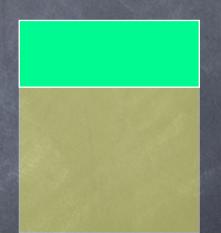
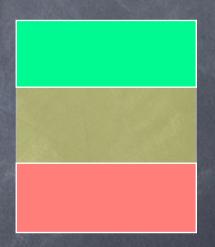
PCP


Lecture 26 And Hardness of Approximation

Decision problems, but with "don't cares"

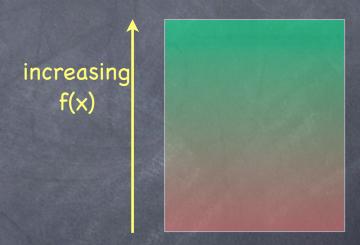

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint

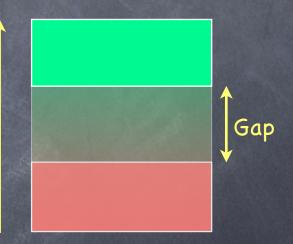
- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint
 - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets

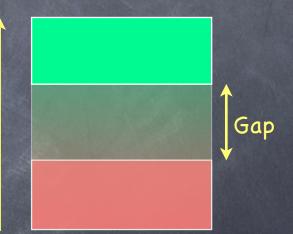

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint
 - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets
 - For inputs outside the two, don't care

- Decision problems, but with "don't cares"
- Specified by a Yes set and a No set, disjoint
 - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets
 - For inputs outside the two, don't care
 - We're "promised" that such inputs are not given

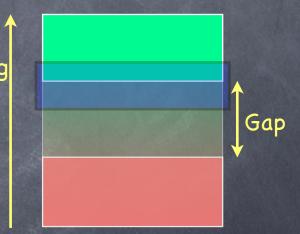
Non-boolean functions (e.g. optimization problems)

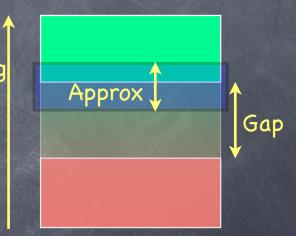
Non-boolean functions (e.g. optimization problems)

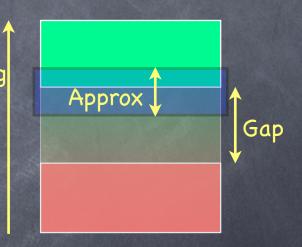

Non-boolean functions (e.g. optimization problems)


- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value

- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value


- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value


- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem


- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem

- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem

- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are increasing separated by a gap in the function f(x) value
- Can use an approximation algorithm for the function to solve the gap problem
 - The more the gap the more loose the approximation can be

A proof that the instance is a Yes instance

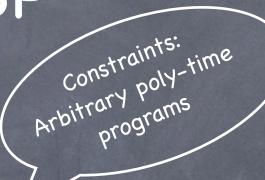
- A proof that the instance is a Yes instance
 - A probabilistically checkable proof (PCP): specified using the proof checking strategy

- A proof that the instance is a Yes instance
 - A probabilistically checkable proof (PCP): specified using the proof checking strategy
 - © Completeness: If $x \in Yes$, some proof accepted (with prob. 1)

- A proof that the instance is a Yes instance
 - A probabilistically checkable proof (PCP): specified using the proof checking strategy

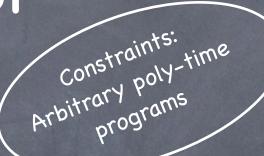
 - Soundness: If $x \in No$, all proofs rejected with prob. > 1/2

- A proof that the instance is a Yes instance
 - A probabilistically checkable proof (PCP): specified using the proof checking strategy
 - © Completeness: If $x \in Yes$, some proof accepted (with prob. 1)
 - Soundness: If x ∈ No, all proofs rejected with prob. > 1/2
- Parameters of interest: (r,q) where verifier tosses at most r coins and reads at most q bits

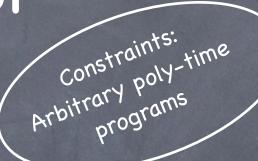

- A proof that the instance is a Yes instance
 - A probabilistically checkable proof (PCP): specified using the proof checking strategy

 - Soundness: If x ∈ No, all proofs rejected with prob. > 1/2
- Parameters of interest: (r,q) where verifier tosses at most r coins and reads at most q bits
 - Proof can be limited to be at most q2^r bits long

Constraint Satisfaction Problem (CSP)


- Constraint Satisfaction Problem (CSP)
 - Instance specified by a set of "constraints" on R variables

Constraint Satisfaction Problem (CSP)



Instance specified by a set of "constraints" on R variables

- Constraint Satisfaction Problem (CSP)
 - Instance specified by a set of "constraints" on R variables
 - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied

- Constraint Satisfaction Problem (CSP)
 - Instance specified by a set of "constraints" on R variables
 - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied
 - No instance: for all assignments, less than half the constraints are satisfied

- Constraint Satisfaction Problem (CSP)
 - Instance specified by a set of "constraints" on R variables
 - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied
 - No instance: for all assignments, less than half the constraints are satisfied
 - (optimization problem: Max-CSPSat)

PCP and CSP Constraints: Con

- Constraint Satisfaction Problem (CSP)
 - Instance specified by a set of "constraints" on R variables
 - Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied
 - No instance: for all assignments, less than half the constraints are satisfied
 - (optimization problem: Max-CSPSat)
- A (gap) problem has a PCP iff can be reduced to CSP

