PCP

Lecture 26
And Hardness of Approximation

Promise Problems

Promise Problems

@ Decision problems, but with "don't cares”

Promise Problems

@ Decision problems, but with "don't cares”

@ Specified by a Yes set and a No set,
disjoint

Promise Problems

@ Decision problems, but with “"dont cares”

@ Specified by a Yes set and a No sef,
disjoint

Promise Problems

@ Decision problems, but with “"dont cares”

@ Specified by a Yes set and a No sef,
disjoint

Promise Problems

@ Decision problems, but with “"dont cares”

@ Specified by a Yes set and a No sef,
disjoint

Promise Problems

@ Decision problems, but with “"dont cares”
@ Specified by a Yes set and a No sef,
disjoint

@ A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sefts

Promise Problems

@ Decision problems, but with “"dont cares”

@ Specified by a Yes set and a No sef,
disjoint

@ A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sefts

@ For inputs outside the two, dont care

Promise Problems

@ Decision problems, but with “"dont cares”

@ Specified by a Yes set and a No sef,
disjoint

@ A TM is said to decide a promise
problem if it correctly answers Yes or
No for inputs from these sefts

@ For inputs outside the two, dont care

@ We're “"promised” that such inputs
are not given

Gap Problems

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

A

increasing
f(x)

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing
separated by a gap in the function f(x)
value |

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing
separated by a gap in the function f(x)
value

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing
separated by a gap in the function f(x) IGGP
value |

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing
separated by a gap in the function f(x) IGG
value o
@ Can use an approximation algorithm

for the function to solve the gap
problem

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing
separated by a gap in the function f(x) IGG
value o
@ Can use an approximation algorithm

for the function to solve the gap
problem

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing A
separated by a gap in the function f(x) LPRISA IGG
value o
@ Can use an approximation algorithm

for the function to solve the gap
problem

Gap Problems

@ Non-boolean functions (e.g.
optimization problems)

@ Gap problems: Promise problem in A
which Yes and No sets are increasing A
separated by a gap in the function f(x) LPRISA IGGP
value |

@ Can use an approximation algorithm

for the function to solve the gap
problem

@ The more the gap the more loose
the approximation can be

Certificates for a
Gap problem

Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

@ A probabilistically checkable proof (PCP): specified using the
proof checking strategy

Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

@ A probabilistically checkable proof (PCP): specified using the
proof checking strategy

@ Completeness: If x € Yes, some proof accepted (with prob. 1)

Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

@ A probabilistically checkable proof (PCP): specified using the
proof checking strategy

@ Completeness: If x € Yes, some proof accepted (with prob. 1)

@ Soundness: If x € No, all proofs rejected with prob. > 1/2

Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

@ A probabilistically checkable proof (PCP): specified using the
proof checking strategy

@ Completeness: If x € Yes, some proof accepted (with prob. 1)

@ Soundness: If x € No, all proofs rejected with prob. > 1/2

® Parameters of interest: (r,q) where verifier tosses at most r coins
and reads at most q bits

Certificates for a
Gap problem

@ A proof that the instance is a Yes instance

@ A probabilistically checkable proof (PCP): specified using the
proof checking strategy

@ Completeness: If x € Yes, some proof accepted (with prob. 1)

@ Soundness: If x € No, all proofs rejected with prob. > 1/2

® Parameters of interest: (r,q) where verifier tosses at most r coins
and reads at most q bits

@ Proof can be limited to be at most q2" bits long

PCP and CSP

PCP and CSP

@ Constraint Satisfaction Problem (CSP)

PCP and CSP

@ Constraint Satisfaction Problem (CSP)

o Instance specified by a set of “constraints” on R variables

PCP and CSP

@ Constraint Satisfaction Problem (CSP)

o Instance specified by a set of “constraints” on R variables

PCP and CSP

@ Constraint Satisfaction Problem (CSP)

o Instance specified by a set of “constraints” on R variables

o : there exists an assignment of values to the
variables such that all constraints are satisfied

PCP and CSP

@ Constraint Satisfaction Problem (CSP)
o Instance specified by a set of “constraints” on R variables

o : there exists an assignment of values to the
variables such that all constraints are satisfied

o for all assignments, less than half the
constraints are satisfied

PCP and CSP

@ Constraint Satisfaction Problem (CSP)
o Instance specified by a set of “constraints” on R variables

o : there exists an assignment of values to the
variables such that all constraints are satisfied

o for all assignments, less than half the
constraints are satisfied

@ (optimization problem: Max-CSPSat)

