
Natural Proofs

Lecture 25
Weak techniques are indeed weak!

1

Circuit Lower-Bounds

2

Circuit Lower-Bounds

To prove that a (boolean) function family f has no small
circuit family

2

Circuit Lower-Bounds

To prove that a (boolean) function family f has no small
circuit family

i.e., non-uniform lower-bound

2

Circuit Lower-Bounds

To prove that a (boolean) function family f has no small
circuit family

i.e., non-uniform lower-bound

What does a proof look like (often)?

2

Circuit Lower-Bounds

To prove that a (boolean) function family f has no small
circuit family

i.e., non-uniform lower-bound

What does a proof look like (often)?

Some (more general) property Φ that f has

2

Circuit Lower-Bounds

To prove that a (boolean) function family f has no small
circuit family

i.e., non-uniform lower-bound

What does a proof look like (often)?

Some (more general) property Φ that f has

Show that functions with Φ have no small circuits

2

Circuit Lower-Bounds

To prove that a (boolean) function family f has no small
circuit family

i.e., non-uniform lower-bound

What does a proof look like (often)?

Some (more general) property Φ that f has

Show that functions with Φ have no small circuits

Being able to show that for Φ might require it to
be a nice (natural) property

2

Features of a
“Natural Property” - 1

3

Features of a
“Natural Property” - 1

For each length n, Φ holds for a “significant” fraction
of all functions on {0,1}n

3

Features of a
“Natural Property” - 1

For each length n, Φ holds for a “significant” fraction
of all functions on {0,1}n

Writing functions on {0,1}n as an N-bit string
(N=2n), there are 2N such functions

3

Features of a
“Natural Property” - 1

For each length n, Φ holds for a “significant” fraction
of all functions on {0,1}n

Writing functions on {0,1}n as an N-bit string
(N=2n), there are 2N such functions

Require at least 1/N fraction to have Φ

3

Motivation

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

Formal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

Formal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

Formal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f

In fact, for any m, m(f) ≤ 1 + FC(f)

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

Formal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f

In fact, for any m, m(f) ≤ 1 + FC(f)

Such an m does not single out a few functions for high complexity

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

Formal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f

In fact, for any m, m(f) ≤ 1 + FC(f)

Such an m does not single out a few functions for high complexity

If m(fn) > c for any fn, then for 1/4th functions f’n, m(f’n) > c/4

4

Motivation
Often Φ(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

Formal complexity measure: m(literal) ≤ 1; m(f∧g), m(f∨g) ≤ m(f)+m(g)

e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f

In fact, for any m, m(f) ≤ 1 + FC(f)

Such an m does not single out a few functions for high complexity

If m(fn) > c for any fn, then for 1/4th functions f’n, m(f’n) > c/4

f = g⊕h = (g∧¬h)∨(¬g∧h). i.e., partition into tuples (g,¬g,h,¬h)
such that at least one of them must be complex.

4

Features of a
“Natural Property” - 2

5

Features of a
“Natural Property” - 2
Φ can be “efficiently” checked given the truth-table

5

Features of a
“Natural Property” - 2
Φ can be “efficiently” checked given the truth-table

Φ(fn) can be evaluated in time poly(N)

5

Features of a
“Natural Property” - 2
Φ can be “efficiently” checked given the truth-table

Φ(fn) can be evaluated in time poly(N)

Motivation?

5

Features of a
“Natural Property” - 2
Φ can be “efficiently” checked given the truth-table

Φ(fn) can be evaluated in time poly(N)

Motivation?

Do not have examples of effectively using very
complex properties

5

Features of a
“Natural Property” - 2
Φ can be “efficiently” checked given the truth-table

Φ(fn) can be evaluated in time poly(N)

Motivation?

Do not have examples of effectively using very
complex properties

Opportunity?

5

Natural Proof

6

Natural Proof
Natural proof that gn has no low-complexity (small/shallow)
circuit family will

6

Natural Proof
Natural proof that gn has no low-complexity (small/shallow)
circuit family will

Define (implicitly or explicitly) a natural property Φ

6

Natural Proof
Natural proof that gn has no low-complexity (small/shallow)
circuit family will

Define (implicitly or explicitly) a natural property Φ

Φ holds for > 1/N of functions on {0,1}n (N=2n)

6

Natural Proof
Natural proof that gn has no low-complexity (small/shallow)
circuit family will

Define (implicitly or explicitly) a natural property Φ

Φ holds for > 1/N of functions on {0,1}n (N=2n)