A (gap) problem has a PCP iff can be reduced to CSP

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof

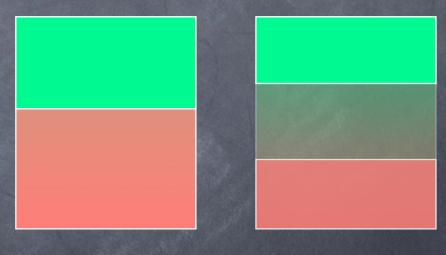
- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
 - \odot Verifier accepts w/ prob. = 1 \leftrightarrow All constraints satisfied

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
 - \odot Verifier accepts w/ prob. = 1 \leftrightarrow All constraints satisfied
 - Ø Verifier accepts w/ prob. < 1/2

 Less than half satisfied</p>

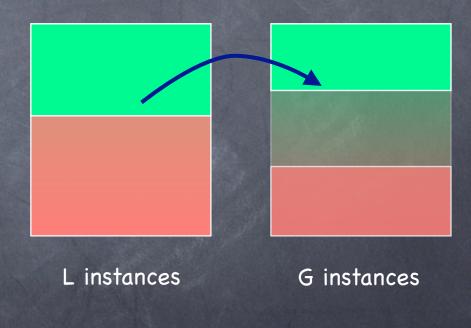
- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
 - \odot Verifier accepts w/ prob. = 1 \leftrightarrow All constraints satisfied
 - Verifier accepts w/ prob. < 1/2

 Less than half satisfied</p>
- qCSP with m constraints: each constraint involves q variables

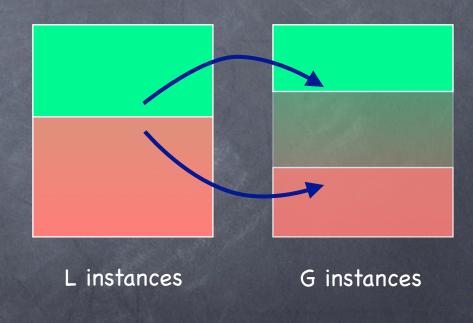

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
 - Ø Verifier accepts w/ prob. = 1 ↔ All constraints satisfied
 - \odot Verifier accepts w/ prob. < 1/2 \leftrightarrow Less than half satisfied
- qCSP with m constraints: each constraint involves q variables
 - PCP(log m,q): q-query (non-adaptive) verifier, tosses at most log m coins

Reducing a decision problem (language) L to a gap problem G

- Reducing a decision problem (language) L to a gap problem G
 - "Separating" Yes and No


L instances

G instances


- Reducing a decision problem (language) L to a gap problem G
 - "Separating" Yes and No
 - If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard

- Reducing a decision problem (language) L to a gap problem G
 - "Separating" Yes and No
 - If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard

- Reducing a decision problem (language) L to a gap problem G
 - "Separating" Yes and No
 - If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard

Can reduce any NP language to qCSP

Can reduce any NP language to qCSP

Can reduce any NP language to qCSP

 \odot With m = poly(n) constraints and q = O(1)

- \odot With m = poly(n) constraints and q = O(1)
- Since qCSP has a PCP (with r=log m, and q=q), any NP language has a PCP

- \odot With m = poly(n) constraints and q = O(1)
- Since qCSP has a PCP (with r=log m, and q=q), any NP language has a PCP
 - NP \subseteq PCP(log n, 1)

 \odot With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP Class of (r,q):
with r-coin, q-query language has a PCP

PCP verifiers

 \odot With m = poly(n) constraints and q = O(1)

Since qCSP has a PCP (with r=log m, and q=q), any NP Class of (r,q):
with r-coin, q-query

language has a PCP

NP \subseteq PCP(log n, 1)

PCP verifiers Note: PCP(log n, *) ⊆ NP

- With m = poly(n) constraints and q = O(1)
- Since qCSP has a PCP (with r=log m, and q=q), any NP Class of (r,q):
 with r-coin, q-query language has a PCP
- PCP verifiers Note: PCP(log n, *) ⊆ NP
 - \odot So, NP = PCP(log n, 1)

Hardness of Approximation

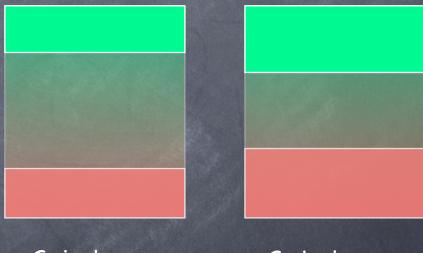
Hardness of Approximation

By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2

Hardness of Approximation

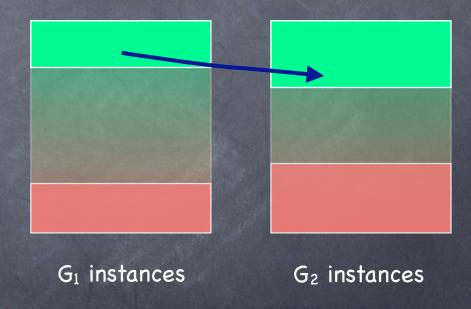
- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?

