#### Lecture 25 Weak techniques are indeed weak!

To prove that a (boolean) function family f has no small circuit family

To prove that a (boolean) function family f has no small circuit family

i.e., non-uniform lower-bound

To prove that a (boolean) function family f has no small circuit family

i.e., non-uniform lower-bound

What does a proof look like (often)?

To prove that a (boolean) function family f has no small circuit family

i.e., non-uniform lower-bound

What does a proof look like (often)?

Some (more general) property  $\Phi$  that f has

- To prove that a (boolean) function family f has no small circuit family
  - i.e., non-uniform lower-bound
- What does a proof look like (often)?
  - Some (more general) property  $\Phi$  that f has
  - $\odot$  Show that functions with  $\Phi$  have no small circuits

- To prove that a (boolean) function family f has no small circuit family
  - i.e., non-uniform lower-bound
- What does a proof look like (often)?
  - Some (more general) property  $\Phi$  that f has
  - $\odot$  Show that functions with  $\Phi$  have no small circuits
    - Being able to show that for Φ might require it to be a nice (natural) property

For each length n, Φ holds for a "significant" fraction of all functions on {0,1}<sup>n</sup>

For each length n, Φ holds for a "significant" fraction of all functions on {0,1}<sup>n</sup>

Writing functions on {0,1}<sup>n</sup> as an N-bit string (N=2<sup>n</sup>), there are 2<sup>N</sup> such functions

For each length n, Φ holds for a "significant" fraction of all functions on {0,1}<sup>n</sup>

Writing functions on {0,1}<sup>n</sup> as an N-bit string (N=2<sup>n</sup>), there are 2<sup>N</sup> such functions

Require at least 1/N fraction to have  $\Phi$ 

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

Sormal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

Sormal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

Image e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

Solution Series Series Series (literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

In fact, for any m, m(f) ≤ 1 + FC(f)

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

Solution Series Series Series (literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

In fact, for any m, m(f) ≤ 1 + FC(f)

Such an m does not single out a few functions for high complexity

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

Solution Series Series Series (literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

In fact, for any m, m(f) ≤ 1 + FC(f)

Such an m does not single out a few functions for high complexity If  $m(f_n) > c$  for any  $f_n$ , then for 1/4th functions  $f'_n$ ,  $m(f'_n) > c/4$ 

 Often Φ(f) just says if complexity(f) > threshold, according to some complexity measure and for some threshold

Solution Series Series Series (literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

In fact, for any m, m(f) ≤ 1 + FC(f)

Such an m does not single out a few functions for high complexity

or f = g⊕h = (g∧¬h)∨(¬g∧h). i.e., partition into tuples (g,¬g,h,¬h)
 such that at least one of them must be complex.

 $\odot$   $\Phi$  can be "efficiently" checked given the truth-table

Φ can be "efficiently" checked given the truth-table
 Φ(f<sub>n</sub>) can be evaluated in time poly(N)

Φ can be "efficiently" checked given the truth-table
 Φ(f<sub>n</sub>) can be evaluated in time poly(N)
 Motivation?

Φ can be "efficiently" checked given the truth-table
 Φ(f<sub>n</sub>) can be evaluated in time poly(N)

Motivation?

Do not have examples of effectively using very complex properties

Φ can be "efficiently" checked given the truth-table
 Φ(f<sub>n</sub>) can be evaluated in time poly(N)

Motivation?

Do not have examples of effectively using very complex properties

Opportunity?

Natural proof that gn has no low-complexity (small/shallow) circuit family will

Natural proof that gn has no low-complexity (small/shallow) circuit family will

The Define (implicitly or explicitly) a natural property  $\Phi$ 

Natural proof that gn has no low-complexity (small/shallow) circuit family will

The Define (implicitly or explicitly) a natural property  $\Phi$ 

 $\odot$   $\Phi$  holds for > 1/N of functions on  $\{0,1\}^n$  (N=2<sup>n</sup>)

Natural proof that g<sub>n</sub> has no low-complexity (small/shallow) circuit family will

Define (implicitly or explicitly) a natural property Φ
 Φ holds for > 1/N of functions on {0,1}<sup>n</sup> (N=2<sup>n</sup>)
 Φ(f<sub>n</sub>) can be evaluated in time poly(N)

Natural proof that g<sub>n</sub> has no low-complexity (small/shallow) circuit family will