PCP and CSP

@ Constraint Satisfaction Problem (CSP)
o Instance specified by a set of “constraints” on R variables

o : there exists an assignment of values to the
variables such that all constraints are satisfied

o for all assignments, less than half the
constraints are satisfied

@ (optimization problem: Max-CSPSat)

@ A (gap) problem has a PCP iff can be reduced to CSP

PCP and CSP

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP

@ Variables are the bits of the proofs: assignment is a proof

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP

@ Variables are the bits of the proofs: assignment is a proof

@ Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP
@ Variables are the bits of the proofs: assignment is a proof

@ Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

@ Verifier accepts w/ prob. =1 < All constraints satisfied

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP
@ Variables are the bits of the proofs: assignment is a proof

@ Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

@ Verifier accepts w/ prob. =1 < All constraints satisfied

@ Verifier accepts w/ prob. < 1/2 < Less than half satisfied

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP
@ Variables are the bits of the proofs: assignment is a proof

@ Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

@ Verifier accepts w/ prob. =1 < All constraints satisfied

@ Verifier accepts w/ prob. < 1/2 < Less than half satisfied

@ qCSP with m constraints: each constraint involves q variables

PCP and CSP

@ A (gap) problem has a PCP iff can be reduced to CSP
@ Variables are the bits of the proofs: assignment is a proof

@ Constraints are the verifier program with different random
tapes: constraint is satisfied by the assignment if the verifier
accepts the proof

@ Verifier accepts w/ prob. =1 < All constraints satisfied
@ Verifier accepts w/ prob. < 1/2 < Less than half satisfied

@ qCSP with m constraints: each constraint involves q variables

@ PCP(log m,q): g-query (non-adaptive) verifier, tosses at most
log m coins

Decision Problem to
Gap Problem

L instances G instances

Decision Problem to
Gap Problem

@ Reducing a decision problem
(language) L to a gap problem G

L instances G instances

Decision Problem to
Gap Problem

@ Reducing a decision problem
(language) L to a gap problem G

@ "Separating” Yes and No

L instances G instances

Decision Problem to
Gap Problem

@ Reducing a decision problem
(language) L to a gap problem G

@ "Separating” Yes and No

@ If L is hard, and can do the
reduction efficiently, then
approximating the function L instances G instances
underlying G should be hard

Decision Problem to
Gap Problem

@ Reducing a decision problem
(language) L to a gap problem G

@ "Separating” Yes and No

@ If L is hard, and can do the
reduction efficiently, then
approximating the function L instances G instances
underlying G should be hard

Decision Problem to
Gap Problem

@ Reducing a decision problem
(language) L to a gap problem G

@ "Separating” Yes and No

@ If L is hard, and can do the
reduction efficiently, then
approximating the function L instances G instances
underlying G should be hard

PCP Theorem

PCP Theorem

@ Can reduce any NP language to qCSP

PCP Theorem

@ Can reduce any NP language to qCSP

PCP Theorem

@ Can reduce any NP language to qCSP

@ With m = poly(n) constraints and q = O(1)

PCP Theorem

@ Can reduce any NP language to qCSP

@ With m = poly(n) constraints and q = O(1)

@ Since qCSP has a PCP (with r=log m, and gq=q), any NP
language has a PCP

PCP Theorem

@ Can reduce any NP language to qCSP

@ With m = poly(n) constraints and q = O(1)

@ Since qCSP has a PCP (with r=log m, and gq=q), any NP
language has a PCP

@ NP < PCP(log n, 1)

PCP Theorem

@ With m = poly(n) constraints and q = O(1)

@ Since qCSP has a PCP (with r=log m, and gq=q), any NP
language has a PCP

@ NP < PCP(log n, 1)

PCP Theorem

@ With m = poly(n) constraints and q = O(1)

@ Since qCSP has a PCP (with r=log m, and gq=q), any NP
language has a PCP

@ NP < PCP(log n, 1)

@ Note: PCP(log n, *) € NP

PCP Theorem

@ With m = poly(n) constraints and q = O(1)

@ Since qCSP has a PCP (with r=log m, and gq=q), any NP
language has a PCP

@ NP < PCP(log n, 1)

@ Note: PCP(log n, *) € NP

@ So,

Hardness of
Approximation

Hardness of
Approximation

@ By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

Hardness of
Approximation

@ By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

® How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

Hardness of
Approximation

@ By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

® How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

@ Reduce Max-qCSPSat to these problems

Hardness of
Approximation

@ By PCP theorem, Max-qCSPSat is hard to
approximate within a factor of 1/2

® How about Max-3SAT? Max-CLIQUE? Other NP-hard
functions?