Hardness of Approximation

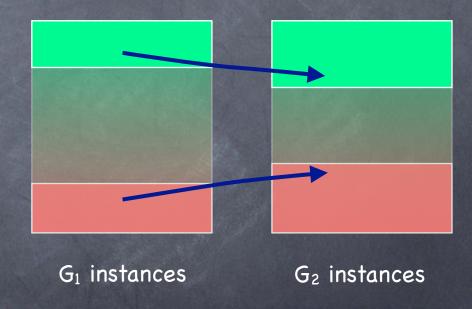

- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?
 - Reduce Max-qCSPSat to these problems

Hardness of Approximation

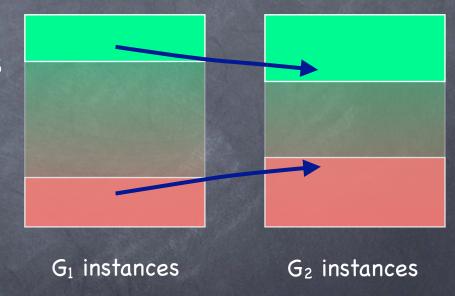
- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?
 - Reduce Max-qCSPSat to these problems
 - Such that approximation for them imply approximation for Max-qCSPSat

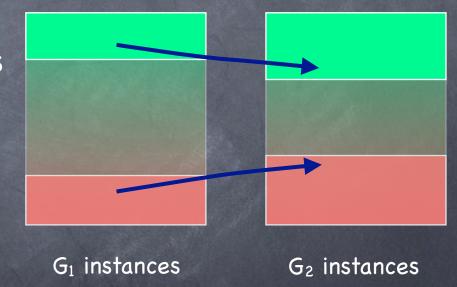

From gap problem G₁ to G₂

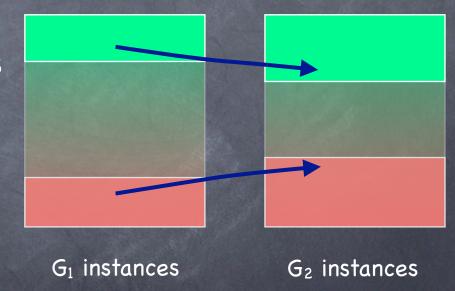
From gap problem G₁ to G₂

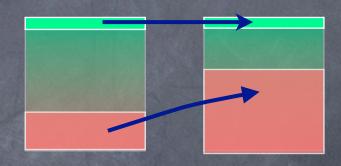


 G_2 instances

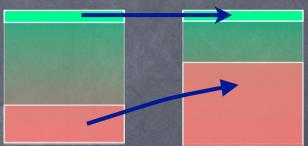

From gap problem G₁ to G₂


From gap problem G₁ to G₂

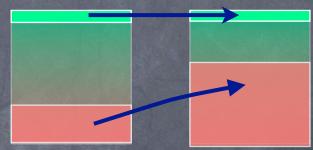

- From gap problem G₁ to G₂
 - If G₁ is hard to solve and reduction is efficient, then G₂ is hard to solve

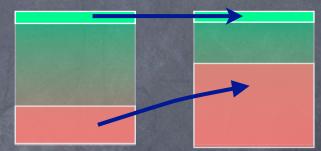


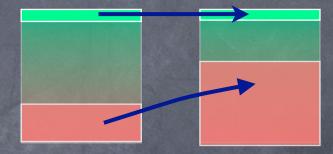
- From gap problem G₁ to G₂
 - If G₁ is hard to solve and reduction is efficient, then G₂ is hard to solve
 - Then function underlying G₂
 is hard to approximate
 (within a factor of its gap)



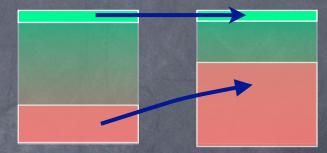
- From gap problem G₁ to G₂
 - If G₁ is hard to solve and reduction is efficient, then G₂ is hard to solve
 - Then function underlying G₂
 is hard to approximate
 (within a factor of its gap)
 - The bigger the gap in G₂ the larger the approximation factor shown hard



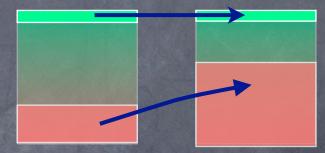

Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)


- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses

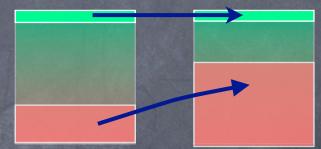
- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- Collect all clauses from all constraints



- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- Collect all clauses from all constraints


So far gap is preserved up to a factor of 1/29

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- © Collect all clauses from all constraints


- So far gap is preserved up to a factor of 1/29
- Now turn each q-clause into a collection of 3-clauses

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- Collect all clauses from all constraints

- So far gap is preserved up to a factor of 1/29
- Now turn each q-clause into a collection of 3-clauses
 - Adding at most q auxiliary var.s to get at most q 3-clauses

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- Collect all clauses from all constraints

- So far gap is preserved up to a factor of 1/29
- Now turn each q-clause into a collection of 3-clauses
 - Adding at most q auxiliary var.s to get at most q 3-clauses
- Gap preserved up to a factor of 1/(q2q)