Define (implicitly or explicitly) a natural property Φ
 Φ holds for > 1/N of functions on {0,1}<sup>n</sup> (N=2<sup>n</sup>)
 Φ(f<sub>n</sub>) can be evaluated in time poly(N)
 Show that Φ(q<sub>n</sub>) = 1

- Natural proof that gn has no low-complexity (small/shallow) circuit family will
  - The Define (implicitly or explicitly) a natural property  $\Phi$ 
    - $\Phi$  holds for > 1/N of functions on  $\{0,1\}^n$  (N=2<sup>n</sup>)
    - $\Phi(f_n)$  can be evaluated in time poly(N)
  - Show that  $\Phi(g_n) = 1$
  - Show that if  $f_n$  has a low-complexity circuit family, then  $\Phi(f_n)=0$  (i.e.,  $\Phi$  avoids functions of low circuit-complexity)

#### Natural Proof: Example

- PARITY doesn't have depth d AC circuits
- The Define a natural property  $\Phi$ 
  - $\Phi$  holds for 1/N of functions on  $\{0,1\}^n$
  - $\odot \Phi(f_n)$  can be evaluated in time poly(N)
- Show that  $\Phi(PARITY)=1$
- Show that if f<sub>n</sub> has a low-complexity circuit family, then Φ(f<sub>n</sub>)=0 (i.e., Φ avoids functions of low circuit-complexity)

#### Natural Proof: Example

- PARITY doesn't have depth d AC circuits
  Define a natural property Φ
  Φ holds for 1/N of functions on {0,1}<sup>n</sup>
  Φ(f<sub>n</sub>) can be evaluated in time poly(N)
  Show that Φ(PARITY)=1
- Show that if f<sub>n</sub> has a low-complexity circuit family, then Φ(f<sub>n</sub>)=0 (i.e., Φ avoids functions of low circuit-complexity)

 $\Phi$ : Not constant after restricting to  $n^{\epsilon}$  vars

#### Natural Proof: Example

- PARITY doesn't have depth d AC circuits
- The Define a natural property  $\Phi$ 

  - $\Phi(f_n)$  can be evaluated in time poly(N)
- Show that  $\Phi(PARITY)=1$
- Show that if f<sub>n</sub> has a low-complexity circuit family, then Φ(f<sub>n</sub>)=0 (i.e., Φ avoids functions of low circuit-complexity)

 $\Phi$ : Not constant after restricting to  $n^{\epsilon}$  vars

Exercise

## Natural Proof: Example

- PARITY doesn't have depth d AC circuits
- The Define a natural property  $\Phi$ 

  - $\odot \Phi(f_n)$  can be evaluated in time poly(N)
- Show that  $\Phi(PARITY)=1$
- Show that if f<sub>n</sub> has a low-complexity circuit family, then Φ(f<sub>n</sub>)=0 (i.e., Φ avoids functions of low circuit-complexity)

 $\Phi$ : Not constant after restricting to  $n^{\varepsilon}$  vars

Exercise

Brute-force in N<sup>2</sup> time

## Natural Proof: Example

- PARITY doesn't have depth d AC circuits
  Define a natural property Φ
  Φ holds for 1/N of functions on {0,1}<sup>n</sup>
  Φ(f<sub>n</sub>) can be evaluated in time poly(N)
  Show that Φ(PARITY)=1
- Show that if f<sub>n</sub> has a low-complexity circuit family, then Φ(f<sub>n</sub>)=0 (i.e., Φ avoids functions of low circuit-complexity)

 $\Phi$ : Not constant after restricting to  $n^\varepsilon$  vars

Exercise

Brute-force in N<sup>2</sup> time

Not const. till last var

## Natural Proof: Example

- PARITY doesn't have depth d AC circuits The Define a natural property  $\Phi$ •  $\Phi$  holds for 1/N of functions on  $\{0,1\}^n$  $\odot \Phi(f_n)$  can be evaluated in time poly(N) • Show that  $\Phi(PARITY)=1$
- $\oslash$  Show that if  $f_n$  has a low-complexity circuit family, then  $\Phi(f_n)=0$  (i.e.,  $\Phi$  avoids AC circuit becomes depth 2, functions of low circuit-complexity)

Φ: Not constant after restricting to  $n^{\epsilon}$  vars

Brute-force in N<sup>2</sup> time

Not const. till last var

Switching Lemma: Depth d restricted to  $n^{\delta}$  vars. Can fix to 0 or 1 by restricting  $n^{\delta}/2$  more vars.