Φ(fn) can be evaluated in time poly(N)

6

Natural Proof
Natural proof that gn has no low-complexity (small/shallow)
circuit family will

Define (implicitly or explicitly) a natural property Φ

Φ holds for > 1/N of functions on {0,1}n (N=2n)

Φ(fn) can be evaluated in time poly(N)

Show that Φ(gn) = 1

6

Natural Proof
Natural proof that gn has no low-complexity (small/shallow)
circuit family will

Define (implicitly or explicitly) a natural property Φ

Φ holds for > 1/N of functions on {0,1}n (N=2n)

Φ(fn) can be evaluated in time poly(N)

Show that Φ(gn) = 1

Show that if fn has a low-complexity circuit family, then
Φ(fn)=0 (i.e., Φ avoids functions of low circuit-complexity)

6

Natural Proof: Example
PARITY doesn’t have depth d AC circuits

Define a natural property Φ

Φ holds for 1/N of functions on {0,1}n

Φ(fn) can be evaluated in time poly(N)

Show that Φ(PARITY)=1

Show that if fn has a low-complexity
circuit family, then Φ(fn)=0 (i.e., Φ avoids
functions of low circuit-complexity)

7

Natural Proof: Example
PARITY doesn’t have depth d AC circuits

Define a natural property Φ

Φ holds for 1/N of functions on {0,1}n

Φ(fn) can be evaluated in time poly(N)

Show that Φ(PARITY)=1

Show that if fn has a low-complexity
circuit family, then Φ(fn)=0 (i.e., Φ avoids
functions of low circuit-complexity)

Φ: Not constant after
restricting to nε vars

7

Natural Proof: Example
PARITY doesn’t have depth d AC circuits

Define a natural property Φ

Φ holds for 1/N of functions on {0,1}n

Φ(fn) can be evaluated in time poly(N)

Show that Φ(PARITY)=1

Show that if fn has a low-complexity
circuit family, then Φ(fn)=0 (i.e., Φ avoids
functions of low circuit-complexity)

Φ: Not constant after
restricting to nε vars

Exercise

7

Natural Proof: Example
PARITY doesn’t have depth d AC circuits

Define a natural property Φ

Φ holds for 1/N of functions on {0,1}n

Φ(fn) can be evaluated in time poly(N)

Show that Φ(PARITY)=1

Show that if fn has a low-complexity
circuit family, then Φ(fn)=0 (i.e., Φ avoids
functions of low circuit-complexity)

Φ: Not constant after
restricting to nε vars

Exercise

Brute-force in N2 time

7

Natural Proof: Example
PARITY doesn’t have depth d AC circuits

Define a natural property Φ

Φ holds for 1/N of functions on {0,1}n

Φ(fn) can be evaluated in time poly(N)

Show that Φ(PARITY)=1

Show that if fn has a low-complexity
circuit family, then Φ(fn)=0 (i.e., Φ avoids
functions of low circuit-complexity)

Φ: Not constant after
restricting to nε vars

Exercise

Brute-force in N2 time

Not const. till last var

7

Natural Proof: Example
PARITY doesn’t have depth d AC circuits

Define a natural property Φ

Φ holds for 1/N of functions on {0,1}n

Φ(fn) can be evaluated in time poly(N)

Show that Φ(PARITY)=1

Show that if fn has a low-complexity
circuit family, then Φ(fn)=0 (i.e., Φ avoids
functions of low circuit-complexity)

Φ: Not constant after
restricting to nε vars

Exercise

Brute-force in N2 time

Not const. till last var

Switching Lemma: Depth d
AC circuit becomes depth 2,

restricted to nδ vars.
Can fix to 0 or 1 by

restricting nδ/2 more vars.
7

Limitations of Natural
Proofs

8

Limitations of Natural
Proofs

We don’t expect natural proofs to show that any function
family is not in P/poly

8

Limitations of Natural
Proofs

We don’t expect natural proofs to show that any function
family is not in P/poly

Natural properties cannot avoid all functions in P/poly

8

Limitations of Natural
Proofs

We don’t expect natural proofs to show that any function
family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Unless some widely-believed assumptions in cryptography
are false!

8

Limitations of Natural
Proofs

We don’t expect natural proofs to show that any function
family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Unless some widely-believed assumptions in cryptography
are false!

Note that we know (non-constructively) that there are
function families which need exponential-sized circuit families

8

Limitations of Natural
Proofs

We don’t expect natural proofs to show that any function
family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Unless some widely-believed assumptions in cryptography
are false!