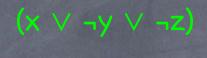
Recall 3SAT to CLIQUE: Clauses → Graph

Recall 3SAT to CLIQUE:Clauses → Graph

$$(x \lor \neg y \lor \neg z)$$

$$(w \lor y)$$

$$(w \lor x \lor \neg z)$$

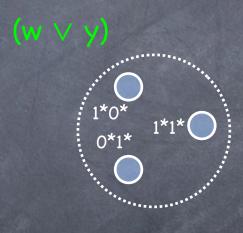

- Recall 3SAT to CLIQUE: Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)

$$(x \lor \neg y \lor \neg z)$$

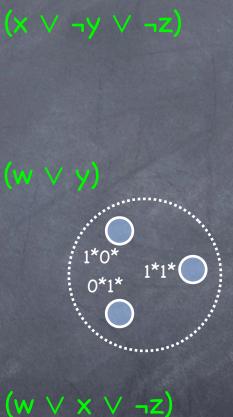
 $(w \vee y)$

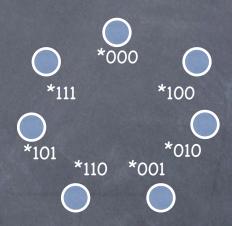
 $(w \lor x \lor \neg z)$

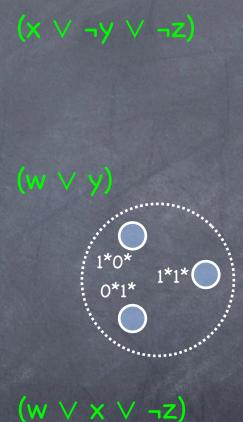
- Recall 3SAT to CLIQUE: Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)

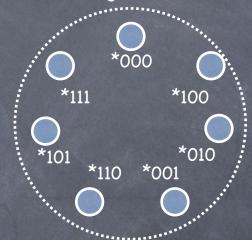


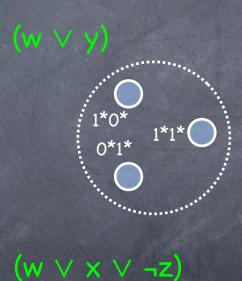
 $(w \lor x \lor \neg z)$

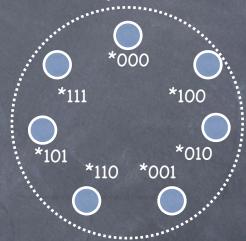

- Recall 3SAT to CLIQUE:Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)

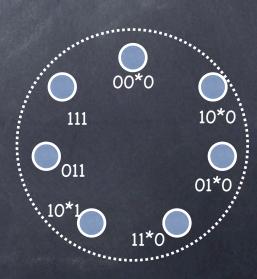



 $(w \lor x \lor \neg z)$

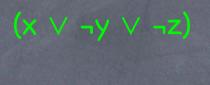

- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)

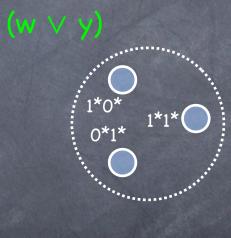

- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)

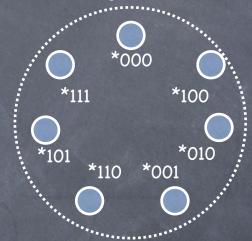


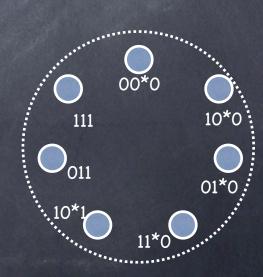


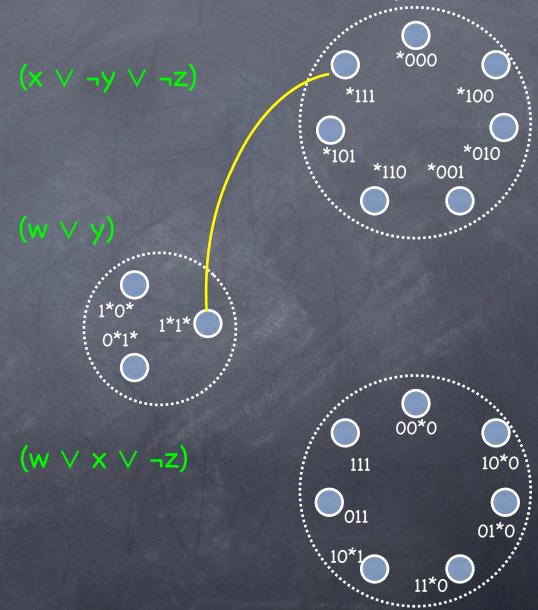
- Recall 3SAT to CLIQUE: Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)

