
Quantum Computation

Lecture 27
And that’s all we got time for!
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State
State of a classical computer labeled by (say) bit strings

e.g. 2-bit states: 00, 01, 10 and 11

Probabilistic computation: state is a probability distribution over 
the basis states

p = (p00,p01,p10,p11) s.t. pij non-negative and ||p||1 = 1

Quantum computation/Quantum mechanics: state is a real (or 
even complex) vector

q = (q00,q01,q10,q11) s.t. ||q||2 = 1

qs is the “amplitude” of basis state s
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State of a quantum system is stored as qubits

Physically, some property (spin, polarization) of a particle 
(electron, photon) that takes two discrete values

State of a single qubit: a 2-dimensional vector of unit L2  norm

Joint state of two independent qubits: tensor product of their 
individual states (like classical probability)

An m qubit system has 2m basis states. Its quantum state can be 
any valid amplitude vector (2m dimensional complex vector, with 
unit L2 norm), not always separable into independent qubits

e.g. √½ [ 1  0  0 -1 ]. Also written as √½ |00❯ - √½ |11❯

(Also, state can be “mixed”: a probability distribution over 
amplitude vectors. Doesn’t change power of quantum computing)

|00❯  |01❯  |10❯  |11❯
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Measuring a Quantum state
Measuring a state outputs one of the basis states, and the 
original state collapses to that basis state

Probability of getting state |i❯ is the square of its amplitude

Let’s call the amplitude-square vector the measurement

Measurement is a probability distribution over possible 
outcomes (namely the basis states)

Can do partial measurement - i.e., measurement on some qubits 
only - and continue computing. State collapses to be consistent 
with the measurement

Can modify computation to defer all measurements to the end

Can choose “non-standard” bases for measurement. But again, 
can do without it
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Operations on state
Unitary operations: linear transforms that preserve the L2 norm

Multiplication by a unitary matrix: i.e., Ut = U-1

For quantum computing can restrict to                           
real matrices

Unitary matrices are invertible

Computation is reversible!

e.g.:                 (on one qubit),                     (on 2 qubits)

Conjugate transpose

√½   √½
√½   -√½

1   0   0   0
0   1   0   0
0   0   0   1
0   0   1   0
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Operations on state
Hadamard transform (on a single qubit)

Takes [1 0] to √½ [1 1], and [0 1] to √½ [1 -1]

Measurement of result of applying this to a basis state is 
[½  ½]  (i.e., can be used to toss a coin)

A quantum effect:

Had([1 0]) = [√½ √½]; Had([√½ √½]) = [1 0].

Amplitudes of |1❯ destructively interfere!

Contrast with classical case: probabilities can only add
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Quantum gates
A quantum gate: Unitary operation on a small number of (say 
three) qubits 

Number of input qubits equals number of output qubits 

There are infinitely many quantum gates

A universal set of gates: can be used to well approximate any 
gate

e.g. Hadamard gate and Toffoli gate (when restricted to 
real amplitudes)

Toffoli gate has a classical analog (on 3 bits) that can be 
described as T(a,b,c) = (a,b,c⊕a∧b)
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Cleaning up the Garbage
Since only reversible gates, need extra qubits (scratch space) as 
input and output

At the output, their values will depend on the input and not 
just the relevant input

“Garbage”

Can be a problem: e.g., two amplitudes will not cancel out 
because their garbage values are different

Solution: Ensure garbage qubits are returned to a standard 
state, by “uncomputing”

“Copy” the output to unused qubits, and run the reverse 
computation to return the rest to original state
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Quantum Circuits and BQP
Quantum circuit: composed of quantum gates

And a quantum measurement at the end

To decide a language measurement on a single qubit

We shall require a poly-time uniform circuit family

It should be possible for a (classical/deterministic) TM to 
efficiently output the description of the quantum circuit for 
any given input length

BQP: Class of languages L for which there is a poly-sized (and     
poly-time uniform) quantum circuit family {Cn} s.t. for all n,      
for all x, |x|=n,

x∈L ⇒ Cn(|x0m❯) = 1 w.p. > 2/3; x∉L ⇒ Cn(|x0m❯) = 1 w.p. < 1/3
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BQP
BPP ⊆ BQP: Classical gates and coin-flipping can be emulated 

by quantum gates

Probability of a quantum circuit (with say Hadamard and Toffoli 
gates) accepting can be calculated classically, by brute force

Multiply together all 2nx2n unitary matrices in EXP

More carefully, since each gate involves only 3 qubits, in 
PSPACE

In fact, can be done in PP. i.e., BQP ⊆ PP 

How about BQP and NP?
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Two Quantum Algorithms
Grover’s Search

Quadratic speedup for NP-complete problems (over the 
best known classical algorithms)

Solve any NP problem with O(2n/2) quantum gate 
operations

Shor’s Factoring

Polynomial sized quantum circuit for factoring

Exponential speedup over the best known classical 
algorithms
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Otherwise, modify f (by adding a hash “filter”) so that with 
good probability it has a unique solution (if any)

Plan: start with the uniform superposition on n-qubits (i.e., all 2n 
states have same amplitude), and move it closer to (unknown) |z❯

Apply operations: (1) take |x0❯ to |x f(x)❯  (2) take                 
|x1❯ to -|x1❯, and |x0❯ to |x0❯ and (3) take |xy❯ to |x y+f(x)❯

Takes |z❯ to -|z❯, and leaves other amplitudes unchanged

One more “reflection” to take the vector close to |z❯

In O(2n/2) iterations, amplitude of |z❯ becomes large (i.e., constant)

use
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By basic algebra, to factor a number N, enough to find the 
order r of a random number A (mod N)

i.e., smallest r s.t. Ar ≡ 1 (mod N)

Prepare a superposition of states |x❯ |Ax mod N❯ (for all x); 
make a measurement on second set of qubits to collapse the 
state to superposition over |x❯|y0❯ where x=x0+ri (for all i)

Need to find the period r of this function

Tool used: Quantum Fourier Transform
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Basis vectors: Χx(y) = (-1)xy  (normalized)

Fourier Transform of f: ℤM→ℂ

Basis vectors: Χx(y) = ωxy   (normalized), where ω = ei2π/M

Χx is periodic (with period depending on x)

If f is periodic, then f^(x) (coefficient of Χx in f’s FT) will 
be large for some x which is related to f’s period
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Basis vectors: Χx(y) = ωxy   (normalized), where ω = ei2π/M

Χx is periodic (with period depending on x)

If f is periodic, then f^(x) (coefficient of Χx in f’s FT) will 
be large for some x which is related to f’s period

QFT: initial state = Σx f(x) |x❯  and final state = Σx f^(x) |x❯

Using an O(log2M) sized quantum circuit

Measuring the final state gives x with large coefficients with  
good probability. Enough to retrieve f’s period.
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correcting codes)

More PCP and hardness of approximation (lot of Fourier analysis) 

More on Quantum Computation, Quantum error correction, 
Quantum communication (linear algebra over complex numbers)

Algebraic Models of Computation

Logical characterizations, Proof complexity

Cryptography...
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