
PCP

Lecture 26
And Hardness of Approximation

1

Promise Problems

2

Promise Problems

Decision problems, but with “don’t cares”

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sets

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sets

For inputs outside the two, don’t care

2

Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set,
disjoint

A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sets

For inputs outside the two, don’t care

We’re “promised” that such inputs
are not given

2

Gap Problems

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

Gap

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

Can use an approximation algorithm
for the function to solve the gap
problem

Gap

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

Can use an approximation algorithm
for the function to solve the gap
problem

Gap

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

Can use an approximation algorithm
for the function to solve the gap
problem

Gap
Approx

increasing
f(x)

3

Gap Problems
Non-boolean functions (e.g.
optimization problems)

Gap problems: Promise problem in
which Yes and No sets are
separated by a gap in the function
value

Can use an approximation algorithm
for the function to solve the gap
problem

The more the gap the more loose
the approximation can be

Gap
Approx

increasing
f(x)

3

Certificates for a
Gap problem

4

Certificates for a
Gap problem

A proof that the instance is a Yes instance

4

Certificates for a
Gap problem

A proof that the instance is a Yes instance

A probabilistically checkable proof (PCP): specified using the
proof checking strategy

4

Certificates for a
Gap problem

A proof that the instance is a Yes instance

A probabilistically checkable proof (PCP): specified using the
proof checking strategy

Completeness: If x ∈ Yes, some proof accepted (with prob. 1)

4

Certificates for a
Gap problem

A proof that the instance is a Yes instance

A probabilistically checkable proof (PCP): specified using the
proof checking strategy

Completeness: If x ∈ Yes, some proof accepted (with prob. 1)

Soundness: If x ∈ No, all proofs rejected with prob. > 1/2

4

Certificates for a
Gap problem

A proof that the instance is a Yes instance

A probabilistically checkable proof (PCP): specified using the
proof checking strategy

Completeness: If x ∈ Yes, some proof accepted (with prob. 1)

Soundness: If x ∈ No, all proofs rejected with prob. > 1/2

Parameters of interest: (r,q) where verifier tosses at most r coins
and reads at most q bits

4

Certificates for a
Gap problem

A proof that the instance is a Yes instance

A probabilistically checkable proof (PCP): specified using the
proof checking strategy

Completeness: If x ∈ Yes, some proof accepted (with prob. 1)

Soundness: If x ∈ No, all proofs rejected with prob. > 1/2

Parameters of interest: (r,q) where verifier tosses at most r coins
and reads at most q bits

Proof can be limited to be at most q2r bits long

4

PCP and CSP

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Cons
train

ts:

Arbitr
ary

poly-
time

prog
rams

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the
variables such that all constraints are satisfied

Cons
train

ts:

Arbitr
ary

poly-
time

prog
rams

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the
variables such that all constraints are satisfied

No instance: for all assignments, less than half the
constraints are satisfied

Cons
train

ts:

Arbitr
ary

poly-
time

prog
rams

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the
variables such that all constraints are satisfied

No instance: for all assignments, less than half the
constraints are satisfied

(optimization problem: Max-CSPSat)

Cons
train

ts:

Arbitr
ary

poly-
time

prog
rams

5

PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the
variables such that all constraints are satisfied

No instance: for all assignments, less than half the
constraints are satisfied

(optimization problem: Max-CSPSat)

A (gap) problem has a PCP iff can be reduced to CSP

Cons
train

ts:

Arbitr
ary

poly-
time

prog
rams

5

PCP and CSP

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

Verifier accepts w/ prob. = 1 ↔ All constraints satisfied

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

Verifier accepts w/ prob. = 1 ↔ All constraints satisfied

Verifier accepts w/ prob. < 1/2 ↔ Less than half satisfied

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

Verifier accepts w/ prob. = 1 ↔ All constraints satisfied

Verifier accepts w/ prob. < 1/2 ↔ Less than half satisfied

qCSP with m constraints: each constraint involves q variables

6

PCP and CSP
A (gap) problem has a PCP iff can be reduced to CSP

Variables are the bits of the proofs: assignment is a proof

Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

Verifier accepts w/ prob. = 1 ↔ All constraints satisfied

Verifier accepts w/ prob. < 1/2 ↔ Less than half satisfied

qCSP with m constraints: each constraint involves q variables

PCP(log m,q): q-query (non-adaptive) verifier, tosses at most
log m coins

6

Decision Problem to
Gap Problem

L instances G instances

7

Decision Problem to
Gap Problem

Reducing a decision problem
(language) L to a gap problem G

L instances G instances

7

Decision Problem to
Gap Problem

Reducing a decision problem
(language) L to a gap problem G

“Separating” Yes and No

L instances G instances

7

Decision Problem to
Gap Problem

Reducing a decision problem
(language) L to a gap problem G

“Separating” Yes and No

If L is hard, and can do the
reduction efficiently, then
approximating the function
underlying G should be hard

