PCP

Lecture 26 And Hardness of Approximation

Decision problems, but with "don't cares"

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint



- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint



- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint
  - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets



- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint
  - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets
  - For inputs outside the two, don't care

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint
  - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets
  - For inputs outside the two, don't care
    - We're "promised" that such inputs are not given

Non-boolean functions (e.g. optimization problems)

Non-boolean functions (e.g. optimization problems)

Non-boolean functions (e.g. optimization problems)



- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value

- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value

- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value



- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem



- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem



- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem



- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem
  - The more the gap the more loose the approximation can be



A proof that the instance is a Yes instance

- A proof that the instance is a Yes instance
  - A probabilistically checkable proof (PCP): specified using the proof checking strategy

- A proof that the instance is a Yes instance
  - A probabilistically checkable proof (PCP): specified using the proof checking strategy
    - © Completeness: If  $x \in Yes$ , some proof accepted (with prob. 1)

- A proof that the instance is a Yes instance
  - A probabilistically checkable proof (PCP): specified using the proof checking strategy

    - Soundness: If  $x \in No$ , all proofs rejected with prob. > 1/2

- A proof that the instance is a Yes instance
  - A probabilistically checkable proof (PCP): specified using the proof checking strategy
    - © Completeness: If  $x \in Yes$ , some proof accepted (with prob. 1)
    - Soundness: If x ∈ No, all proofs rejected with prob. > 1/2
- Parameters of interest: (r,q) where verifier tosses at most r coins and reads at most q bits

- A proof that the instance is a Yes instance
  - A probabilistically checkable proof (PCP): specified using the proof checking strategy

    - Soundness: If x ∈ No, all proofs rejected with prob. > 1/2
- Parameters of interest: (r,q) where verifier tosses at most r coins and reads at most q bits
  - Proof can be limited to be at most q2<sup>r</sup> bits long

Constraint Satisfaction Problem (CSP)

- Constraint Satisfaction Problem (CSP)
  - Instance specified by a set of "constraints" on R variables

Constraint Satisfaction Problem (CSP)



Instance specified by a set of "constraints" on R variables

- Constraint Satisfaction Problem (CSP)
  - Instance specified by a set of "constraints" on R variables
  - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied



- Constraint Satisfaction Problem (CSP)
  - Instance specified by a set of "constraints" on R variables
  - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied
  - No instance: for all assignments, less than half the constraints are satisfied



- Constraint Satisfaction Problem (CSP)
  - Instance specified by a set of "constraints" on R variables
  - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied
  - No instance: for all assignments, less than half the constraints are satisfied
  - (optimization problem: Max-CSPSat)

# PCP and CSP Constraints: Con

- Constraint Satisfaction Problem (CSP)
  - Instance specified by a set of "constraints" on R variables
  - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied
  - No instance: for all assignments, less than half the constraints are satisfied
  - (optimization problem: Max-CSPSat)
- A (gap) problem has a PCP iff can be reduced to CSP

A (gap) problem has a PCP iff can be reduced to CSP

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
  - $\odot$  Verifier accepts w/ prob. = 1  $\leftrightarrow$  All constraints satisfied

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
  - $\odot$  Verifier accepts w/ prob. = 1  $\leftrightarrow$  All constraints satisfied
  - Ø Verifier accepts w/ prob. < 1/2 

    Less than half satisfied</p>

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
  - $\odot$  Verifier accepts w/ prob. = 1  $\leftrightarrow$  All constraints satisfied
  - Verifier accepts w/ prob. < 1/2 

    Less than half satisfied</p>
- qCSP with m constraints: each constraint involves q variables

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
  - Ø Verifier accepts w/ prob. = 1 ↔ All constraints satisfied
  - $\odot$  Verifier accepts w/ prob. < 1/2  $\leftrightarrow$  Less than half satisfied
- qCSP with m constraints: each constraint involves q variables
  - PCP(log m,q): q-query (non-adaptive) verifier, tosses at most log m coins



Reducing a decision problem (language) L to a gap problem G



- Reducing a decision problem (language) L to a gap problem G
  - "Separating" Yes and No



L instances

G instances

- Reducing a decision problem (language) L to a gap problem G
  - "Separating" Yes and No
  - If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard



- Reducing a decision problem (language) L to a gap problem G
  - "Separating" Yes and No
  - If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard



- Reducing a decision problem (language) L to a gap problem G
  - "Separating" Yes and No
  - If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard



Can reduce any NP language to qCSP

Can reduce any NP language to qCSP



Can reduce any NP language to qCSP



 $\odot$  With m = poly(n) constraints and q = O(1)





- $\odot$  With m = poly(n) constraints and q = O(1)
- Since qCSP has a PCP (with r=log m, and q=q), any NP language has a PCP





- $\odot$  With m = poly(n) constraints and q = O(1)
- Since qCSP has a PCP (with r=log m, and q=q), any NP language has a PCP
  - NP  $\subseteq$  PCP(log n, 1)





 $\odot$  With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP Class of (r,q):
with r-coin, q-query language has a PCP

PCP verifiers 





 $\odot$  With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP Class of (r,q):
with r-coin, q-query

language has a PCP

NP  $\subseteq$  PCP(log n, 1)

PCP verifiers Note: PCP(log n, \*) ⊆ NP





- With m = poly(n) constraints and q = O(1)
- Since qCSP has a PCP (with r=log m, and q=q), any NP Class of (r,q):
  with r-coin, q-query language has a PCP
- PCP verifiers Note: PCP(log n, \*) ⊆ NP
  - $\odot$  So, NP = PCP(log n, 1)

# Hardness of Approximation

# Hardness of Approximation

By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2

# Hardness of Approximation

- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?

# Hardness of Approximation

- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?
  - Reduce Max-qCSPSat to these problems

# Hardness of Approximation

- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?
  - Reduce Max-qCSPSat to these problems
  - Such that approximation for them imply approximation for Max-qCSPSat

From gap problem G<sub>1</sub> to G<sub>2</sub>

From gap problem G₁ to G₂



 $G_2$  instances

From gap problem G₁ to G₂



From gap problem G<sub>1</sub> to G<sub>2</sub>



- From gap problem G<sub>1</sub> to G<sub>2</sub>
  - If G<sub>1</sub> is hard to solve and reduction is efficient, then G<sub>2</sub> is hard to solve



- From gap problem G<sub>1</sub> to G<sub>2</sub>
  - If G<sub>1</sub> is hard to solve and reduction is efficient, then G<sub>2</sub> is hard to solve
    - Then function underlying G₂
      is hard to approximate
      (within a factor of its gap)



- From gap problem G<sub>1</sub> to G<sub>2</sub>
  - If G<sub>1</sub> is hard to solve and reduction is efficient, then G<sub>2</sub> is hard to solve
    - Then function underlying G<sub>2</sub>
       is hard to approximate
       (within a factor of its gap)
    - The bigger the gap in G₂ the larger the approximation factor shown hard





Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)



- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
  - At most 2<sup>q</sup> q-clauses



- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
  - At most 2<sup>q</sup> q-clauses
- Collect all clauses from all constraints



- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
  - At most 2<sup>q</sup> q-clauses
- Collect all clauses from all constraints



So far gap is preserved up to a factor of 1/29

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
  - At most 2<sup>q</sup> q-clauses
- © Collect all clauses from all constraints



- So far gap is preserved up to a factor of 1/29
- Now turn each q-clause into a collection of 3-clauses

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
  - At most 2<sup>q</sup> q-clauses
- Collect all clauses from all constraints



- So far gap is preserved up to a factor of 1/29
- Now turn each q-clause into a collection of 3-clauses
  - Adding at most q auxiliary var.s to get at most q 3-clauses

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
  - At most 2<sup>q</sup> q-clauses
- Collect all clauses from all constraints



- So far gap is preserved up to a factor of 1/29
- Now turn each q-clause into a collection of 3-clauses
  - Adding at most q auxiliary var.s to get at most q 3-clauses
- Gap preserved up to a factor of 1/(q2q)

Recall 3SAT to CLIQUE: Clauses → Graph

Recall 3SAT to CLIQUE:Clauses → Graph

$$(x \lor \neg y \lor \neg z)$$

$$(w \lor y)$$

$$(w \lor x \lor \neg z)$$

- Recall 3SAT to CLIQUE: Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)

$$(x \lor \neg y \lor \neg z)$$

 $(w \vee y)$ 

 $(w \lor x \lor \neg z)$ 

- Recall 3SAT to CLIQUE: Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)





 $(w \lor x \lor \neg z)$ 

- Recall 3SAT to CLIQUE:Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)





 $(w \lor x \lor \neg z)$ 

- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)





- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)





- Recall 3SAT to CLIQUE: Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)









- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges betweenconsistent assignments











- Recall 3SAT to CLIQUE: Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges betweenconsistent assignments



