Natural Proofs

Lecture 25
Weak techniques are indeed weak!
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Circuit Lower-Bounds

@ To prove that a (boolean) function family f has no small
circuit family

@ i.e., non-uniform lower-bound
@ What does a proof look like (often)?
® Some (more general) property ® that f has
@ Show that functions with @ have no small circuits

@ Being able to show that for ® might require it fo
be a nice (natural) property
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Features of a
"Natural Property” - 1

@ For each length n, ® holds for a “significant” fraction
of all functions on {0,1}"

@ Writing functions on {0,1}" as an N-bit string
(N=2"), there are 2N such functions

@ Require at least 1/N fraction to have ®
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Motivation

@ Often ®(f) just says if complexity(f) > threshold, according to some
complexity measure and for some threshold

@ Formal complexity measure: m(literal) < 1; m(fAg), m(fvg) ¢ m(f)+m(g)

@ e.g. m(f) := 1 + FC(f), where FC(f) is formula complexity of f
@ In fact, for any m, m(f) < 1 + FC(f)

@ Such an m does not single out a few functions for high complexity
o If m(fn) > ¢ for any f,, then for 1/4th functions f'n, m(f'n) > c/4

o f = gbh = (gA-h)V(-gAh). i.e., partition into tuples (g,~g,h,-h)
such that at least one of them must be complex.
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Features of a
"Natural Property” - 2

@ @ can be “efficiently” checked given the truth-table
@ O(f,) can be evaluated in time poly(N)
@ Motivation?

@ Do not have examples of effectively using very
complex properties

@ Opportunity?
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@ Natural proof that g, has no low-complexity (small/shallow)
circuit family will

@ Define (implicitly or explicitly) a natural property ®
@ O holds for > 1/N of functions on {0,1}" (N=2")
@ ®D(f,) can be evaluated in time poly(N)

® Show that ®(gn) =1

@ Show that if fn has a low-complexity circuit family, then
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@ Define a natural property ®

@ ® holds for 1/N of functions on {O,l}“_

@ P(f,) can be evaluated in time poly(N)

o Show that ®(PARITY)=1 | Not const. fill last var |
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Natural Proof: Example

@ PARITY doesnt have depth d AC circuits _
@ Define a natural property ®

@ O holds for 1/N of functions on {0,1}"

& O®(f.) can be evaluated in time poly(N)

@ Show that ®(PARITY)=l1

@ Show that if fn has a low-complexity
circuit family, then ®(f,)=0 (i.e., ® avoids
functions of low circuit-complexity)
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Limitations of Natural
Proofs

@ We dont expect natural proofs to show that any function
family is not in P/poly

@ Natural properties cannot avoid all functions in P/poly

@ Unless some widely-believed assumpftions in cryptography
are false!

@ Note that we know (non-constructively) that there are
function families which need exponential-sized circuit families

@ Not a natural proof: property ® involved (whether f, has a
small circuit) is not efficient to evaluate

@ But doesnt give an “explicit” function (say NP function)
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Limitations of Natural
Proofs

o If (very strong) one-way functions exist, natural
properties cannot avoid all P/poly functions

@ If (very strong) one-way functions exist can create
pseudorandom functions

@ A distribution of efficient (P/poly) functions

@ Indistinguishable from random functions

@ But a natural property that avoids P/poly can be used
to distinguish any distribution of P/poly functions from
random functions
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Pseudorandom Functions

® Pseudorandom function:

@ A small (2pPoosN) sized) subset of all 2N functions on
{0,1}". Described by poly(n) long “seed” strings (non-
uniform)

@ Each can be evaluated by a poly(n)-size circuit

@ A distribution (for each n) defined by uniformly picking a
seed

@ Random function: distribution defined by uniformly picking
a function (N long string)

@ The two are “indistinguishable”
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Indistinguishability

@ Two distributions X and Y are €-indistinguishable to
a distinguisher D (which outputs a single bit), if it
behaves virtually identically when given samples
from either distribution

@ Pre—x[D(f) outputs 1] - Pre—v[D(f) outputs 1] < €

@ X, Y are e-indistinguishable for size-S distinguishers
if this holds for all circuits D of size at most S
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(Strong) PRF

@ PRF: a distribution over P/poly functions, indistinguishable from
random functions

@ Distinguisher gets the truth-table of the function as input

@ Given any S(N) = poly(N), can construct a 1/N-indistinguishable
PRF for all size-S distinguishers with seed-length poly(n)

@ If (strong) "one-way functions” exist
@ (Strong PRF, because “usual” PRF is against poly(n)-size

distinguishers who can in particular read only poly(n) positions
of the truth-table)
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Limitations of Natural
Proofs

@ PRF: A distribution of P/poly functions, €-indistinguishable from
random functions, for € < 1/N, for size-S(N)=poly(N) distinguishers D

@ A natural property that avoids P/poly can be used to efficiently
distinguish a distribution of P/poly functions from random functions

o Let D(f) be ®(f): D of size S = poly (because ® natural).
Precai[®(f)=1] > 1/N (because ® natural), and if ® avoids P/poly
then pr{-\—pRF[q)(F)zl] =0

@ Contradiction!

@ If PRFs exist, then no natural property that avoids P/poly exists
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Summary

@ Natural proofs: which use a “natural property” ® to separate
low-complexity functions from high-complexity functions

@ ® holds for a random function with good probability
o ® is "efficiently” computable
@ Goes against the notion of pseudorandomness

@ Low-complexity functions which look-like a random function,
to “efficient” distinguishers

@ Natural proofs cant separate out P/poly as low-complexity, if
pseudorandom functions exist in P/poly (as we believe)