Note that we know (non-constructively) that there are
function families which need exponential-sized circuit families

Not a natural proof: property Φ involved (whether fn has a
small circuit) is not efficient to evaluate

8

Limitations of Natural
Proofs

We don’t expect natural proofs to show that any function
family is not in P/poly

Natural properties cannot avoid all functions in P/poly

Unless some widely-believed assumptions in cryptography
are false!

Note that we know (non-constructively) that there are
function families which need exponential-sized circuit families

Not a natural proof: property Φ involved (whether fn has a
small circuit) is not efficient to evaluate

But doesn’t give an “explicit” function (say NP function)

8

Limitations of Natural
Proofs

9

Limitations of Natural
Proofs

If (very strong) one-way functions exist, natural
properties cannot avoid all P/poly functions

9

Limitations of Natural
Proofs

If (very strong) one-way functions exist, natural
properties cannot avoid all P/poly functions

If (very strong) one-way functions exist can create
pseudorandom functions

9

Limitations of Natural
Proofs

If (very strong) one-way functions exist, natural
properties cannot avoid all P/poly functions

If (very strong) one-way functions exist can create
pseudorandom functions

A distribution of efficient (P/poly) functions

9

Limitations of Natural
Proofs

If (very strong) one-way functions exist, natural
properties cannot avoid all P/poly functions

If (very strong) one-way functions exist can create
pseudorandom functions

A distribution of efficient (P/poly) functions

Indistinguishable from random functions

9

Limitations of Natural
Proofs

If (very strong) one-way functions exist, natural
properties cannot avoid all P/poly functions

If (very strong) one-way functions exist can create
pseudorandom functions

A distribution of efficient (P/poly) functions

Indistinguishable from random functions

But a natural property that avoids P/poly can be used
to distinguish any distribution of P/poly functions from
random functions

9

Pseudorandom Functions

10

Pseudorandom Functions
Pseudorandom function:

10

Pseudorandom Functions
Pseudorandom function:

A small (2polylog(N) sized) subset of all 2N functions on
{0,1}n. Described by poly(n) long “seed” strings (non-
uniform)

10

Pseudorandom Functions
Pseudorandom function:

A small (2polylog(N) sized) subset of all 2N functions on
{0,1}n. Described by poly(n) long “seed” strings (non-
uniform)

Each can be evaluated by a poly(n)-size circuit

10

Pseudorandom Functions
Pseudorandom function:

A small (2polylog(N) sized) subset of all 2N functions on
{0,1}n. Described by poly(n) long “seed” strings (non-
uniform)

Each can be evaluated by a poly(n)-size circuit

A distribution (for each n) defined by uniformly picking a
seed

10

Pseudorandom Functions
Pseudorandom function:

A small (2polylog(N) sized) subset of all 2N functions on
{0,1}n. Described by poly(n) long “seed” strings (non-
uniform)

Each can be evaluated by a poly(n)-size circuit

A distribution (for each n) defined by uniformly picking a
seed

Random function: distribution defined by uniformly picking
a function (N long string)

10

Pseudorandom Functions
Pseudorandom function:

A small (2polylog(N) sized) subset of all 2N functions on
{0,1}n. Described by poly(n) long “seed” strings (non-
uniform)

Each can be evaluated by a poly(n)-size circuit

A distribution (for each n) defined by uniformly picking a
seed

Random function: distribution defined by uniformly picking
a function (N long string)

The two are “indistinguishable”

10

Indistinguishability

11

Indistinguishability

Two distributions X and Y are ε-indistinguishable to
a distinguisher D (which outputs a single bit), if it
behaves virtually identically when given samples
from either distribution

11

Indistinguishability

Two distributions X and Y are ε-indistinguishable to
a distinguisher D (which outputs a single bit), if it
behaves virtually identically when given samples
from either distribution

Prf←X[D(f) outputs 1] - Prf←Y[D(f) outputs 1] < ε

11

Indistinguishability

Two distributions X and Y are ε-indistinguishable to
a distinguisher D (which outputs a single bit), if it
behaves virtually identically when given samples
from either distribution

Prf←X[D(f) outputs 1] - Prf←Y[D(f) outputs 1] < ε

X, Y are ε-indistinguishable for size-S distinguishers
if this holds for all circuits D of size at most S

11

(Strong) PRF

12

(Strong) PRF
PRF: a distribution over P/poly functions, indistinguishable from
random functions