We don't expect natural proofs to show that any function family is not in P/poly

We don't expect natural proofs to show that any function family is not in P/poly

Natural properties cannot avoid all functions in P/poly

We don't expect natural proofs to show that any function family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Inless some widely-believed assumptions in cryptography are false!

We don't expect natural proofs to show that any function family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Inless some widely-believed assumptions in cryptography are false!

Note that we know (non-constructively) that there are function families which need exponential-sized circuit families

We don't expect natural proofs to show that any function family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Inless some widely-believed assumptions in cryptography are false!

Note that we know (non-constructively) that there are function families which need exponential-sized circuit families

Not a natural proof: property Φ involved (whether fn has a small circuit) is not efficient to evaluate

We don't expect natural proofs to show that any function family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Inless some widely-believed assumptions in cryptography are false!

Note that we know (non-constructively) that there are function families which need exponential-sized circuit families

Not a natural proof: property Φ involved (whether fn has a small circuit) is not efficient to evaluate

But doesn't give an "explicit" function (say NP function)

If (very strong) one-way functions exist, natural properties cannot avoid all P/poly functions

If (very strong) one-way functions exist, natural properties cannot avoid all P/poly functions

If (very strong) one-way functions exist can create pseudorandom functions

If (very strong) one-way functions exist, natural properties cannot avoid all P/poly functions

 If (very strong) one-way functions exist can create pseudorandom functions

A distribution of efficient (P/poly) functions

- If (very strong) one-way functions exist, natural properties cannot avoid all P/poly functions
  - If (very strong) one-way functions exist can create pseudorandom functions
    - A distribution of efficient (P/poly) functions
    - Indistinguishable from random functions

- If (very strong) one-way functions exist, natural properties cannot avoid all P/poly functions
  - If (very strong) one-way functions exist can create pseudorandom functions
    - A distribution of efficient (P/poly) functions
    - Indistinguishable from random functions
  - But a natural property that avoids P/poly can be used to distinguish any distribution of P/poly functions from random functions

Seudorandom function:

- Seudorandom function:
  - A small (2<sup>polylog(N)</sup> sized) subset of all 2<sup>N</sup> functions on {0,1}<sup>n</sup>. Described by poly(n) long "seed" strings (nonuniform)

- Seudorandom function:
  - A small (2<sup>polylog(N)</sup> sized) subset of all 2<sup>N</sup> functions on {0,1}<sup>n</sup>. Described by poly(n) long "seed" strings (nonuniform)
  - Seach can be evaluated by a poly(n)-size circuit

- Seudorandom function:
  - A small (2<sup>polylog(N)</sup> sized) subset of all 2<sup>N</sup> functions on {0,1}<sup>n</sup>. Described by poly(n) long "seed" strings (nonuniform)
  - Seach can be evaluated by a poly(n)-size circuit
  - A distribution (for each n) defined by uniformly picking a seed

- Seudorandom function:
  - A small (2<sup>polylog(N)</sup> sized) subset of all 2<sup>N</sup> functions on {0,1}<sup>n</sup>. Described by poly(n) long "seed" strings (non-uniform)
  - Seach can be evaluated by a poly(n)-size circuit
  - A distribution (for each n) defined by uniformly picking a seed

 Random function: distribution defined by uniformly picking a function (N long string)

- Seudorandom function:
  - A small (2<sup>polylog(N)</sup> sized) subset of all 2<sup>N</sup> functions on {0,1}<sup>n</sup>. Described by poly(n) long "seed" strings (non-uniform)
  - Seach can be evaluated by a poly(n)-size circuit
  - A distribution (for each n) defined by uniformly picking a seed
- Random function: distribution defined by uniformly picking a function (N long string)
- The two are "indistinguishable"

Two distributions X and Y are E-indistinguishable to a distinguisher D (which outputs a single bit), if it behaves virtually identically when given samples from either distribution

Two distributions X and Y are E-indistinguishable to a distinguisher D (which outputs a single bit), if it behaves virtually identically when given samples from either distribution

Two distributions X and Y are E-indistinguishable to a distinguisher D (which outputs a single bit), if it behaves virtually identically when given samples from either distribution

X, Y are ε-indistinguishable for size-S distinguishers
 if this holds for all circuits D of size at most S