L instances G instances

7

Decision Problem to
Gap Problem

Reducing a decision problem
(language) L to a gap problem G

“Separating” Yes and No

If L is hard, and can do the
reduction efficiently, then
approximating the function
underlying G should be hard

L instances G instances

7

Decision Problem to
Gap Problem

Reducing a decision problem
(language) L to a gap problem G

“Separating” Yes and No

If L is hard, and can do the
reduction efficiently, then
approximating the function
underlying G should be hard

L instances G instances

7

PCP Theorem

8

PCP Theorem
Can reduce any NP language to qCSP

8

PCP Theorem
Can reduce any NP language to qCSP

A gap problem, with gap=1/2

8

PCP Theorem
Can reduce any NP language to qCSP

With m = poly(n) constraints and q = O(1)

A gap problem, with gap=1/2

8

PCP Theorem
Can reduce any NP language to qCSP

With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP
language has a PCP

A gap problem, with gap=1/2

8

PCP Theorem
Can reduce any NP language to qCSP

With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP
language has a PCP

NP ⊆ PCP(log n, 1)

A gap problem, with gap=1/2

8

PCP Theorem
Can reduce any NP language to qCSP

With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP
language has a PCP

NP ⊆ PCP(log n, 1)

PCP(r,q):
 Class of languages

 with r-coin, q-query

PCP verifiers

A gap problem, with gap=1/2

8

PCP Theorem
Can reduce any NP language to qCSP

With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP
language has a PCP

NP ⊆ PCP(log n, 1)

Note: PCP(log n, *) ⊆ NP

PCP(r,q):
 Class of languages

 with r-coin, q-query

PCP verifiers

A gap problem, with gap=1/2

8

PCP Theorem
Can reduce any NP language to qCSP

With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP
language has a PCP

NP ⊆ PCP(log n, 1)

Note: PCP(log n, *) ⊆ NP

So, NP = PCP(log n, 1)

PCP(r,q):
 Class of languages

 with r-coin, q-query

PCP verifiers

A gap problem, with gap=1/2

8

Hardness of
Approximation

9

Hardness of
Approximation

By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

9

Hardness of
Approximation

By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

9

Hardness of
Approximation

By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

Reduce Max-qCSPSat to these problems

9

Hardness of
Approximation

By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

Reduce Max-qCSPSat to these problems

Such that approximation for them imply
approximation for Max-qCSPSat

9

Gap-preserving
Reductions

10

Gap-preserving
Reductions

From gap problem G1 to G2

10

Gap-preserving
Reductions

From gap problem G1 to G2

G1 instances G2 instances

10

Gap-preserving
Reductions

From gap problem G1 to G2

G1 instances G2 instances

10

Gap-preserving
Reductions

From gap problem G1 to G2

G1 instances G2 instances

10

Gap-preserving
Reductions

From gap problem G1 to G2

If G1 is hard to solve and
reduction is efficient, then G2 is
hard to solve

G1 instances G2 instances

10

Gap-preserving
Reductions

From gap problem G1 to G2

If G1 is hard to solve and
reduction is efficient, then G2 is
hard to solve

Then function underlying G2
is hard to approximate
(within a factor of its gap) G1 instances G2 instances

10

Gap-preserving
Reductions

From gap problem G1 to G2

If G1 is hard to solve and
reduction is efficient, then G2 is
hard to solve

Then function underlying G2
is hard to approximate
(within a factor of its gap)

The bigger the gap in G2 the
larger the approximation
factor shown hard

G1 instances G2 instances

10

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

At most 2q q-clauses

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

At most 2q q-clauses

Collect all clauses from all constraints

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

At most 2q q-clauses

Collect all clauses from all constraints

So far gap is preserved up to a factor of 1/2q

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

At most 2q q-clauses

Collect all clauses from all constraints

So far gap is preserved up to a factor of 1/2q

Now turn each q-clause into a collection of 3-clauses

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

At most 2q q-clauses

Collect all clauses from all constraints

So far gap is preserved up to a factor of 1/2q

Now turn each q-clause into a collection of 3-clauses

Adding at most q auxiliary var.s to get at most q 3-clauses

Max-qCSP to Max-3SAT

11

Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (q-clauses)