12

(Strong) PRF
PRF: a distribution over P/poly functions, indistinguishable from
random functions

Distinguisher gets the truth-table of the function as input

12

(Strong) PRF
PRF: a distribution over P/poly functions, indistinguishable from
random functions

Distinguisher gets the truth-table of the function as input

Given any S(N) = poly(N), can construct a 1/N-indistinguishable
PRF for all size-S distinguishers with seed-length poly(n)

12

(Strong) PRF
PRF: a distribution over P/poly functions, indistinguishable from
random functions

Distinguisher gets the truth-table of the function as input

Given any S(N) = poly(N), can construct a 1/N-indistinguishable
PRF for all size-S distinguishers with seed-length poly(n)

If (strong) “one-way functions” exist

12

(Strong) PRF
PRF: a distribution over P/poly functions, indistinguishable from
random functions

Distinguisher gets the truth-table of the function as input

Given any S(N) = poly(N), can construct a 1/N-indistinguishable
PRF for all size-S distinguishers with seed-length poly(n)

If (strong) “one-way functions” exist

(Strong PRF, because “usual” PRF is against poly(n)-size
distinguishers who can in particular read only poly(n) positions
of the truth-table)

12

Limitations of Natural
Proofs

13

Limitations of Natural
Proofs

PRF: A distribution of P/poly functions, ε-indistinguishable from
random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D

13

Limitations of Natural
Proofs

PRF: A distribution of P/poly functions, ε-indistinguishable from
random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D

A natural property that avoids P/poly can be used to efficiently
distinguish a distribution of P/poly functions from random functions

13

Limitations of Natural
Proofs

PRF: A distribution of P/poly functions, ε-indistinguishable from
random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D

A natural property that avoids P/poly can be used to efficiently
distinguish a distribution of P/poly functions from random functions

Let D(f) be Φ(f): D of size S = poly (because Φ natural).
Prf←all[Φ(f)=1] > 1/N (because Φ natural), and if Φ avoids P/poly
then Prf←PRF[Φ(f)=1] = 0

13

Limitations of Natural
Proofs

PRF: A distribution of P/poly functions, ε-indistinguishable from
random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D

A natural property that avoids P/poly can be used to efficiently
distinguish a distribution of P/poly functions from random functions

Let D(f) be Φ(f): D of size S = poly (because Φ natural).
Prf←all[Φ(f)=1] > 1/N (because Φ natural), and if Φ avoids P/poly
then Prf←PRF[Φ(f)=1] = 0

Contradiction!

13

Limitations of Natural
Proofs

PRF: A distribution of P/poly functions, ε-indistinguishable from
random functions, for ε < 1/N, for size-S(N)=poly(N) distinguishers D

A natural property that avoids P/poly can be used to efficiently
distinguish a distribution of P/poly functions from random functions

Let D(f) be Φ(f): D of size S = poly (because Φ natural).
Prf←all[Φ(f)=1] > 1/N (because Φ natural), and if Φ avoids P/poly
then Prf←PRF[Φ(f)=1] = 0

Contradiction!

If PRFs exist, then no natural property that avoids P/poly exists

13

Summary

14

Summary
Natural proofs: which use a “natural property” Φ to separate
low-complexity functions from high-complexity functions

14

Summary
Natural proofs: which use a “natural property” Φ to separate
low-complexity functions from high-complexity functions

Φ holds for a random function with good probability

14

Summary
Natural proofs: which use a “natural property” Φ to separate
low-complexity functions from high-complexity functions

Φ holds for a random function with good probability

Φ is “efficiently” computable

14

Summary
Natural proofs: which use a “natural property” Φ to separate
low-complexity functions from high-complexity functions

Φ holds for a random function with good probability

Φ is “efficiently” computable

Goes against the notion of pseudorandomness

14

Summary
Natural proofs: which use a “natural property” Φ to separate
low-complexity functions from high-complexity functions

Φ holds for a random function with good probability

Φ is “efficiently” computable

Goes against the notion of pseudorandomness

Low-complexity functions which look-like a random function,
to “efficient” distinguishers

14

Summary
Natural proofs: which use a “natural property” Φ to separate
low-complexity functions from high-complexity functions

Φ holds for a random function with good probability

Φ is “efficiently” computable

Goes against the notion of pseudorandomness

Low-complexity functions which look-like a random function,
to “efficient” distinguishers

Natural proofs can’t separate out P/poly as low-complexity, if
pseudorandom functions exist in P/poly (as we believe)

14

