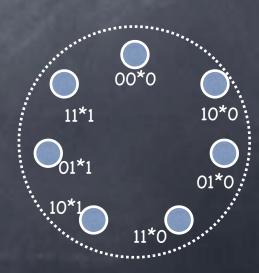




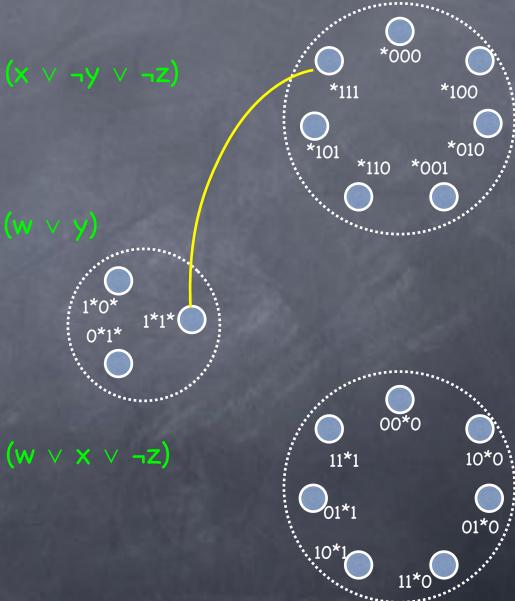
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments



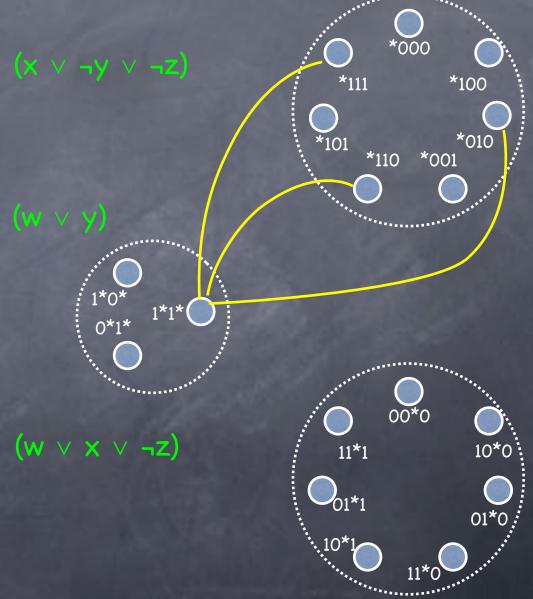




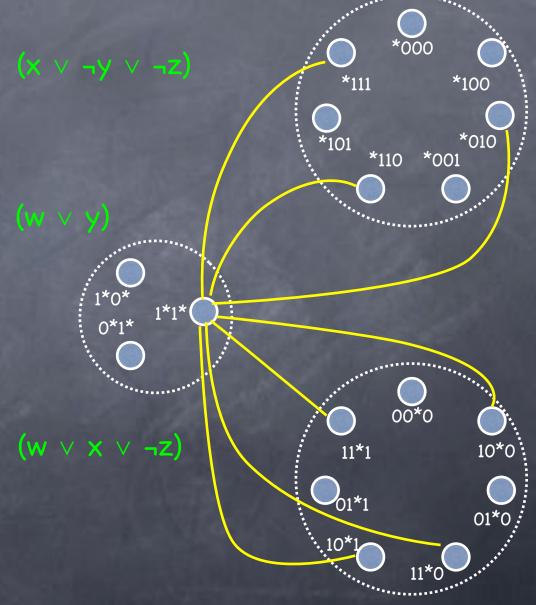
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments



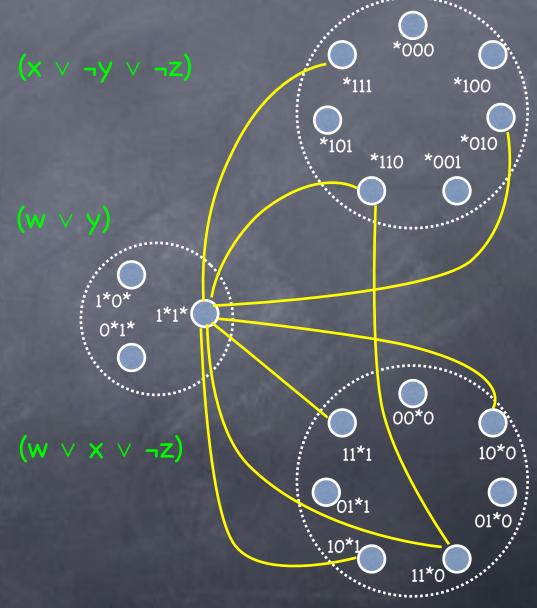
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments



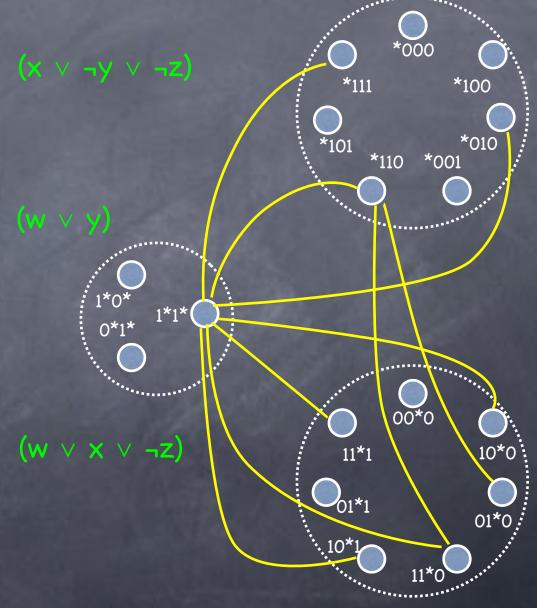
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments



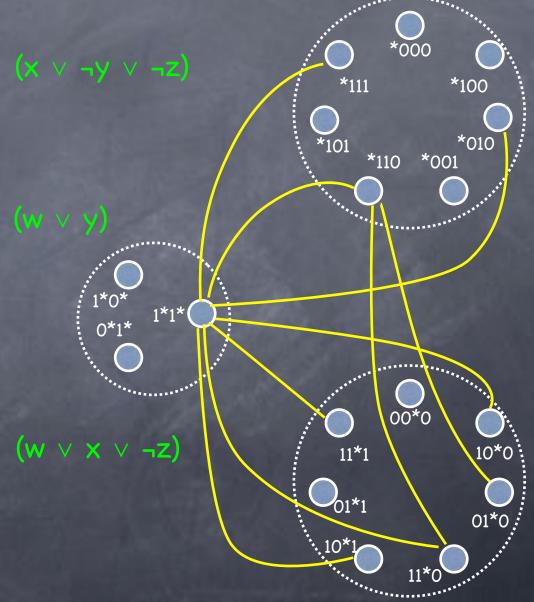
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments



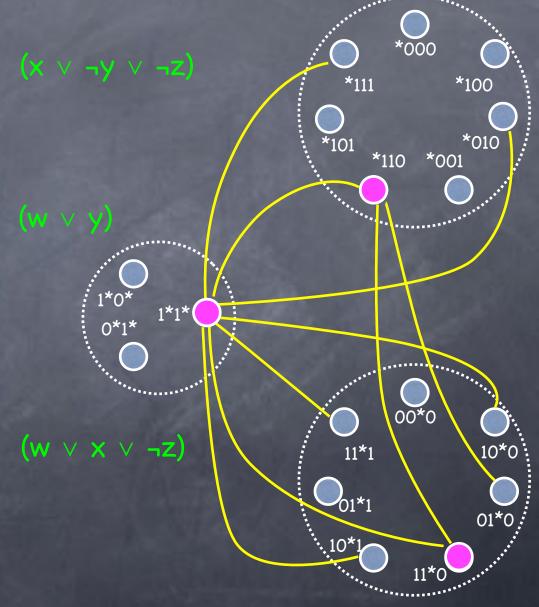
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments



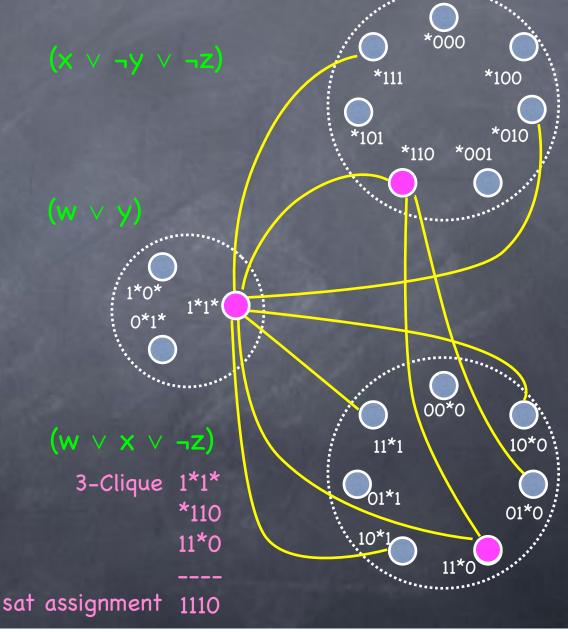
- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments
 - m-clique iff all m clauses satisfiable



- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments
 - m-clique iff all m clauses satisfiable



- - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments
 - m-clique iff all m clauses satisfiable

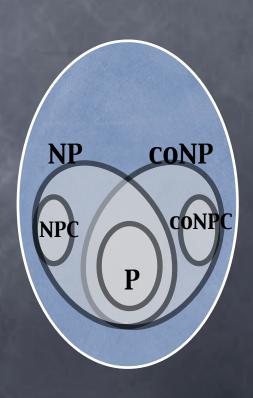


INDEP-SET and VERTEX-COVER

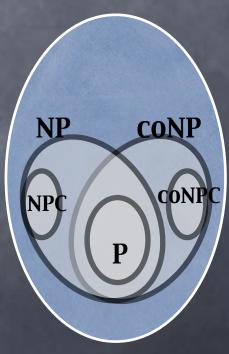
- - G has an m-clique iff G' has an m-independent-set

- - G has an m-clique iff G' has an m-independent-set
- INDEP-SET ≤_p VERTEX-COVER

- - G has an m-clique iff G' has an m-independent-set
- INDEP-SET ≤_p VERTEX-COVER
 - G has an m-indep-set iff G has an (n-m)-vertex-cover

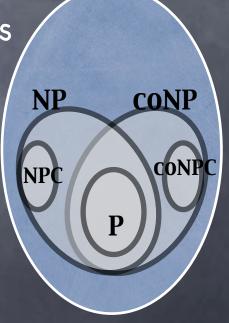


We say class X is "closed under polynomial reductions" if (L₁ ≤p L₂ and L₂ in class X) implies L₁ in X



We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

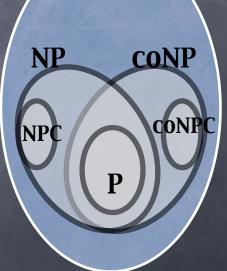
e.g. P, NP are closed under polynomial reductions



We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

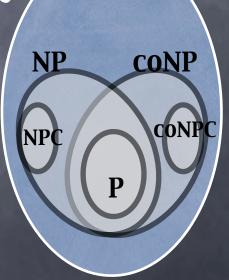


We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

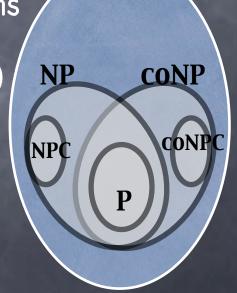


We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

- If any NPC language is in P, then NP = P
- If any NPC language is in co-NP, NP=co-NP

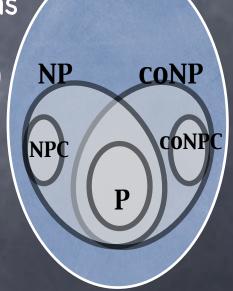


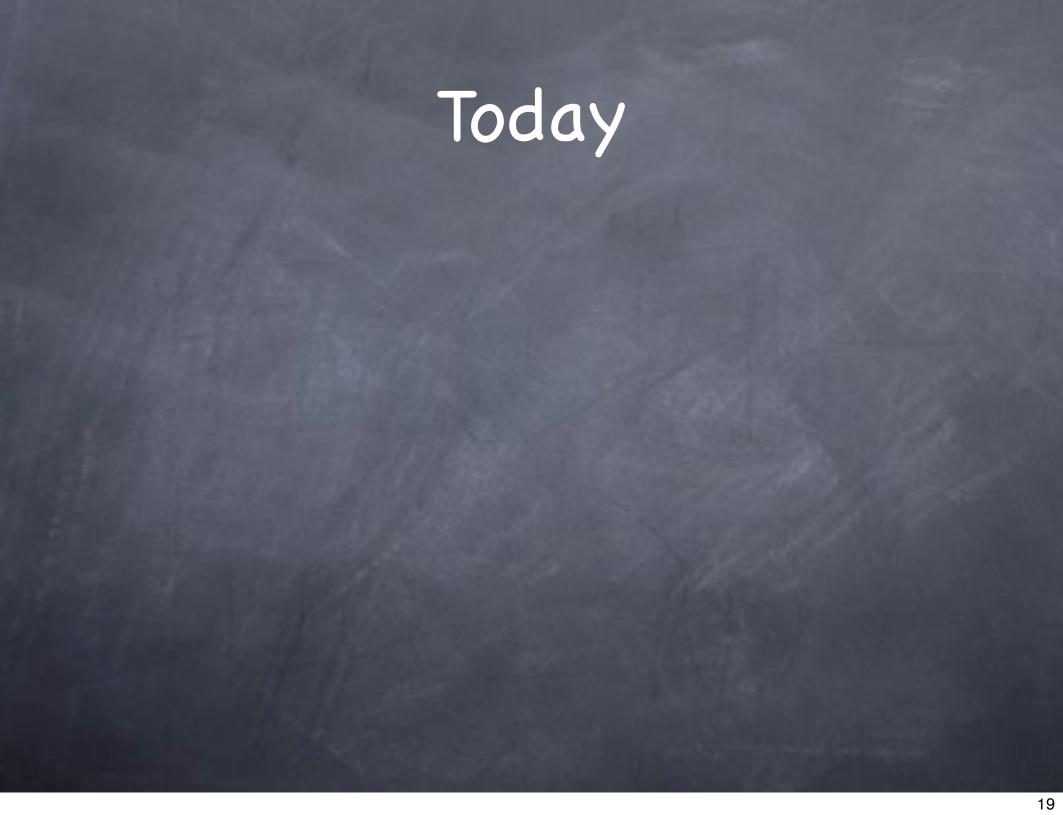
We say class X is "closed under polynomial reductions" if $(L_1 ≤_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