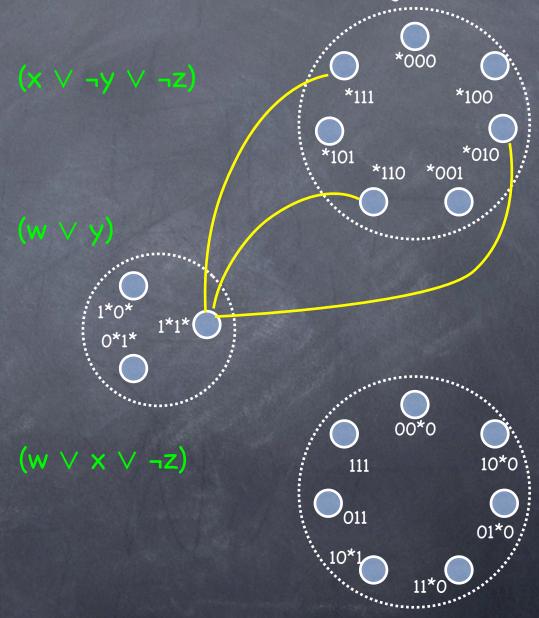


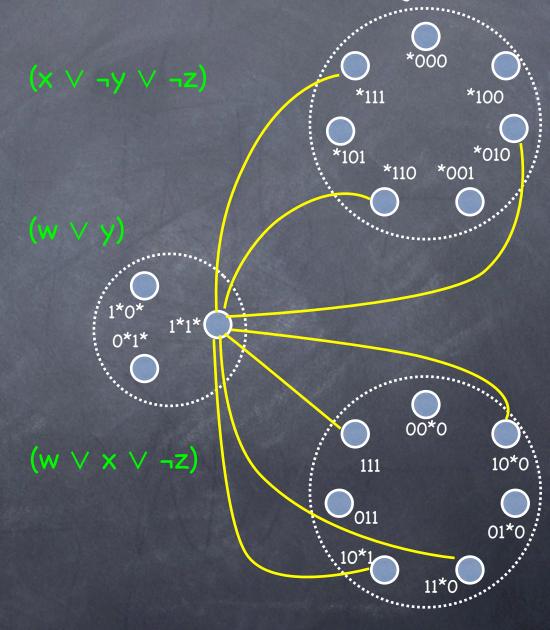


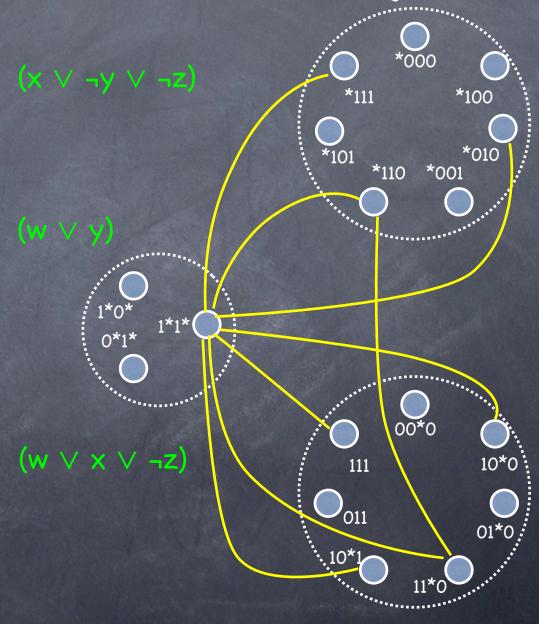


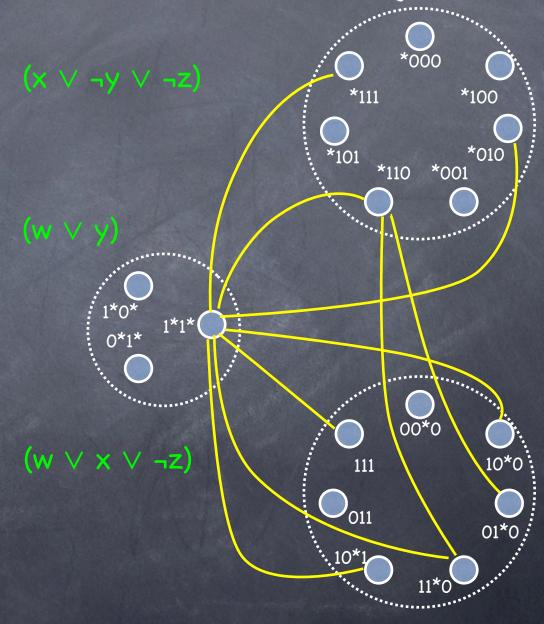

- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges betweenconsistent assignments