@ Reduce Max-qCSPSat to these problems

@ Such that approximation for them imply
approximation for Max-qCSPSat

Gap-preserving
Reductions

Gap-preserving
Reductions

@ From gap problem G; to G:

Gap-preserving
Reductions

@ From gap problem G; to G:

G; instances G2 instances

Gap-preserving
Reductions

@ From gap problem G; to G:

G; instances G2 instances

Gap-preserving
Reductions

@ From gap problem G; to G:

G; instances G2 instances

Gap-preserving
Reductions

@ From gap problem G; to G:

@ If G, is hard to solve and
reduction is efficient, then G is
hard to solve

G; instances G2 instances

Gap-preserving
Reductions

@ From gap problem G; to G:

@ If G, is hard to solve and
reduction is efficient, then G is
hard to solve

® Then function underlying G2
IS hard to approximate

(within a factor of its QGP) G; instances G, instances

Gap-preserving
Reductions

@ From gap problem G; to G:

@ If G, is hard to solve and
reduction is efficient, then G is
hard to solve

® Then function underlying G2
IS hard to approximate
(within a factor of its gap)

G; instances G2 instances

@ The bigger the gap in G; the
larger the approximation
factor shown hard

Max-qCSP to Max-3SAT

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

@ Collect all clauses from all constraints

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

@ Collect all clauses from all constraints

@ So far gap is preserved up to a factor of 1/21

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

@ Collect all clauses from all constraints

@ So far gap is preserved up to a factor of 1/21

@ Now furn each g-clause into a collection of 3-clauses

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

@ Collect all clauses from all constraints

@ So far gap is preserved up to a factor of 1/21

@ Now furn each g-clause into a collection of 3-clauses

@ Adding at most q auxiliary var.s to get at most q 3-clauses

Max-qCSP to Max-3SAT

@ Write each constraint as an exponential sized CNF (AND-OR)
formula, of clauses with q vars (g-clauses)

@ At most 29 g-clauses

@ Collect all clauses from all constraints

@ So far gap is preserved up to a factor of 1/21
@ Now furn each g-clause into a collection of 3-clauses
@ Adding at most q auxiliary var.s to get at most q 3-clauses

@ Gap preserved up to a factor of 1/(q29)

Max-3SAT to Max-CLIQUE

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables) O

1*0*
%1 %
0*1* 1 1 O

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables) O ;

0.“
Rk K
@
H 0*1* :

Max-3SAT to Max-CLIQUE
O

@ Recall 3SAT to CLIQUE: Qm i *109
Clauses — Graph S) O
(! *110 *001*010
@ vertices: each clause’s ® O
sat assignments (for
its variables) “®

0.“
Rk K
@)
e X :

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

O *000 O
i o *100 - 3
@ g
2101 X015
: *110 *001 ’

.
. 7
3 R
2 0
& g
57 *
., o,
. %
® *
. *
4 A
s .
.
., .
L) .
Yo, s
"tamamunn®

““‘O ",
Rk K
@)
e 8 6 Bl :

Max-3SAT to Max—CLIQ__,__U__._[:'

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

ff2:> jggg éf}k
i o *100 - 3
@ g
1 *101 X015
. *110 *001 ’

OO

““‘O ",
St o s
0 @
H 0*1* :

(L
G By
.* .,
e L2
. 3
S 3
. *
o ®
S 03
0 S5
O 2
¥ 00*0
Q P
Q
.
0

3 .
D
»
»

111 10%0%

o, o

o1*o i/

10*10
11*OO

Max-3SAT to Max—CLIQ__,__U__._[:'

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

O *gc?o O
B %111 *100 %

%fo o?

