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Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set, 
disjoint

A TM is said to decide a promise 
problem if it correctly answers Yes or 
No for inputs from these sets

For inputs outside the two, don’t care

We’re “promised” that such inputs 
are not given
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Gap Problems
Non-boolean functions (e.g. 
optimization problems)

Gap problems: Promise problem in 
which  Yes and No sets are 
separated by a gap in the function 
value

Can use an approximation algorithm 
for the function to solve the gap 
problem

The more the gap the more loose 
the approximation can be

Gap
Approx

increasing
f(x)
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A proof that the instance is a Yes instance

A probabilistically checkable proof (PCP): specified using the 
proof checking strategy

Completeness: If x ∈ Yes, some proof accepted (with prob. 1)

Soundness: If x ∈ No, all proofs rejected with prob. > 1/2

Parameters of interest: (r,q) where verifier tosses at most r coins 
and reads at most q bits

Proof can be limited to be at most q2r bits long
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PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

Constraints are the verifier program with different random 
tapes: constraint is satisfied by the assignment if the verifier 
accepts the proof

Verifier accepts w/ prob. = 1   ↔ All constraints satisfied

Verifier accepts w/ prob. < 1/2 ↔ Less than half satisfied 

qCSP with m constraints: each constraint involves q variables

PCP(log m,q): q-query (non-adaptive) verifier, tosses at most 
log m coins
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With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP 
language has a PCP

NP ⊆ PCP(log n, 1)

Note: PCP(log n, *) ⊆ NP

So, NP = PCP(log n, 1)

PCP(r,q):
 Class of languages

 with r-coin, q-query 

PCP verifiers

A gap problem, with gap=1/2

8



Hardness of 
Approximation

9



Hardness of 
Approximation

By PCP theorem, Max-qCSPSat is hard to 
approximate within a factor of 1/2

9



Hardness of 
Approximation

By PCP theorem, Max-qCSPSat is hard to 
approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard 
functions?

9



Hardness of 
Approximation

By PCP theorem, Max-qCSPSat is hard to 
approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard 
functions?

Reduce Max-qCSPSat to these problems

9



Hardness of 
Approximation

By PCP theorem, Max-qCSPSat is hard to 
approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard 
functions?

Reduce Max-qCSPSat to these problems

Such that approximation for them imply 
approximation for Max-qCSPSat
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Gap-preserving 
Reductions

From gap problem G1 to G2

If G1 is hard to solve and 
reduction is efficient, then G2 is 
hard to solve

Then function underlying G2 
is hard to approximate 
(within a factor of its gap)

The bigger the gap in G2 the 
larger the approximation 
factor shown hard

G1 instances G2 instances
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At most 2q  q-clauses

Collect all clauses from all constraints

So far gap is preserved up to a factor of 1/2q

Now turn each q-clause into a collection of 3-clauses

Adding at most q auxiliary var.s to get at most q 3-clauses

Gap preserved up to a factor of 1/(q2q)

Max-qCSP to Max-3SAT
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Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a 
random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

e.g. Walsh-Hadamard code: consider n-bit vector x as a 
function fx(y) = <x,y>. Encoding is the truth-table

If one or more 1, then half 1s and half 0s. Else all 0s.

Need to check that the encoded vector is the evaluation of 
the clauses on an assignment, and that encoding is valid
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Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

Dot product with another boolean vector

A function in the  “Fourier basis” (for real-valued functions)

Enough to check: is any Fourier coefficient dominant?

Can show that if Pr[f(x+y)=f(x)+f(y)] > 1/2 + ε, then a 
Fourier coefficient is larger than 2ε

after          

changing to ±1        

co-ordinates
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New proof
Recent development [Dinur’06]

A “combinatorial” (as opposed to algebraic) proof of 
the PCP theorem

By “gap amplification”

Starting from a small gap (inherent in 3SAT), and 
amplifying it

Operations on a constraint graph

Uses “expander graphs”
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A problem/gap problem has a (log m,q) PCP iff it is 
efficiently reducible to the gap problem qCSP of size m 

3SAT ploy sized qCSP

PCP Theorem

your optimization 
problem

Variants of these reductions to get different hardness 
results for different approximations
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