At most 2q q-clauses

Collect all clauses from all constraints

So far gap is preserved up to a factor of 1/2q

Now turn each q-clause into a collection of 3-clauses

Adding at most q auxiliary var.s to get at most q 3-clauses

Gap preserved up to a factor of 1/(q2q)

Max-qCSP to Max-3SAT

11

Max-3SAT to Max-CLIQUE

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

k-clique iff k clauses
satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

k-clique iff k clauses
satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

k-clique iff k clauses
satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

1*1*
*110
11*0

1110sat assignment

3-Clique

12

Max-3SAT to Max-CLIQUE
Recall 3SAT to CLIQUE:
Clauses → Graph

vertices: each clause’s
sat assignments (for
its variables)

edges between
consistent assignments

k-clique iff k clauses
satisfiable

Gap preserved

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

011
01*0

10*0

10*1
11*0

111

0*1*
1*1*

1*0*

(w ∨ y)

1*1*
*110
11*0

1110sat assignment

3-Clique

12

Proving the PCP Theorem

13

Proving the PCP Theorem
Very involved: see textbook

13

Proving the PCP Theorem
Very involved: see textbook

A flavor:

13

Proving the PCP Theorem
Very involved: see textbook

A flavor:

Recall: to give a PCP system for 3SAT

13

Proving the PCP Theorem
Very involved: see textbook

A flavor:

Recall: to give a PCP system for 3SAT

i.e. need to check if all clauses satisfied by the
assignment implicit in the proof

13

Proving the PCP Theorem
Very involved: see textbook

A flavor:

Recall: to give a PCP system for 3SAT

i.e. need to check if all clauses satisfied by the
assignment implicit in the proof

Checking a random clause is no good (though it takes
only 3 queries) as almost all clauses might be satisfied

13

Proving the PCP Theorem
Very involved: see textbook

A flavor:

Recall: to give a PCP system for 3SAT

i.e. need to check if all clauses satisfied by the
assignment implicit in the proof

Checking a random clause is no good (though it takes
only 3 queries) as almost all clauses might be satisfied

Need to check if any 1 in an implicit bit vector:
checking a random position is no good

13

Proving the PCP Theorem

14

Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a
random position is no good

14

Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a
random position is no good

Require a “robust” encoding to be given

14

Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a
random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

14

Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a
random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

14

Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a
random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

If one or more 1, then half 1s and half 0s. Else all 0s.

14

Proving the PCP Theorem
Need to check if any 1 in an implicit bit vector: checking a
random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

If one or more 1, then half 1s and half 0s. Else all 0s.

Need to check that the encoded vector is the evaluation of
the clauses on an assignment, and that encoding is valid

14

Linearity Test

15

Linearity Test
Is a function table provided close to being linear?

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

Dot product with another boolean vector

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

Dot product with another boolean vector

A function in the “Fourier basis” (for real-valued functions)

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

Dot product with another boolean vector

A function in the “Fourier basis” (for real-valued functions)

after

changing to ±1

co-ordinates

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

Dot product with another boolean vector

A function in the “Fourier basis” (for real-valued functions)

Enough to check: is any Fourier coefficient dominant?

after

changing to ±1

co-ordinates

15

Linearity Test
Is a function table provided close to being linear?

Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors

Dot product with another boolean vector

A function in the “Fourier basis” (for real-valued functions)

Enough to check: is any Fourier coefficient dominant?

Can show that if Pr[f(x+y)=f(x)+f(y)] > 1/2 + ε, then a
Fourier coefficient is larger than 2ε

after

changing to ±1

co-ordinates

15

New proof

16

New proof
Recent development [Dinur’06]

16

New proof
Recent development [Dinur’06]

A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

16

New proof
Recent development [Dinur’06]

A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

By “gap amplification”

16

New proof
Recent development [Dinur’06]

A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

By “gap amplification”

Starting from a small gap (inherent in 3SAT), and
amplifying it

16

New proof
Recent development [Dinur’06]

A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

By “gap amplification”

Starting from a small gap (inherent in 3SAT), and
amplifying it

Operations on a constraint graph

16

New proof
Recent development [Dinur’06]

A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

By “gap amplification”

Starting from a small gap (inherent in 3SAT), and
amplifying it

Operations on a constraint graph

Uses “expander graphs”

16

Summary

17

Summary
A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

17

Summary
A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

3SAT ploy sized qCSP

PCP Theorem

17

Summary
A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

3SAT ploy sized qCSP

PCP Theorem

your optimization
problem

17

Summary
A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

3SAT ploy sized qCSP

PCP Theorem

your optimization
problem

Variants of these reductions to get different hardness
results for different approximations

17