*1o1 *OlEs:
E *110 *001)

OO

““‘O ",
St o s
0 @
H 0*1* :

(L
G By
.* .,
e L2
. 3
S 3
. *
o ®
S 03
0 S5
O 2
¥ 00*0
Q P
Q
.
0

3 .
D
»
»

111 10%0%

o 8

o1*o i/

10*10
11*OO

Max-3SAT to Max—CLIQ__,__U__._[:'

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

:': 1*0*
§- 0*1*

O *gc?o O
Pk *100

%fo o?

*1o1 *OlEs:
E *110 *001)

OO

..........
() L
R .

gt -

(L
G By
.* .,
e L2
. 3
S 3
. *
o ®
S 03
0 S5
O 2
¥ 00*0
Q P
Q
.
0
3 .
D
»
»

111 10%0%

o 8

o1*o i/

10*10
11*OO

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

:': 1*0*
ek

O *000 O
i *100 - 3
@ @
2101 *010 |
. *110 *001 ’

J
Q
O ’
Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

..........
() L
R .

1*1* @

ann
G By
. .,
* L2
. .
. .
B .
o »
S *
B »
% O e
O % \J
3 O O O
Q P
0
.
D
3 .

D

D

.

111 10%0%

o, o

01*0

.
.
.
.
Q
2 % .
Q
¢ g
% *
2 *
. &
*
'0. * %
. **
L .
- .*
Cay .
"Tsaaumuns®

Max-3SAT to Max-CLIQUE

o Recall 3SAT to CLIQUE: A R,

et *100 %
Clauses — Graph
W *10] “pioey

*110 *001

: / :
@ vertices: each clauses

sat assignments (for
its variables)

@ edges between
consistent assignments

Max-3SAT to Max-CLIQUE

o Recall 3SAT to CLIQUE: A R,

f *111 *100
Clauses — Graph
W *10] “pioey

*001

/ *110
® vertices: each clause’s

sat assignments (for
its variables)

@ edges between
consistent assignments

Max-3SAT to Max-CLIQUE

@ Recall 3SAT fto CLIQUE: *000

f *111 *100
Clauses — Graph
W *10] “pioey

@ vertices: each clause’s
sat assignments (for
its variables)

*110 *001

J
Q
. ’
@ Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

@ edges between
consistent assignments

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

@ k-clique iff k clauses
satisfiable

*111

*110

J
Q
. ’
@ Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

o 03
* ¢4
O J
; *000
Q %
y .
s .
.
-

L
N -
-

L

»
.
.
.
.

-

0}

W 101

*100

a70) (o] e
*001)

Max-3SAT to Max-CLIQUE

@ Recall 3SAT to CLIQUE:
Clauses — Graph

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

@ k-clique iff k clauses
satisfiable

*111

*110

J
Q
. ’
@ Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

o 03
* ¢4
O J
; *000
Q %
y .
s .
.
-

L
N -
-

L

»
.
.
.
.

-

0}

W 101

*100

a70) (o] e
*001)

Max-3SAT to Max-CLIQUE

o Recall 3SAT to CLIQUE: P i &

L g *100 %
Clauses — Graph
W *10] “pioey

*110 *001

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

@ k-clique iff k clauses
satisfiable 3-Clique 1*1*
*110

11*0

sat assignment 1110

Max-3SAT to Max-CLIQUE

o Recall 3SAT to CLIQUE: A
Clauses — Graph
101 *010 | /

*110 *001

@ vertices: each clause’s
sat assignments (for
its variables)

@ edges between
consistent assignments

@ k-clique iff k clauses

satisfiable 3-Clique 1*1*
*
110
11*0
@ Gap preserved

sat assignment 1110

Proving the PCP Theorem

Proving the PCP Theorem

@ Very involved: see textbook

Proving the PCP Theorem

@ Very involved: see textbook

@ A flavor:

Proving the PCP Theorem

@ Very involved: see textbook

@ A flavor:

@ Recall: to give a PCP system for 3SAT

Proving the PCP Theorem

@ Very involved: see textbook
@ A flavor:

@ Recall: to give a PCP system for 3SAT

@ i.e. need to check if all clauses satisfied by the
assignment implicit in the proof

Proving the PCP Theorem

@ Very involved: see textbook
@ A flavor:
@ Recall: to give a PCP system for 3SAT