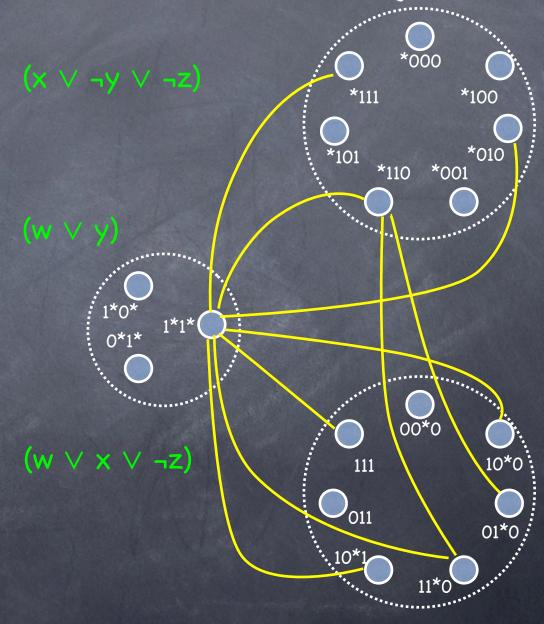


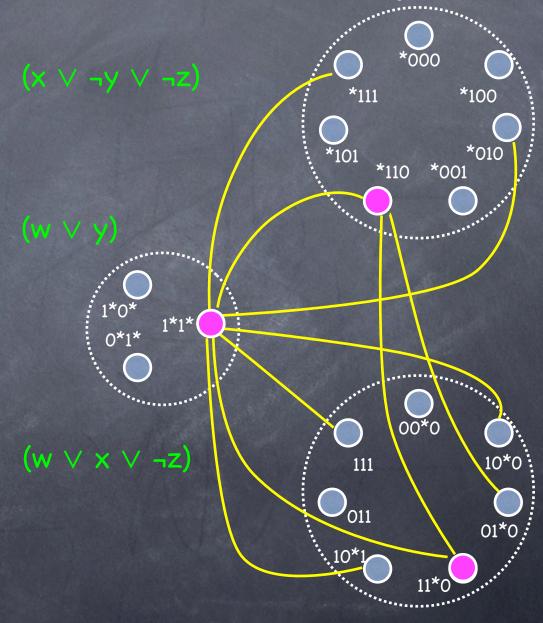


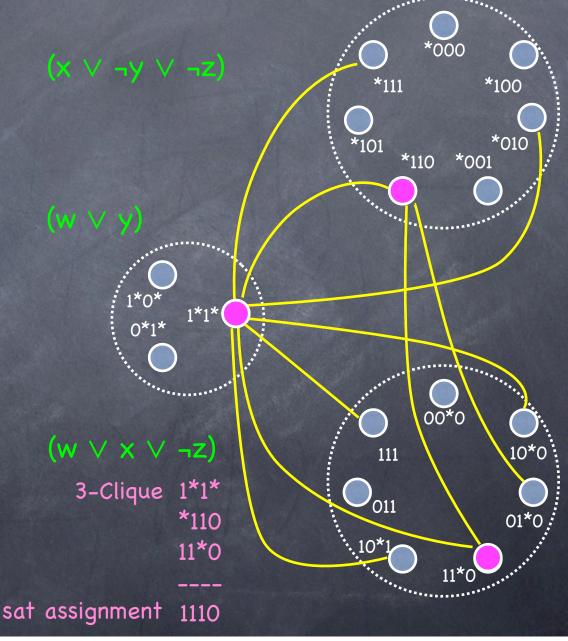

- Recall 3SAT to CLIQUE: Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges betweenconsistent assignments

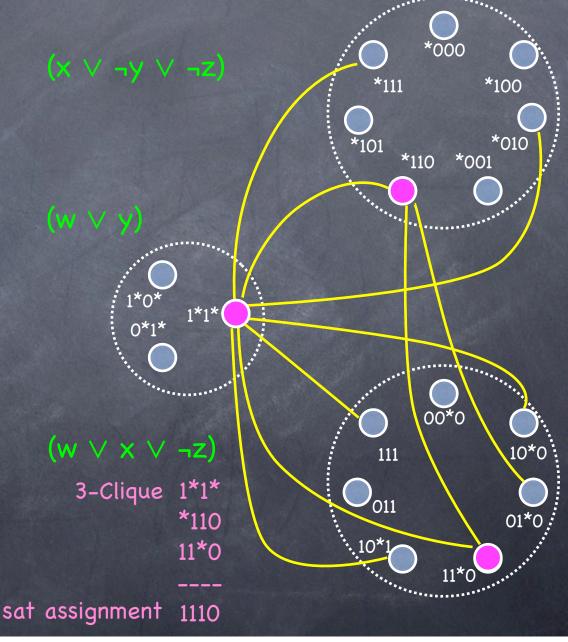

- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges betweenconsistent assignments


- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges betweenconsistent assignments


- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges betweenconsistent assignments


- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges betweenconsistent assignments


- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges between consistent assignments
 - k-clique iff k clauses satisfiable


- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges between consistent assignments
 - k-clique iff k clauses satisfiable

- Recall 3SAT to CLIQUE: Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges between consistent assignments
 - k-clique iff k clauses satisfiable

- Recall 3SAT to CLIQUE:
 Clauses → Graph
 - vertices: each clause's sat assignments (for its variables)
 - edges between consistent assignments
 - k-clique iff k clauses satisfiable
 - Gap preserved

Very involved: see textbook

- Very involved: see textbook
- A flavor:

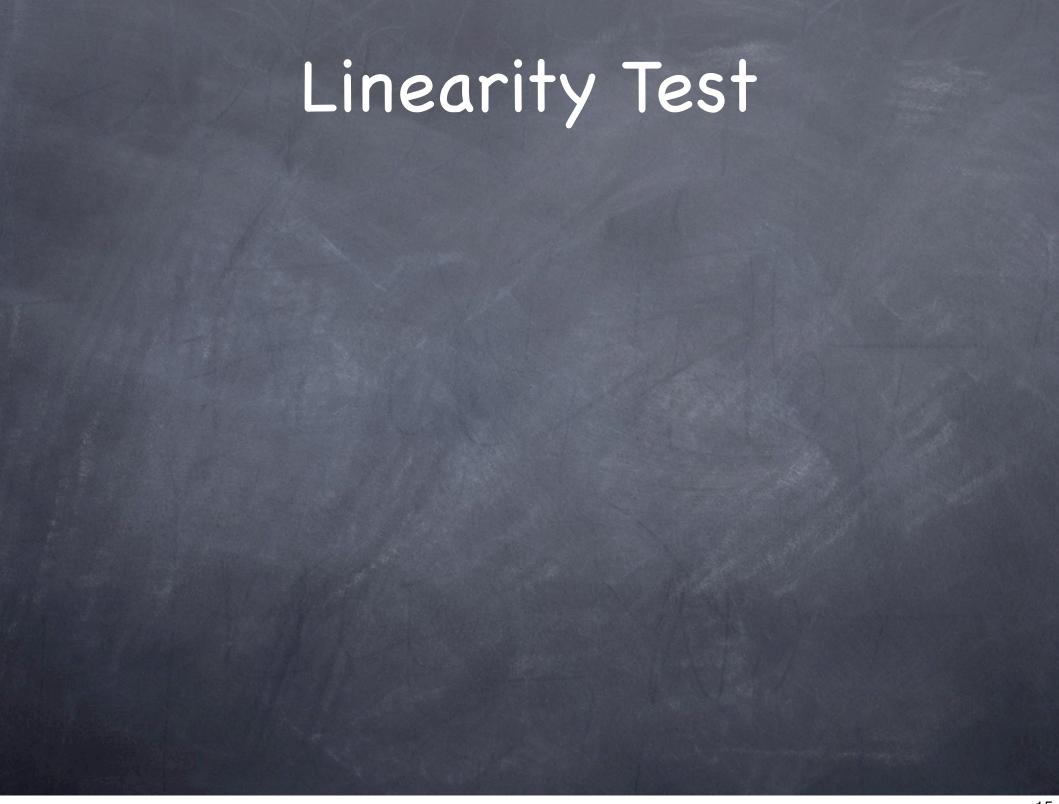
- Very involved: see textbook
- A flavor:
 - Recall: to give a PCP system for 3SAT