- If any NPC language is in P, then NP = P
- If any NPC language is in co-NP, NP=co-NP
 - Note: if L in NPC, L^c is in co-NPC





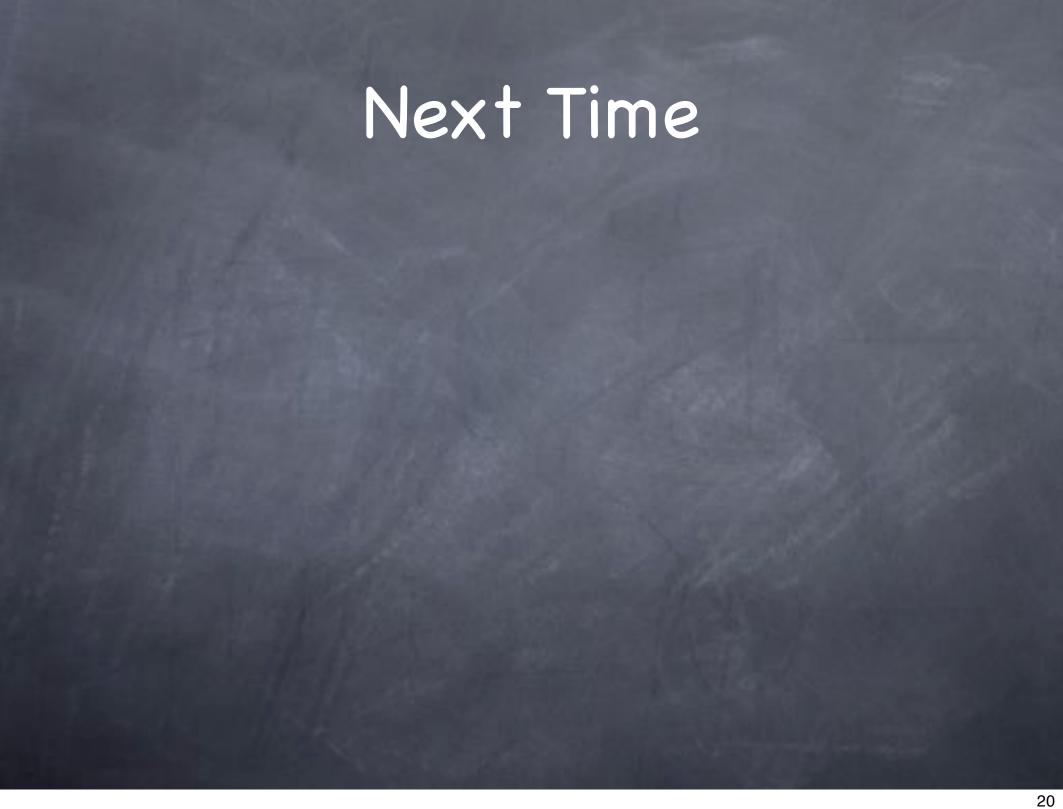
Polynomial-time reductions

- Polynomial-time reductions
- NP-completeness (using Karp reductions)

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
 - Trivially, TMSAT

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
 - Trivially, TMSAT
 - Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, INDEP-SET, VERTEX-COVER

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
 - Trivially, TMSAT
 - Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, INDEP-SET, VERTEX-COVER
 - If any NPC language in P, then P=NP



Next Time

Ladner's Theorem: If NP ≠ P, then non-P, non-NPC languages

Next Time

- Ladner's Theorem: If NP ≠ P, then non-P, non-NPC languages
- Time hierarchy theorems: More time, more power, strictly!