@ i.e. need to check if all clauses satisfied by the
assignment implicit in the proof

@ Checking a random clause is no good (though it takes
only 3 queries) as almost all clauses might be satisfied

Proving the PCP Theorem

@ Very involved: see textbook
@ A flavor:
@ Recall: to give a PCP system for 3SAT

@ i.e. need to check if all clauses satisfied by the
assignment implicit in the proof

@ Checking a random clause is no good (though it takes
only 3 queries) as almost all clauses might be satisfied

@ Need to check if any 1 in an implicit bit vector:
checking a random position is no good

Proving the PCP Theorem

Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

@ Require a “robust” encoding to be given

Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

@ Require a “robust” encoding to be given

@ If even one 1, it becomes easy to detect

Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

@ Require a “robust” encoding to be given

@ If even one 1, it becomes easy to detect

@ e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

@ Require a “robust” encoding to be given
@ If even one 1, it becomes easy to detect

@ e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

@ If one or more 1, then half 1s and half Os. Else all Os.

Proving the PCP Theorem

@ Need to check if any 1 in an implicit bit vector: checking a
random position is no good

@ Require a “robust” encoding to be given
@ If even one 1, it becomes easy to detect

@ e.g. Walsh-Hadamard code: consider n-bit vector x as a
function fx(y) = <x,y>. Encoding is the truth-table

@ If one or more 1, then half 1s and half Os. Else all Os.

® Need to check that the encoded vector is the evaluation of
the clauses on an assignment, and that encoding is valid

Linearity Test

Linearity Test

@ Is a function table provided close to being linear?

Linearity Test

@ Is a function table provided close to being linear?

o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

Linearity Test

@ Is a function table provided close to being linear?

o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

@ Analysis:

Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

@ Analysis:

® Linear boolean function over boolean vectors

Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
@ Analysis:

® Linear boolean function over boolean vectors

@ Dot product with another boolean vector

Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
@ Analysis:

@ Linear boolean function over boolean vectors

@ Dot product with another boolean vector

@ A function in the “Fourier basis” (for real-valued functions)

Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
@ Analysis:

@ Linear boolean function over boolean vectors

@ Dot product with another boolean vector

@ A function in the “Fourier basis” (for real-valued functions)

Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
@ Analysis:

@ Linear boolean function over boolean vectors

@ Dot product with another boolean vector

@ A function in the “Fourier basis” (for real-valued functions)

@ Enough to check: is any Fourier coefficient dominant?

Linearity Test

@ Is a function table provided close to being linear?
o Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
@ Analysis:

@ Linear boolean function over boolean vectors

@ Dot product with another boolean vector

@ A function in the “Fourier basis” (for real-valued functions)
@ Enough to check: is any Fourier coefficient dominant?

@ Can show that if Pr[f(x+y)=f(x)+f(y)] > 1/2 + €, then a
Fourier coefficient is larger than 2€

New proof

New proof

@ Recent development [Dinur‘06]

New proof

@ Recent development [Dinur‘06]

@ A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

New proof

@ Recent development [Dinur‘06]

@ A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

o By “gap amplification”

New proof

@ Recent development [Dinur‘06]

@ A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

o By “gap amplification”

@ Starting from a small gap (inherent in 3SAT), and
amplifying it

New proof

@ Recent development [Dinur‘06]

@ A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

o By “gap amplification”

@ Starting from a small gap (inherent in 3SAT), and
amplifying it

@ Operations on a constraint graph

New proof

@ Recent development [Dinur‘06]

@ A “combinatorial” (as opposed to algebraic) proof of
the PCP theorem

o By “gap amplification”

@ Starting from a small gap (inherent in 3SAT), and
amplifying it

@ Operations on a constraint graph

@ Uses “expander graphs”

Summary

Summary

@ A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

Summary

@ A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

PCP Theorem

"
s

3SAT ploy sized qCSP

Summary

@ A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

PCP Theorem

3SAT ploy sized qCSP your optimization
problem

Summary

@ A problem/gap problem has a (log m,q) PCP iff it is
efficiently reducible to the gap problem qCSP of size m

PCP Theorem

r (2
| L B
e
: I Sl
.'_1.'

3SAT ploy sized qCSP your optimization
problem

@ Variants of these reductions to get different hardness
results for different approximations