- Very involved: see textbook
- A flavor:
 - Recall: to give a PCP system for 3SAT
 - i.e. need to check if all clauses satisfied by the assignment implicit in the proof

- Very involved: see textbook
- A flavor:
 - Recall: to give a PCP system for 3SAT
 - i.e. need to check if all clauses satisfied by the assignment implicit in the proof
 - Checking a random clause is no good (though it takes only 3 queries) as almost all clauses might be satisfied

- Very involved: see textbook
- A flavor:
 - Recall: to give a PCP system for 3SAT
 - i.e. need to check if all clauses satisfied by the assignment implicit in the proof
 - Checking a random clause is no good (though it takes only 3 queries) as almost all clauses might be satisfied
 - Need to check if any 1 in an implicit bit vector: checking a random position is no good

Need to check if any 1 in an implicit bit vector: checking a random position is no good


- Need to check if any 1 in an implicit bit vector: checking a random position is no good
 - Require a "robust" encoding to be given

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
 - Require a "robust" encoding to be given
 - If even one 1, it becomes easy to detect

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
 - Require a "robust" encoding to be given
 - If even one 1, it becomes easy to detect
 - @ e.g. Walsh-Hadamard code: consider n-bit vector x as a function $f_x(y) = \langle x,y \rangle$. Encoding is the truth-table

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
 - Require a "robust" encoding to be given
 - If even one 1, it becomes easy to detect
 - @ e.g. Walsh-Hadamard code: consider n-bit vector x as a function $f_x(y) = \langle x,y \rangle$. Encoding is the truth-table
 - If one or more 1, then half 1s and half 0s. Else all 0s.

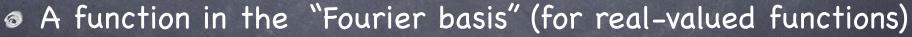
- Need to check if any 1 in an implicit bit vector: checking a random position is no good
 - Require a "robust" encoding to be given
 - If even one 1, it becomes easy to detect
 - @ e.g. Walsh-Hadamard code: consider n-bit vector x as a function $f_x(y) = \langle x,y \rangle$. Encoding is the truth-table
 - If one or more 1, then half 1s and half 0s. Else all 0s.
 - Need to check that the encoded vector is the evaluation of the clauses on an assignment, and that encoding is valid

Is a function table provided close to being linear?

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.

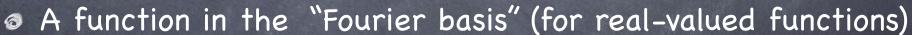
- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
 - Linear boolean function over boolean vectors


- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
 - Linear boolean function over boolean vectors
 - Dot product with another boolean vector

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
 - Linear boolean function over boolean vectors
 - Dot product with another boolean vector
 - A function in the "Fourier basis" (for real-valued functions)

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
 - Linear boolean function over boolean vectors
 - Dot product with another boolean vector
 - A function in the "Fourier basis" (for real-valued functions)

