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Promise Problems

@ Decision problems, but with “"dont cares”

@ Specified by a Yes set and a No sef,
disjoint

@ A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sefts

@ For inputs outside the two, dont care

@ We're “"promised” that such inputs
are not given
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Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing A
separated by a gap in the function f(x) LPRISA IGGP
value |

@ Can use an approximation algorithm

for the function to solve the gap
problem

@ The more the gap the more loose
the approximation can be
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Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

@ A probabilistically checkable proof (PCP): specified using the
proof checking strategy

@ Completeness: If x € Yes, some proof accepted (with prob. 1)

@ Soundness: If x € No, all proofs rejected with prob. > 1/2

® Parameters of interest: (r,q) where verifier tosses at most r coins
and reads at most q bits

@ Proof can be limited to be at most q2" bits long
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PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP
@ Variables are the bits of the proofs: assignment is a proof

@ Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

@ Verifier accepts w/ prob. =1 < All constraints satisfied
@ Verifier accepts w/ prob. < 1/2 < Less than half satisfied

@ qCSP with m constraints: each constraint involves q variables

@ PCP(log m,q): g-query (non-adaptive) verifier, tosses at most
log m coins
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PCP Theorem

@ With m = poly(n) constraints and q = O(1)

@ Since qCSP has a PCP (with r=log m, and gq=q), any NP
language has a PCP

@ NP < PCP(log n, 1)

@ Note: PCP(log n, *) € NP

@ So,
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Hardness of
Approximation

@ By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

® How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

@ Reduce Max-qCSPSat to these problems

@ Such that approximation for them imply
approximation for Max-qCSPSat
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Gap-preserving
Reductions

@ From gap problem G; to G:

@ If G, is hard to solve and
reduction is efficient, then G is
hard to solve

® Then function underlying G2
IS hard to approximate
(within a factor of its gap)

G; instances G2 instances

@ The bigger the gap in G; the
larger the approximation
factor shown hard
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Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

@ Collect all clauses from all constraints

@ So far gap is preserved up to a factor of 1/21
@ Now furn each g-clause into a collection of 3-clauses
@ Adding at most q auxiliary var.s to get at most q 3-clauses

@ Gap preserved up to a factor of 1/(q29)
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o Recall 3SAT to CLIQUE: A
Clauses — Graph
101 *010 | /

*110 *001

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

@ k-clique iff k clauses

satisfiable 3-Clique 1*1*
*
110
11*0
@ Gap preserved

sat assignment 1110
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Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

@ Require a “robust” encoding to be given
@ If even one 1, it becomes easy to detect

@ e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

@ If one or more 1, then half 1s and half Os. Else all Os.

® Need to check that the encoded vector is the evaluation of
the clauses on an assignment, and that encoding is valid
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Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
@ Analysis:

@ Linear boolean function over boolean vectors

@ Dot product with another boolean vector

@ A function in the “Fourier basis” (for real-valued functions)
@ Enough to check: is any Fourier coefficient dominant?

@ Can show that if Pr[f(x+y)=f(x)+f(y)] > 1/2 + €, then a
Fourier coefficient is larger than 2€
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New proof

@ Recent development [Dinur‘06]

@ A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

o By “gap amplification”

@ Starting from a small gap (inherent in 3SAT), and
amplifying it

@ Operations on a constraint graph

@ Uses “expander graphs”
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@ Variants of these reductions to get different hardness
results for different approximations