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges betweenconsistent assignments



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges betweenconsistent assignments



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges betweenconsistent assignments



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges betweenconsistent assignments



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges between consistent assignments
  - k-clique iff k clauses satisfiable



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges between consistent assignments
  - k-clique iff k clauses satisfiable



- Recall 3SAT to CLIQUE: Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges between consistent assignments
  - k-clique iff k clauses satisfiable



- Recall 3SAT to CLIQUE:
   Clauses → Graph
  - vertices: each clause's sat assignments (for its variables)
  - edges between consistent assignments
  - k-clique iff k clauses satisfiable
  - Gap preserved



Very involved: see textbook

- Very involved: see textbook
- A flavor:

- Very involved: see textbook
- A flavor:
  - Recall: to give a PCP system for 3SAT

- Very involved: see textbook
- A flavor:
  - Recall: to give a PCP system for 3SAT
  - i.e. need to check if all clauses satisfied by the assignment implicit in the proof

- Very involved: see textbook
- A flavor:
  - Recall: to give a PCP system for 3SAT
  - i.e. need to check if all clauses satisfied by the assignment implicit in the proof
    - Checking a random clause is no good (though it takes only 3 queries) as almost all clauses might be satisfied

- Very involved: see textbook
- A flavor:
  - Recall: to give a PCP system for 3SAT
  - i.e. need to check if all clauses satisfied by the assignment implicit in the proof
    - Checking a random clause is no good (though it takes only 3 queries) as almost all clauses might be satisfied
    - Need to check if any 1 in an implicit bit vector: checking a random position is no good

Need to check if any 1 in an implicit bit vector: checking a random position is no good

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
  - Require a "robust" encoding to be given

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
  - Require a "robust" encoding to be given
  - If even one 1, it becomes easy to detect

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
  - Require a "robust" encoding to be given
  - If even one 1, it becomes easy to detect
    - @ e.g. Walsh-Hadamard code: consider n-bit vector x as a function  $f_x(y) = \langle x,y \rangle$ . Encoding is the truth-table

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
  - Require a "robust" encoding to be given
  - If even one 1, it becomes easy to detect
    - @ e.g. Walsh-Hadamard code: consider n-bit vector x as a function  $f_x(y) = \langle x,y \rangle$ . Encoding is the truth-table
      - If one or more 1, then half 1s and half 0s. Else all 0s.

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
  - Require a "robust" encoding to be given
  - If even one 1, it becomes easy to detect
    - @ e.g. Walsh-Hadamard code: consider n-bit vector x as a function  $f_x(y) = \langle x,y \rangle$ . Encoding is the truth-table
      - If one or more 1, then half 1s and half 0s. Else all 0s.
  - Need to check that the encoded vector is the evaluation of the clauses on an assignment, and that encoding is valid



Is a function table provided close to being linear?

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
  - Linear boolean function over boolean vectors

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
  - Linear boolean function over boolean vectors
    - Dot product with another boolean vector

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
  - Linear boolean function over boolean vectors
    - Dot product with another boolean vector
    - A function in the "Fourier basis" (for real-valued functions)

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
  - Linear boolean function over boolean vectors
    - Dot product with another boolean vector
    - A function in the "Fourier basis" (for real-valued functions)



- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
  - Linear boolean function over boolean vectors
    - Dot product with another boolean vector



Enough to check: is any Fourier coefficient dominant?



- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
  - Linear boolean function over boolean vectors
    - Dot product with another boolean vector



- Enough to check: is any Fourier coefficient dominant?
  - © Can show that if  $Pr[f(x+y)=f(x)+f(y)] > 1/2 + \epsilon$ , then a Fourier coefficient is larger than  $2\epsilon$



Recent development [Dinur'06]

- Recent development [Dinur'06]
  - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem

- Recent development [Dinur'06]
  - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
  - By "gap amplification"

- Recent development [Dinur'06]
  - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
  - By "gap amplification"
    - Starting from a small gap (inherent in 3SAT), and amplifying it

- Recent development [Dinur'06]
  - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
  - By "gap amplification"
    - Starting from a small gap (inherent in 3SAT), and amplifying it
    - Operations on a constraint graph

- Recent development [Dinur'06]
  - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
  - By "gap amplification"
    - Starting from a small gap (inherent in 3SAT), and amplifying it
    - Operations on a constraint graph
    - Uses "expander graphs"



A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m

A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m



A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m



A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m



Variants of these reductions to get different hardness results for different approximations