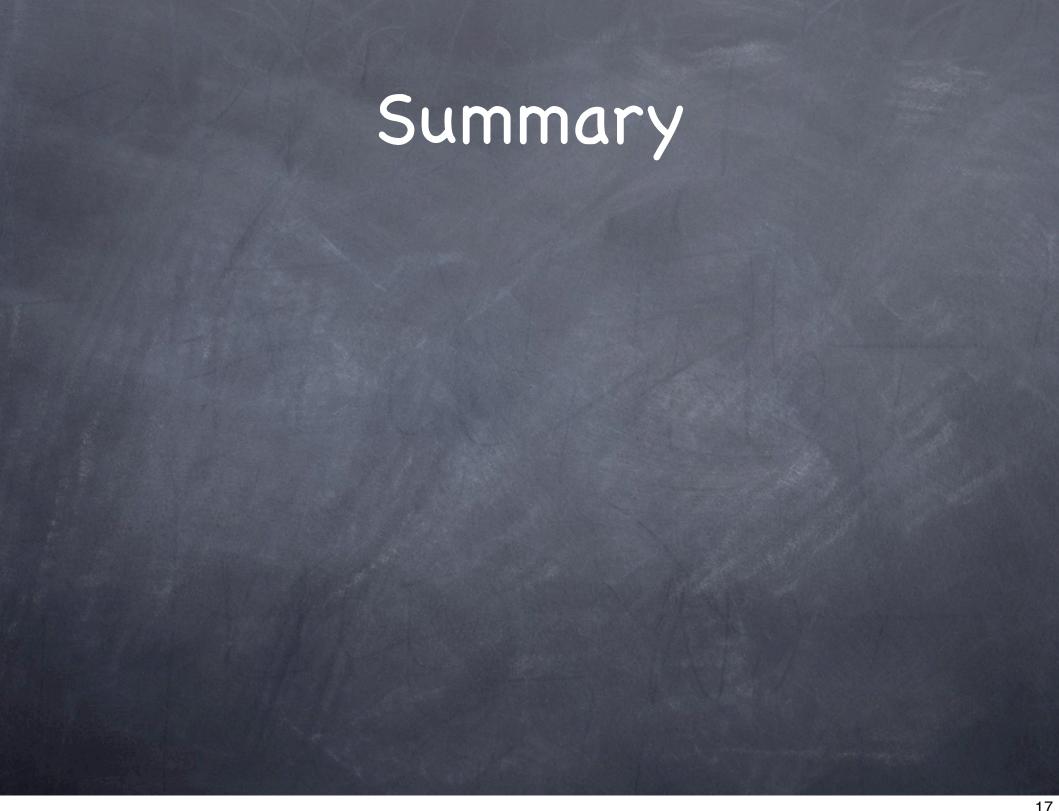

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
 - Linear boolean function over boolean vectors
 - Dot product with another boolean vector

Enough to check: is any Fourier coefficient dominant?

- Is a function table provided close to being linear?
- Test: query f(x), f(y), f(x+y) for random x, y. Check linearity.
- Analysis:
 - Linear boolean function over boolean vectors
 - Dot product with another boolean vector

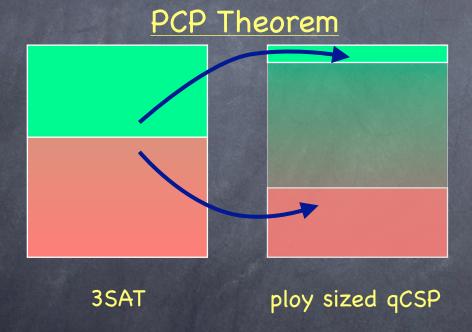
- Enough to check: is any Fourier coefficient dominant?
 - © Can show that if $Pr[f(x+y)=f(x)+f(y)] > 1/2 + \epsilon$, then a Fourier coefficient is larger than 2ϵ

Recent development [Dinur'06]

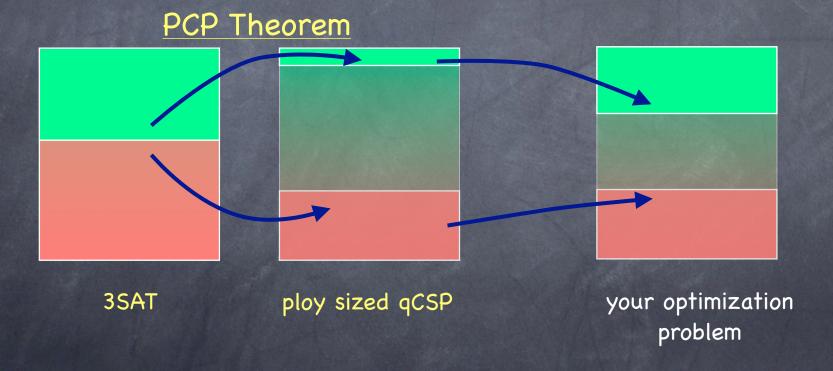

- Recent development [Dinur'06]
 - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem

- Recent development [Dinur'06]
 - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
 - By "gap amplification"

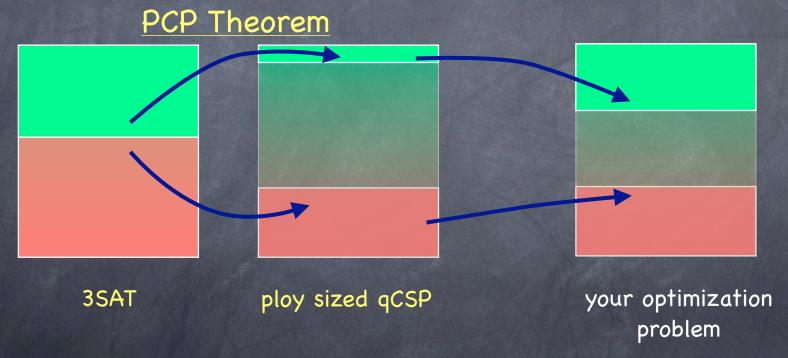
- Recent development [Dinur'06]
 - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
 - By "gap amplification"
 - Starting from a small gap (inherent in 3SAT), and amplifying it


- Recent development [Dinur'06]
 - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
 - By "gap amplification"
 - Starting from a small gap (inherent in 3SAT), and amplifying it
 - Operations on a constraint graph

- Recent development [Dinur'06]
 - A "combinatorial" (as opposed to algebraic) proof of the PCP theorem
 - By "gap amplification"
 - Starting from a small gap (inherent in 3SAT), and amplifying it
 - Operations on a constraint graph
 - Uses "expander graphs"



A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m


A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m

A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m

A problem/gap problem has a (log m,q) PCP iff it is efficiently reducible to the gap problem qCSP of size m

Variants of these reductions to get different hardness results for different approximations