PRF: a distribution over P/poly functions, indistinguishable from random functions

PRF: a distribution over P/poly functions, indistinguishable from random functions

Distinguisher gets the truth-table of the function as input

- PRF: a distribution over P/poly functions, indistinguishable from random functions
  - Distinguisher gets the truth-table of the function as input
- Given any S(N) = poly(N), can construct a 1/N-indistinguishable
   PRF for all size-S distinguishers with seed-length poly(n)

- PRF: a distribution over P/poly functions, indistinguishable from random functions
  - Distinguisher gets the truth-table of the function as input
- Given any S(N) = poly(N), can construct a 1/N-indistinguishable
   PRF for all size-S distinguishers with seed-length poly(n)
  - If (strong) "one-way functions" exist

- PRF: a distribution over P/poly functions, indistinguishable from random functions
  - Distinguisher gets the truth-table of the function as input
- Given any S(N) = poly(N), can construct a 1/N-indistinguishable PRF for all size-S distinguishers with seed-length poly(n)
  - If (strong) "one-way functions" exist
- (Strong PRF, because "usual" PRF is against poly(n)-size distinguishers who can in particular read only poly(n) positions of the truth-table)

 PRF: A distribution of P/poly functions, ε-indistinguishable from random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D</li>

 PRF: A distribution of P/poly functions, ε-indistinguishable from random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D</li>

A natural property that avoids P/poly can be used to efficiently distinguish a distribution of P/poly functions from random functions

 PRF: A distribution of P/poly functions, ε-indistinguishable from random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D</li>

A natural property that avoids P/poly can be used to efficiently distinguish a distribution of P/poly functions from random functions

Let D(f) be Φ(f): D of size S = poly (because Φ natural).
 Pr<sub>f←all</sub>[Φ(f)=1] > 1/N (because Φ natural), and if Φ avoids P/poly then Pr<sub>f←PRF</sub>[Φ(f)=1] = 0

 PRF: A distribution of P/poly functions, ε-indistinguishable from random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D</li>

A natural property that avoids P/poly can be used to efficiently distinguish a distribution of P/poly functions from random functions

Let D(f) be Φ(f): D of size S = poly (because Φ natural).
 Pr<sub>f←all</sub>[Φ(f)=1] > 1/N (because Φ natural), and if Φ avoids P/poly then Pr<sub>f←PRF</sub>[Φ(f)=1] = 0

Contradiction!

 PRF: A distribution of P/poly functions, ε-indistinguishable from random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D</li>

A natural property that avoids P/poly can be used to efficiently distinguish a distribution of P/poly functions from random functions

Let D(f) be Φ(f): D of size S = poly (because Φ natural).
 Pr<sub>f←all</sub>[Φ(f)=1] > 1/N (because Φ natural), and if Φ avoids P/poly then Pr<sub>f←PRF</sub>[Φ(f)=1] = 0

Contradiction!

If PRFs exist, then no natural property that avoids P/poly exists



 Natural proofs: which use a "natural property" Φ to separate low-complexity functions from high-complexity functions

 Natural proofs: which use a "natural property" Φ to separate low-complexity functions from high-complexity functions

 $\odot$   $\Phi$  holds for a random function with good probability

 Natural proofs: which use a "natural property" Φ to separate low-complexity functions from high-complexity functions

 $\odot$   $\Phi$  holds for a random function with good probability

 $\odot \Phi$  is "efficiently" computable

 Natural proofs: which use a "natural property" Φ to separate low-complexity functions from high-complexity functions

 $\odot$   $\Phi$  holds for a random function with good probability

 $\odot \Phi$  is "efficiently" computable

Goes against the notion of pseudorandomness

 Natural proofs: which use a "natural property" Φ to separate low-complexity functions from high-complexity functions

 $\odot$   $\Phi$  holds for a random function with good probability

- $\odot \Phi$  is "efficiently" computable
- Goes against the notion of pseudorandomness

Low-complexity functions which look-like a random function, to "efficient" distinguishers

 Natural proofs: which use a "natural property" Φ to separate low-complexity functions from high-complexity functions

 $\odot$   $\Phi$  holds for a random function with good probability

 $\odot \Phi$  is "efficiently" computable

Goes against the notion of pseudorandomness

Low-complexity functions which look-like a random function, to "efficient" distinguishers

Natural proofs can't separate out P/poly as low-complexity, if pseudorandom functions exist in P/poly (as we believe)